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Abstract: We developed a Parsimonious Multi-dimensional Moving Window (PMMW) algorithm
that only requires Digital Elevation Model (DEM) data of a watershed to efficiently locate potentially
optimal hydropower sites. The methodology requires only open source DEM data; therefore, it
can be used even in remotest watersheds of the world where in situ measurements are scarce or
not available at all. We used three parameters in this algorithm, and tested the method using the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar
Topography Mission (SRTM) derived DEMs. Our case study on the Morony Watershed, Montana,
USA shows that (1) along with 6 out of the 7 existing hydropower plants being successfully located,
12 new potential hydropower sites were also identified, using a clearance of 1 km, diversion of 90 m,
and Hydropower Index (HI) threshold of 109 m as the criteria. For the 12 new potential hydropower
sites, 737.86 Megawatts (MW) ± 84.56 MW untapped hydropower potential in the Morony Watershed
was also derived; (2) SRTM DEM is more suitable for determining the potential hydropower sites;
(3) although the ASTER and SRTM DEMs provide elevation data with high accuracy, micro-scale
elevation differences between them at some locations may have a profound impact on the HI.

Keywords: hydropower; watershed; Digital Elevation Model (DEM); moving window; hydropower
index (HI)

1. Introduction

One of the basic needs of mankind is energy [1–3]. Historically, fossil fuels are the
main conventional energy sources, but they can deteriorate environment by releasing
environmentally unfriendly greenhouse gases. With increasing awareness of negative
impacts of carbon emissions, a transition from fossil energy sources to renewable energy
sources is desirable and actively pursued all over the world, with a clear objective to reduce
the carbon footprint [3–7]. One of the greenest, most reliable, and most efficient energy
sources is hydropower [8], which converts the kinetic and potential energies of water
flowing through turbines into electrical energy [9,10]. Hydroelectric energy is one of the
most popular forms of renewable energy, accounting for almost 16% of the world’s energy
supply [11–14]. According to the International Hydropower Association’s (IHA) 2022–2023
annual report, new hydropower capacity of approximately 22 Gigawatts (GW) per year
was developed between 2017–2022. Mankind needs to generate 45 GW per year of hydro-
energy to achieve net-zero CO2 emissions by 2050, and to keep the global temperature rise
below 1.5 ◦C. The IAH’s next five-year strategy (2022–2027) is aimed in such a way that
the global hydropower capacity would reach at 1450 GW by 2027 [15]. Identification of
potential hydropower sites and construction of new hydropower plants is crucial to achieve
this goal.

There are various types of hydropower plants such as those with reservoir dams
and run-of-river (ROR) hydropower plants. The reservoir dams generally host large hy-
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dropower projects due to the presence of massive dam, reservoir, and backwater. However,
many large hydropower projects were critically scrutinized for their possible positive or
negative impacts on riparian environments and riverine aquatic ecosystems, such as land
area inundated, barriers to natural flow, hydropeaking, etc. [16–20]. For instance, due to
the inundation of land and vegetation, the terrestrial ecosystem is converted into an aquatic
ecosystem, resulting in the decomposition of terrestrial vegetation, releasing greenhouse
gases, and ultimately contributing to global warming and climate change [16,21,22], or on
the other hand, due to an enhanced hydrological cycle and precipitation within a local
microclimate zone, riparian vegetation greenness within a certain buffer zone along the
reservoir and river increases [18]. Another natural hazard is landslides, resulting from
the land inundation due to the reservoir. Massive reservoirs may also induce additional
hydrostatic loads and stresses on the geological structure underneath, which is in most
cases already stressed due to occurrence of folds/faults. The addition of the hydrostatic
load may result in a destabilized substructure, making the area prone to earthquakes, as
can be seen in Koyna earthquake incident in Maharashtra, India [23].

On the contrary, ROR power plants do not encounter such issues on both upstream
and downstream sides [3], mainly due to their little to no water storage capacity. The
ROR hydropower plants are relatively environmentally clement [6,16,24–28], despite a few
drawbacks of their own on the local ecosystem such as altered environmental flows and
barriers for aquatic species to migrate upstream [4,7,29–31]. The impacts of high-head
ROR systems on sediment transport and migration of aquatic life are discussed in [11].
A review by [31] focused on the effects of the diversion-type ROR hydropower plants
on the salmonid and other fish in the river downstream. A review on ecological impact
of the ROR hydropower plants worldwide was produced by [32]. They mentioned that
negative ecological impacts are mainly caused by diversion and pondage type of ROR
hydropower plants. Non-diversion hydropower plants can be excluded from this list
because they do not require flow diversion and therefore, there is no risk of inadequate
environmental flows [33]. Since the reservoir is not considered in the design process of
ROR hydropower plants, storage is not regulated in the associated watershed [34,35]. Thus,
in a ROR hydropower plant, the inflow on the upstream side of the dam is nearly identical
to the outflow on the downstream side. Therefore, hydropower generation from such
hydropower plants is directly dependent on the stream flow, and changes in the discharge
of the streams would affect the hydropower generation [36,37].

Due to their environmentally more friendly nature than reservoir dams, ROR dams
have received worldwide attention. Extensive research has been conducted on their various
aspects, such as impact on local ecosystem, no requirement of a reservoir, etc. Various
hydropower models have recently been developed, some of which focus on the technical
aspects (e.g., turbine mechanics, power generation), while others focus on the economic
aspects (e.g., construction, operating costs) or the ecological aspects (environmental flows).
Some models are more specific on hydropower generation such as the turbine efficiency
curve. A review on the hydropower models that focus on the low-head instream conditions
has been provided in [38]. Application of the Soil Water Assessment Tool (SWAT) and
the GIS spatial tool was performed and 107 sites for potential hydropower stations were
identified over the Kopili river basin in India [39]. An analytical framework to identify
the feasible hydropower sites using GIS data was proposed by [9] and was applied to the
Nan river basin in Thailand, where 86 potential sites were identified [9]. Total hydropower
potential in Nepal was estimated by utilizing the Digital Elevation Model (DEM) provided
by the Shuttle Radar Topography Mission (SRTM) and an ArcGIS processing, accompanied
by development of a hydropower model [40]. Combination of meteorological data and Dig-
ital Elevation Models was used and 85 potential sites for small hydropower plants (SHPs)
were identified in Bilecik regional Sakarya basin in Turkey [41]. A GIS-based systematic
decision support tool for the determination of potential hydropower sites was developed
and integrated with the Water-and-Energy-Budget-based Distributed Hydrological Model
with snow component (WEB-DHM-S) to provide topographic and hydrologic consider-
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ations while planning the hydropower projects [26]. Another hydropower model was
developed by [6] to calculate the total potential of a watershed. This model was tested in
the West Rapti River basin in Nepal, and it identified a total of 79 potential hydropower
sites, with the total potential of 320 MW [6]. The hydropower potential was derived in
the Myitnge river in Myanmar based on the streamflows and the flow duration curves
obtained through the SWAT model [10]. A bi-level optimization scheme was used, and a
hydropower model called Run-of-River Project Optimization (RORPO) was developed and
validated in the Mamquam River Watershed by [27]. An approach of dividing a watershed
area into rectangular meshes and determining the potential hydropower site based on the
headrace and penstock parameters was proposed and applied to the Huazuntlan river wa-
tershed by [42]. Another model based on the GIS and Best–Worst statistical techniques was
developed to determine the potential sites for ROR hydropower plants, and the model was
compared to field data, upon which, 11 potential sites were detected in the Fomanat plain
in Iran [28]. Integration of GIS-based framework, curve number and the geohazard risk
factors were carried out and 94 potential small-scale hydropower systems (<10 MW) with a
total hydropower capacity of 13.595 MW were identified in the central Philippines [43]. An
approach for assessing the design parameters of a ROR hydropower plant was suggested
and a conceptual design of the hydropower plant considering Francis and Kaplan turbines
was presented by [14].

However, the computationally intensive and expensive models require many pa-
rameters, on which measured data are often not available in the remote areas where in
situ measurements are rare or even not available at all. On the other hand, utilization of
flow accumulation could help identify areas with highest inflow. Flow accumulation is
defined as accumulated weight of all neighboring cells within a watershed flowing into
a downslope cell. An initial weight of 1 is set to each cell and we assume that rainfall is
spatially uniform. The eventual value of a cell considering water flowing from higher cells
nearby is the number of cells that flow into the cell. Cells with a high flow accumulation
are the locations of concentrated flow. Eventually, cells with a flow accumulation of the
initial weight of 1 are locations of local topographic highs and occur at ridges or apexes
(watershed boundary) where no inflow has occurred. Therefore, flow accumulation is an
indicator of concentrated flow weight and has no unit. Data obtained via DEMs provide
precise information on the elevation of the area. Since the efficiency of hydropower stations
depends on the optimal flow, multiplication of elevation and flow accumulation should be a
proxy of gravitational potential energy and can reveal the locations where the hydropower
production will be optimal. Based on this hypothesis, the objective of this study was to
develop a model to locate optimal sites for potential ROR hydropower plants by integrating
the elevation and flow accumulation over a watershed. Locating hydropower sites solely
through the application and integration of the DEMs and flow accumulation is a novel
approach and has never been published before. We have developed a parsimonious model
to keep the required input parameters at a minimum, so that the model can be applied to
remote watersheds. The rest of the paper is organized as follows: Section 2 explains the
study area, data used and methodology, Section 3 explains the results, Section 4 provides
discussion on the results, and Section 5 provides the conclusions.

2. Materials and Methods
2.1. Study Area

The Morony watershed extends from northwestern Wyoming to much of southern and
central Montana, USA. It comprises the rise of the Missouri River near Three Forks, Montana
(MT) and all its tributaries. Located within the Rocky Mountains, Morony watershed covers
approximately 59,400 km2 in area. The elevation of Morony watershed ranges from 860 m
in the northeast to 3445 m in the southwest, and the slope of the watershed trends from
southwest to northeast. There are 256 dams [44] and 86 sites of existing and potential
hydropower plants [45] in the Morony watershed. However, there are only 11 hydropower
stations with power output capacity greater than 5 MW. Amongst the 11, only 7 hydropower
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stations have an output capacity of 20 MW or higher. Apart from the existing hydropower
sites, there are 3 proposed hydropower projects [46] in this watershed. Two of them (Clark
Canyon, Gibson) have natural reservoirs and dams, while the third hydropower project
(Gordon-Butte) was proposed as the construction of an artificial reservoir, with the exact
location not known yet. There are five dams near the watershed outlet in Great Falls,
MT: Black Eagle, Rainbow, Cochrane, Ryan, and Morony. Each dam hosts a ROR-type
hydropower plant. The outlet of the watershed is located at the Morony dam, thus the
name we gave to the watershed. Figure 1 shows the location of the Morony watershed in
the United States, along with its elevation range and the locations of all the hydropower
plants with power outputs greater than 5 MW. Since there are no migratory fish species
in the aquatic ecosystem in the Morony watershed, construction of diversion-type ROR
plants will not impact fish migration in the river (personal communication with Mr. Jeremy
Clotfelter of Northwestern Energy).
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2.2. Data Sources

The primary data used for this study were the Digital Elevation Models (DEMs) ac-
quired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
onboard National Aeronautics and Space Administration’s (NASA) Terra satellite and that
acquired by the Shuttle Radar Topography Mission (SRTM). ASTER is a Japanese-made
radiometer with high spatial resolution (15–90 m) [47]. ASTER collects data in 14 bands,
ranging from visible to thermal infrared region in the electromagnetic spectrum. A Global
DEM (GDEM) has been constructed using the stereo-pair imaging technique. The ASTER
GDEM has tiles of 1◦ × 1◦. The first version of the ASTER GDEM was constructed using
stereo-pair images and was released in 2009. We used the latest version (version 3) of
the GDEM, which has been significantly improved from the old versions with additional
stereo-pairs, which has increased the coverage and reduced the occurrence of artifacts. The
ASTER GDEM’s coverage spans from 83◦ N to 83◦ S, which encompasses roughly 99% of
the Earth’s landmass [48].

The SRTM data were acquired in 2000, using the X-band (~3 cm wavelength) radar
interferometry [49]. The original version (version 1) of the SRTM was filled with abnormalities,
and there was a substantial anomaly with respect to the water bodies detected via the data.
The data also had voids where elevation was not available. The second version (version 2)
was improved from the first version, and the water bodies and coastlines were better defined,
and the single-pixel errors were removed. However, the voids were still present in some
areas. The latest version (version 3) of SRTM, which is being used worldwide, is void-filled.
The voids in the SRTM data were filled by using the ASTER’s stereoscopic-imaging-derived
elevations [50]. The SRTM data is also of 30 m × 30 m spatial resolution.

We used the ASTER GDEM v3 and SRTM version 3 (SRTM plus) for this study. The
ASTER GDEM and SRTM DEM were downloaded from NASA Earthdata portal [51] and
Opentopography website [52], respectively, and all individual tiles were mosaicked for the
area of interest. Then, we clipped the mosaicked DEM to determine the exact shape of the
Morony Watershed.

2.3. Methodology

We used the SRTM DEM to determine the Morony Watershed boundary. Watershed
delineation method is given in [53]. Once the watershed boundary and the watershed-
specific DEM were obtained, we generated the streamline raster by using flow direction
tool. Then, we converted the streamline raster into a polyline shapefile to obtain the unique
file identification (FID) for each streamline in the shapefile. We converted the streamline
polyline shapefiles back to streamline raster with pixel values identical to the FID of each
streamline. We also generated another streamline raster with all streamline pixels having
the same value (1 in our case). Figure 2 shows the flowchart of creating the streamlines.

Upon creating the two streamline rasters (one with pixel value = FID and the other
with pixel value = 1) and the ASTER and SRTM DEMs, we developed a MATLAB code to
determine the elevation difference along the streamlines and the locations of best potential
hydropower sites, based on the hydropower index (HI) as the objective function. HI is
the product of elevation difference and flow accumulation and is a proxy of gravitational
potential energy, a direct parameter for hydropower generation. The HI works on the
following hypothesis: in headwater zones that are usually associated with hilly and moun-
tainous areas, the flow accumulation is small, since it involves calculation of the number of
pixels that water will flow into. But the elevation changes in these regions are generally
large, which will generate higher elevation heads. On the contrary, in outlet zones that are
usually associated with plains and flatlands, the elevation changes are small but the flow
accumulation is large, since the stream flow is large and the cells are far from the watershed
boundary. For hydropower generation, HI should be high enough, since it is an indicator of
potential energy. Therefore, the locations of high HI should serve as the sites for potential
hydropower stations. For optimum hydropower locations, we need HI to be as high as
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possible. Since the flow accumulation function in ArcGIS calculates the number of pixels
inundated by the water, larger watersheds will yield higher HI and vice versa.
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Figure 2. Flowchart of obtaining watershed and streamlines.

There are several diversion dams in the Morony watershed, where water was diverted
to the power plant further downstream of the actual dam barrier. This diversion was
constructed to obtain more head relatively closer to the dam barrier. Based on the online
measurement in Google Earth analysis of the Rainbow dam, the actual power station
was roughly 800 m away from the dam barrier. But Black Eagle and Ryan dams had
the power stations relatively closer to the barrier. Thus, we took 600 m as the maximum
diversion from the actual dam for any potential sites. The spatial resolution for ASTER
and SRTM was 30 m, and 600 m diversion means that we would need to move 20 pixels
farther from of the current pixel. Additionally, the direction of movement could vary
depending on the path of the streamline. Thus, we considered movement of 20 pixels in
every direction from the current pixel. We define this movement as ‘increasing order of
pixels’ or ‘pixel order (PO)’. Thus, the movement of 20 pixels away from the current pixel
is equivalent to the code having 20th order or PO = 20. This was the maximum order we set
from visual analysis of the Rainbow dam; for some other cases, the order can be changed,
although the order should not exceed the maximum number of rows or columns in the
DEM image. Considering the nth order and the current pixel (which is always at the center),
the maximum order undertook the analysis of (2n + 1)2 pixels. Hence, the code used the
maximum of (2n + 1)2 surrounding pixels for calculating the elevation-difference raster.
Upon obtaining the elevation-difference rasters, we multiplied the elevation-difference
rasters with flow-accumulation raster and generated the hydropower index (HI) rasters.
Since the flow accumulation raster does not have units, HI would bear the units of elevation
difference. Therefore, the unit of HI is meters (m). Figure 3 shows the flowchart of the
moving window methodology.
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We used the PO and combined it with a moving window so each pixel with a streamline
would be considered for analysis, the elevation difference being calculated up to 600 m
away. This allowed us to obtain high heads for the potential hydropower sites. The code
can automatically assume each increasing order between the first and the user-specified
order. For example, when we use 20th order for our analysis, the code actually analyzes each
order between order 1 ((2 × 1 + 1)2 = 32 pixels) and order 20 ((2 × 20 + 1)2 = 412 pixels)
and return the elevation difference raster for each order. This enabled us to perform the
sensitivity analysis and determine feasibility of our assumption to divert the flow up to
600 m. The reason we use number 20 specifically is that the SRTM and ASTER have a
30 m spatial resolution, and 600 m distance gives an integer value closer to the diversion
of the Rainbow dam. After developing the elevation-difference and HI rasters, we made
a MATLAB code to determine the potential hydropower sites. We used a similar moving
window, but the order of the window was set in such a way that no two potential sites could
be within a certain distance of each other. We call this distance the ‘Clearance’ between two
sites. The Clearance is set to ensure that the flow is diverted away from the river flows back
to the river safely. To see how Clearance impacts the selection of potential sites, we varied
the Clearance from 1 km to 3 km. For Clearance = 1 km, we used a 34th order (1020 m) as
the constant order for moving window; and for larger clearances, we multiplied this order
by Clearance to obtain new orders. Thus, for Clearance = 2 km, we used 68th order, and
for Clearance = 3 km, we used 102nd order. For each value of Clearance, we calculated the
potential site for all POs. Additionally, to locate potential sites, we varied the HI value used
for assigning a pixel as a potential hydropower site and performed a sensitivity analysis of
the variation of the PO and HI. The maximum value of HI (considering both ASTER and
SRTM DEM derived hydropower index) was 5.5014 × 109 m for the Morony watershed.
Thus, we varied the HI from 101 m to 109 m logarithmically to see how many potential
sites were located over each HI threshold in each PO. We used the same methodology
with ASTER and SRTM DEMs separately, and for each DEM, 3 values of Clearances,
20 orders and 10 HI thresholds in each order yielded a total of 1200 unique cases for the
Morony watershed.

At the same time, we evaluated the performance of the PMMW algorithm by as-
sessing how many of locations of the existing hydropower sites coincided with the pre-
dicted potential sites. We downloaded the shapefile of all the existing dams in Montana
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from Montana Fish and Wildlife Parks (MFWP) website [44], and all existing and po-
tential hydropower sites in Montana [45], and clipped them for the Morony Watershed.
There are 256 dams and 86 hydropower sites in the watershed. However, there are only
11 hydropower stations with hydropower capacity greater than 5 MW. Since we are inter-
ested in locating optimal and large enough hydropower plant sites for economic reasons,
we only used these 11 hydropower stations as the existing hydropower sites for model
assessment. We also used the locations of two proposed hydropower projects in the water-
shed ([46]). In total, we used the locations of 13 existing and proposed hydropower sites for
model evaluation. Since the downloaded shapefiles had some discrepancy, we derived our
own shapefile by using the data of these projects from various web sources [46,54–57], and
coordinates of the dams from Google Earth. Considering the length of dams, pinpointing
their exact location is challenging. Therefore, we used the location of upstream of penstocks
as the location of hydropower site, since the process of hydropower generation is initiated
there. We developed another MATLAB (version R2019a) code with a different moving
window to assess the number of locations of potential hydropower sites coinciding with
locations of the existing hydropower sites. To prevent the discrepancy in results due to
different geographical coordinates of existing and potential hydropower sites, we used the
tolerance of 1 km surrounding each existing hydropower site. This means that if any new
potential hydropower site location was identified within 1 km of the existing hydropower
site location, the model would consider that location as the match between potential and
existing hydropower site.

3. Results

We used the ASTER- and SRTM-derived DEMs to determine the elevation difference
along each stream line based on the order of the moving window. We used the same
DEM to generate the flow accumulation raster. We generated an HI raster to identify
potential hydropower sites once the value at a specific location along the streamlines
crossed a threshold. We capped the highest possible HI value at 1020 m. The maximum HI
values in any integrated raster (considering both ASTER and SRTM DEM derived HI) were
5.5014 × 109 m, and the minimum value of HI was 0. We varied the PO from 1 to 20 to
determine the elevation difference between the sites up to 600 m apart, and varied the HI
between 101 m and 1010 m. The value of the Clearance was 1 km, 2 km, and 3 km. For
each Clearance value, we had 20 orders and 10 thresholds, and therefore, 200 scenarios.
Thus, for the three values of Clearance, we had 600 scenarios. Similarly, considering the
two DEMs, we had a total of 1200 unique scenarios for the Morony watershed.

To assess the performance of our methodology, we used the number of potential hy-
dropower sites that matched the existing hydropower sites, assuming they were optimized.
We developed another MALAB code to determine the number of potential hydropower
sites that were within the 1 km vicinity of the locations of existing hydropower plants.
Instead of 1 km, we used 1020 m as the distance around existing dams or hydropower sites
(due to the 30 m spatial resolution of DEMs) to determine if any potential locations were
identified within the specified distance. Then, we performed the sensitivity analysis of
all the datasets to determine the preferred values for Clearance, PO, and HI. This assess-
ment analysis was performed for the ASTER- and SRTM-derived DEM datasets separately.
Figures 4 and 5 show the assessment analysis of matches between potential hydropower
sites and existing dams or hydropower sites within 1020 m clearance for ASTER- and
SRTM-derived datasets, respectively. In all the cases, the x axis denotes the PO for the
moving window, and the y axis denotes the number of matches between potential and
actual hydropower sites. For Figure 4a (ASTER DEM-derived matches, Clearance = 1 km),
the brown, green, and dark blue plots show the number of matches with increasing PO
when HI = 107 m, 108 m, and 109 m, respectively. For HI = 107 m, when PO = 1, there
are 10 matches between actual and potential hydropower sites derived by the model. In
both Figures 4 and 5, plots for HI = 101 m to 106 m were excluded because they are nearly
identical to the plot for HI = 107 m in their respective figures.
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For the ASTER-derived DEM data (Figure 4), for Clearance = 1 km (Figure 4a), the
maximum number of matches between potential and actual hydropower sites was 12.
When HI increased to 108 m, the number of matches decreased to nine at PO = 9, and was
constant afterwards. When HI increased even further to 109 m, we had only five matches.
For Clearance = 2 km (Figure 4b), higher HI values yielded even fewer matches. Similar
trends continued for the case of Clearance = 3 km (Figure 4c).
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Figure 5 shows similar results to Figure 4 but for the SRTM DEM data. The general
trend of matches was consistent for Clearance = 1 km and 2 km (Figure 5a,b). The maximum
number of matches was 11 when HI = 107 m. When Clearance = 3 km (Figure 5c), maximum
matches = 10 and 9 (occurred at PO = 2) for HI = 107 m and 108 m, respectively. Maximum
matches = 6 (occurred at PO = 5–7) for HI = 109 m. We can see that for both DEM datasets,
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lower HI value yielded more matches between potential locations and existing locations,
compared to the higher HI values. This is understandable and expected, as higher HI would
weed out the sites with lower hydropower capacity. To generate optimal hydropower, we
need an HI as high as possible since a larger product of the flow accumulation and head
means greater potential to produce hydropower.

At the same time, we investigated the reason behind the difference observed between
the ASTER- and SRTM DEM-derived potential hydropower sites. We performed a regres-
sion analysis between the ASTER and SRTM DEMs over streamlines to determine the
degree of correlation of elevation over streamlines. The results show that the two DEMs
correlated very well, as shown in Figure 6.
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Figure 6. Regression analysis of ASTER- and SREM-derived elevations along the streamlines in
Morony watershed.

However, we also noticed that because all the elevation values were between 860 m
(lowest elevation in watershed) to 3445 m (highest elevation in watershed), the base datum
of the region itself was very high. To determine the relative difference between the ASTER
and SRTM DEMs, we subtracted the SRTM DEM from the ASTER DEM to determine the
relative elevation difference raster of the Morony Watershed, as shown in Figure 7, and
developed a histogram of relative elevation difference, as shown in Figure 8.

From Figure 8, we can see that majority of the pixels have a relative elevation difference
of less than zero, which indicates that the SRTM DEM has relatively higher elevation values
than the ASTER DEM. Since each PO considers (2 × PO + 1)2 pixels to develop the elevation
head and the HI rasters, even smaller relative differences in the ASTER- and SRTM-derived
elevations could become the decision making factor for determining the HI at higher POs.
We performed a numerical comparison between the HI rasters determined by the various
moving orders used in our model. In this comparison, we found that for the two DEMs,
the difference between the two HI rasters in each order was significant. Figure 9 shows the
sample results for PO = 3, which was used to determine the potential hydropower sites.
We only showed the results of PO = 3 to save space.
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4. Discussion

Figures 4 and 5 show the matches between existing and potential hydropower locations
derived via the PMMW model for the ASTER and SRTM datasets, respectively. Since a
higher flow accumulation and a larger elevation difference would generate potentially
higher hydropower, we only considered HI = 107 m or higher to locate potential sites.
Based on the trend analysis shown in Figures 4 and 5, the trends kept varying with values
of Clearance, HI, and PO. Additionally, the ASTER- and SRTM-derived DEM datasets
showed difference in the number of potential sites. Therefore, to determine a ‘sweet spot’
of Clearance, PO, and HI, we performed an in-depth assessment of the matches determined
between the ASTER- and SRTM-derived datasets for every set of values of Clearance and
PO, but only for HI = 107 m or higher. Figure 10 shows the results of the analysis. In each
subfigure (Figure 10a–i), the x-axis indicates the PO, while the y axis indicates the number
of matches between the existing and potential hydropower sites. For instance, when the
Clearance is 1 km, and the HI is 107 m (Figure 10a), the red and blue plots indicate the
number of matches derived from the SRTM and ASTER DEM datasets, respectively.

When Clearance = 1 km and HI = 107 m (Figure 10a), both DEM datasets produced
similar number of potential sites as the PO increased. As Clearance increased from 1 km to
3 km, while keeping the HI constant at 107 m (Figure 10a–c: top row), the SRTM DEM
dataset generated more matches compared to the ASTER DEM dataset. As HI increased
from 107 m to 109 m, while keeping the Clearance constant at 1 km (Figure 10a–g: left
column), both datasets showed similar matches. As both Clearance and HI increased
(Figure 10a–i: top left to bottom right diagonally), however, SRTM DEM generated more
matches than the ASTER DEM. Except for the case of Clearance = 1 km and HI = 107 m
(Figure 10a), the SRTM DEM dataset generally identified more matches between potential
and existing hydropower sites than the ASTER DEM data. The SRTM DEM dataset seems
to function better in locating potential hydropower sites than the ASTER DEM. For this
reason, we will use only ASTER DEM for further analysis.

Now let us determine the sweet spot among Clearance, HI, and PO. We only considered
the case of HI = 109 m and predicted matches for high-capacity potential hydropower sites.
Figure 11 shows the results of matches with increasing PO values for Clearance = 2 km and
3 km. The results for Clearance = 1 km are identical to those for Clearance = 2 km.
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From Figure 11, we can see that a Clearance of 2 km produced six matches between
potential and existing hydropower sites when PO = 3. For Clearance = 3 km, the best
match of six occurred for PO = 5. We need smaller clearance between dams and smaller
diversion for optimal locations. Therefore, Clearance = 1 km with a maximum diversion of
90 m seems optimal for HI = 109 m. Considering the 13 locations used to assess the model
performance, the model successfully predicted 6 existing locations. However, it should be
noted that two of the locations used for the model assessment were proposed hydropower
locations, and hydropower plants have not been built yet. Additionally, among the
11 existing hydropower plant sites, only 7 sites had a power output greater than 20 MW. We
correlated the potential site locations with existing site locations, and determined that all
six matches were of a hydropower station with power output greater than 20 MW (Canyon
Ferry—49.8 MW, Black Eagle—21 MW, Rainbow—64 MW, Cochrane—62 MW, Ryan—72,
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Morony—49 MW). This means that the model predicted six out of seven, i.e., ~86% of the
high-energy yielding hydropower sites. Therefore, considering the optimum hydropower
potential as the goal, the model accuracy was ~86%. Table 1 shows the list of the existing
hydropower plants with power output greater than 20 MW in the Morony watershed.

Table 1. List of the high-energy yielding (>20 MW) hydropower plants in the Morony watershed.

Plant Name Type Capacity (MW) Hydraulic Head (m) Successfully Located
with PMMW Model?

Canyon Ferry Reservoir 49.8 68.59 YES

Black Eagle ROR 21 10.5 YES

Rainbow ROR 64 17.98 YES

Cochrane ROR 62 18 YES

Ryan ROR 72 18.60 YES

Morony ROR 49 25.91 YES

Holter Reservoir 38.4 38 NO

Based on the optimum parameters chosen, we derived 12 new potential hydropower
sites for the Morony watershed. All of the new potential hydropower sites are over the
Upper Missouri River, and downstream of the Canyon Ferry dam for the reason that these
locations are close to the watershed outlet at Morony dam, and the elevation change along
this segment of the Missouri river is the largest. Figure 12 shows the potential hydropower
sites identified, along with existing locations.
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We also performed a polynomial regression analysis between the nominal hydropower
output of the six existing hydropower locations that matched the model prediction and HI
values corresponding to the six sites. We used the actual power output as a polynomial
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function of HI (P = f(HI)) to a third order. Figure 13 shows the regression results between
the actual power and the hydropower index. The best-fitting expression is as follows:

P = 1.11165 × 10−25 HI3 − 6.24 × 10−16 HI2 + 1.1134 × 10−6 HI − 569.27, (1)

where P is the actual power output of the existing hydropower plants, and HI is the
Hydropower Index values corresponding to the sites. The coefficient of determination (R2)
of 0.8788 and p < 0.01 indicates significant correlation. This analysis is very preliminary
since the number (six) of hydropower plants over 20 MW along the river is limited.
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Figure 13. Non-linear regression analysis between maximum power output of matched hydropower
sites and derived hydropower index.

Based on the curve-fitting regression model (Equation (1)), and upon recalculating the
potential hydropower outputs at the six hydropower stations, we noticed that the average
projected hydropower output deviated from the actual measurement by up to 11.46%.
Assuming the same 11.46% deviation for all 12 newly located potential hydropower sites,
we estimated 737.86 MW ± 84.56 MW hydropower output in total, and an average power
output of 61.48 MW ± 7.05 MW hydropower output for each newly located hydropower site.
It should be noted that the potential hydropower sites were solely based on the optimum
head and flow accumulation. The actual construction of a hydropower plant will depend on
logistic accessibility, safety, and environmental and other relevant factors. However, using
HI as an important parameter in locating potential optimal hydropower sites is a crucial
first step, as it is cost-effective, effective, and economic. In addition, the PMMW algorithm
only requires DEM of a watershed as input; therefore, it is applicable worldwide since
spaceborne remotely sensed DEMs are in the public domain and free-of-charge. Model
calibration will be required for each watershed, since the hydrometeorological conditions
may vary significantly.

As for the difference between the ASTER and SRTM DEM datasets, from Figure 9, for
PO = 3, a total of (2 × 3 + 1)2 = 49 pixels were considered to calculate the HI at each center
pixel. Therefore, even the small relative elevation differences at a pixel scale in both DEMs
can lead to significantly different HI values.

5. Conclusions

Locating optimal hydropower sites can lead to the construction of new effective and
high-capacity hydropower plants and ultimately help tap more renewable energy from a
river. Advanced remote sensing can provide global and cost-effective DEM datasets on the
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public domain, and hydropower development can incorporate the utilization of the free and
open-source data in locating optimal sites and building high-capacity hydropower plants
over a certain area. In this study, we developed a novel parsimonious model to determine
the feasible locations for potential hydropower sites by integrating flow accumulation
and vertical difference derived from remotely sensed DEMs. We developed a multi-
dimensional moving window algorithm to consider the maximum diversion distance from
the dam barrier and determined the highest heads for effective hydropower generation.
We multiplied the elevation-difference rasters and flow-accumulation raster and generated
HI rasters cell by cell. We performed an assessment analysis using locations of existing
hydropower plants by varying the dam Clearance, order of the moving window (PO), and
hydropower index (HI) and derived the number of matches between model-located and
actual hydropower sites. We concluded that:

1. Based on the data-intensive assessment analysis, we found that the maximum diversion
of 90 m is generally sufficient to achieve a high enough elevation head to construct
new hydropower plants in the Morony watershed. At the same time, we found that
the hydropower index value should be as large as possible to locate potential sites
for hydropower plants of high-capacity. HI of 109 m was the highest for the Morony
Watershed with 30 m spatial resolution. We also found that 1 km Clearance between
two consecutive dams is sufficient. Based on the optimized Clearance, diversion and
HI values and assessment using the actual hydropower plants, the model successfully
located 6 out of the 7 existing high-energy hydropower plants (>20 MW) over the
Upper Missouri river, along with 12 new potential hydropower sites. We developed the
correlation between the maximum power generated by the existing hydropower sites
and the hydropower index derived from the model, based on the third-order polynomial
regression analysis, and determined the watershed-specific parameters. Based on the
curve-fitting regression analysis, we found that there is 737.86 MW ± 84.56 MW potential
hydropower in the Morony watershed that can be tapped.

2. Since the PMMW algorithm only requires DEM data, it does not require any site-
or generator-specific parameters, such as actual streamflow, type of turbines, etc.
Therefore, the model can be applied generally to any watershed, and is thus useful for
remote watersheds where ground-based observations are scarce or not available at all.

3. The SRTM-derived DEM data is more suitable in locating potential hydropower sites
along a river than the ASTER DEM. The ASTER- and SRTM-derived DEMs provide
elevation data with good agreement on the macro-scale, but the micro-scale elevation
differences between the ASTER and SRTM DEMs are significant for locating optimal
hydropower plant sites.

So far, the PMMW algorithm can perform a preliminary analysis of the feasibility of
hydropower plant at any location. More research can be performed by integrating various
models and developing a holistic package to determine best locations for hydropower sites
based on geographical, geological, environmental, economic, and logistical situations. The
identification of potential hydropower sites along with their estimated daily hydropower
output will greatly enhance the capabilities of the PMMW algorithm, and efforts to integrate
the PMMW and other models are currently underway. Advances in remotely sensed data
acquisition will continue to improve the ability of mankind to perfect the computational
modeling by providing diverse datasets at high spatial and temporal scales. The application
of artificial intelligence would enable the development of data-driven models that will be
able to predict the future hydropower based on the current trends.
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