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Abstract: The challenges posed by climate change and global warming loom large, necessitating a
critical initial step towards the long-term growth and the enhancement of both environmental and
operational efficiency. Within the energy sector, renewable energy sources are gaining increasing
prominence. Consequently, traditional oil and gas companies (OGC) are undergoing a gradual
transformation into comprehensive energy corporations, aligning themselves with energy transition
policies. This paper examines two types of efficiency measures—operational and environmental—for
the 20 largest OGC during the period of 2010–2019. Secondly, this research aims to explore the effect
of the global energy transition on both environmental and operational efficiency. Based on three
estimation methods, two estimation steps are used in this research. In the first step, the True Fixed
Effect (TFE) model and the Battese and coelli (1995) SFA model are applied to evaluate, measure and
compare the environmental and operational efficiency scores. In the second step, the TFE model and
GMM approach for the dynamic panel data model are used to explore, evaluate and verify the effect
of global energy transition on the environmental and operational efficiency of the largest 20 OGC
in the world. The results reveal that the average operational efficiency of major OGC measured
using the BC.95 model and TFE model is 66% and 85%, respectively, and the overall average level
of environmental efficiency for OGC over a 10-year period is 31% (based to B.C.95 model) and 13%
(based to TFE model). Our findings reveal that biofuels, solar and hydropower contribute to promote
the operational and environmental efficiency of the largest 20 OGC. However, the analysis suggests
that while the global energy transition significantly influences and bolsters environmental efficiency,
its effect on operational efficiency among these major OGC remains less pronounced and insufficient.

Keywords: energy transition; renewable energies; operational and environmental efficiency; TFE
model; SFA model; dynamic panel data model

1. Introduction

In a contemporary society that strives for sustainable growth, concerns like energy
economics and environmental preservation are crucial. Climate change and global warming
raise many critical global issues addressing the evolution of the global energy grid in
the future and require the emergence of a new global energy economy that changes the
current fundamentals of energy production and consumption. Likewise, the demand
for energy throughout the world is rising, driven by economic growth and population
despite various regional turmoil, especially the COVID-19 pandemic. The energy sector is
responsible for approximately 75% of the emissions that have driven the rise in average
global temperatures, resulting in significant changes to weather and climate extremes [1].
Therefore, the energy sector must be at the heart of solving the problem of climate change.

The development of renewable energies must be at least six times faster if the world is
to achieve the objectives defined in the Paris agreement (IRENA). The historic 2015 climate
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agreement aims, at a minimum, to reduce the average global temperature increase to “well
below 2 ◦C”. Renewable energies, combined with a rapid improvement in energy efficiency,
are key to tackling climate change. However, the global energy system must have structural
changes and move from a system heavily reliant on fossil fuels to a system concerned with
improving energy efficiency and based on renewable energies. This kind of global energy
transition, at the heart of the “energy transition” already at work in many countries, can be
the source of a more prosperous and more united world.

Government plans are still a long way from what is needed to reduce emissions. Under
existing and projected policies, the world’s “carbon budget” would be depleted within
twenty years to limit the global temperature increase to less than 2 ◦C, and global energy
use will be dominated for decades to come by different types of fossil fuels [1]. Currently,
over two-thirds of the world’s energy comes from the petroleum industry. It is under
great pressure to make a transition to a more sustainable way of working by implementing
energy transition policies to stem the effects of climate change and environmental problems.
Accordingly, the new global energy system depends primarily on weather and a strategy
for responding to emerging climate change and sustainability issues in the oil and natural
gas industry.

According to the global energy review report [2], worldwide carbon emissions from
energy combustion and industrial processes increased by 6% in 2021 to achieve their
highest yearly level on record. The COVID-19 epidemic reduced worldwide CO2 emissions
by 5.2% in 2020. However, because of the exceptional fiscal and monetary stimulus, as
well as the quick vaccine deployment, the globe has witnessed an extraordinarily rapid
economic rebound since then. The rebound in energy demand in 2021 has been hampered
by unfavorable weather and energy market conditions, which have caused more coal to be
burned with the strongest ever annual growth in coal production.

The global understanding of the necessity of environment protection is critical in light
of current trends, particularly the energy sector firms, due to their large contribution to
overall carbon dioxide emission. Moreover, the petroleum industries also directly release
greenhouse gases into the atmosphere in addition to producing the basic energy necessary
for economic expansion and the various petroleum products utilized as intermediary goods
for several industries. Therefore, reducing CO2 emissions in the petroleum industry is
something that governments, business leaders, and people who care about the environment
should work toward. Even though they may have high levels of operational efficiency (OE),
several oil and gas companies (OGC) were unwilling to implement such standards in order
to reduce pollution or safeguard the environment. Therefore, assessing and comparing the
environmental efficiency (EE) and operational efficiency (OE) of major OGC is a crucial
first stage towards reducing carbon dioxide emissions and protecting the environment for
sustainable economic growth.

Major OGC have boosted their investments in the transition to a low-carbon economy
by setting carbon reduction goals. These investments include low-carbon projects, acquisi-
tions, and emission reduction technology. British Petroleum (BP) has established a USD
500 million annual investment in low-carbon operations and a USD 100 million internal
fund to implement new ideas [3]. Unprecedented investment in wireless fast-charging
technology for automobiles, the declaration of support for a sizable gas-fired energy and
carbon capture facility have been established in Teesside, UK, while USD 200 million has
been invested in Lightsource BP [3]. Saudi Aramco is a member of the Oil and Gas Climate
Initiative (OGCI) and will invest USD 1 billion in low-carbon technologies over the next
decade [3].

Since the 2000s, Chevron has spent more than USD 8 million on the research and
development of battery technologies and alternative energy. Chevron has also put more
than USD 1 billion into investment in the Gorgon carbon dioxide injection project and the
Quest project and has put more than USD 75 million into investment in carbon capture and
storage research [3].
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However, investment priorities vary among OGC. The major OGC have made a variety
of investments in emerging energy areas, storage technologies and carbon capture. The
major OGC invest heavily in carbon capture emerging energy areas and storage technology
each year, and several OGC are interested in renewable energy initiatives. Shell and Total
have made massive investments in the power system. Saudi Aramco intends to deploy
solar photovoltaic remote facilities more frequently [3]. Furthermore, as a result of the
heavy reliance on oil and gas in the transport sector, the major OGC are making investments
in alternative energies and electric cars, thus expenditures in batteries and rapid charging
technologies are rather considerable.

This paper examines and compares the OE and EE of the largest OGC over the 2010–2019
period using desirable (operational revenue) and undesirable (CO2 emission) outputs and
assesses the effect of the global energy transition on the OE and EE. Three methods are
adopted in this paper. In the first step, the True Fixed Effect (TFE) model and Stochastic
Frontier Analysis (SFA) are applied to measure the OE and EE level. In the second step, the
system GMM approach and the TFE model are used to study the effect of the global energy
transition on the scores orientation of the two types of efficiency.

The remainder of this research is structured as follows. Section 2 provides an overview
of the literature on EE and OE studies applied to energy challenges. Section 3 presents the
methodology adopted in this research and discusses the used dataset. Section 4 discusses
the findings of the OE scores and EE measures and the effect of global energy transition
on the orientation of both efficiency scores. Section 5 presents the conclusion and makes
recommendations for further research.

2. Literature Review

Several previous studies have evaluated the financial, operational, revenue or envi-
ronmental efficiency of OGC [4–7]. Eller et al. [8] give empirical findings on the revenue
efficiency of domestic OGC and private international OGC using the SFA method and the
data envelopment analysis DEA Method for 78 OGC. They discover that home businesses
are less effective than those operating abroad. The distinct structural and institutional
aspects of the organizations, which may be explained by the firms studied various aims,
can account for a sizable percentage of the inefficiency.

A crucial first step for organizations on the path to sustainable planning is an opera-
tional efficiency assessment approach. Atris and Goto [9] analyze the OE measures and
also the EE measures for 34 U.S. OGC over 2011–2015 using non-radial DEA methods. The
Kruskal–Wallis test is applied to see if there are any differences between integrated and
independent companies as well as whether two types of unified efficiency indicators evolve
over time. According to their findings, integrated enterprises are more environmentally
efficient than independent ones. This is a result of integrated organizations increased
environmental protection standards and their investment in a consumer-oriented strategy
to increase revenues.

Lim and Lee [10] use the method of the two-step Markowitz portfolio optimization
theory methodology to investigate the efficiency of oil refining industry between 2005
and 2016. They also analyze data from over 30 OECD nations. They claim that there is
a direct correlation between oil product pricing and the efficiency of the refining sector.
Additionally, their calculations demonstrate that while energy consumption and crude
oil output in these nations reduce the efficiency of the refining sector, the consumption of
renewable energy sources and research and development expenditures have the opposite
effect. The oil industry can coexist with the renewable energy sector, according to the
paper’s authors, in order to promote sustainable growth.

Sun et al. [7] examined the efficiency issues of CNPC and Sinopec, which are the
largest Chinese OGC playing an important role in international competition. The authors
adopt the SFA method and the TFE models to assess the efficiency of the 10 biggest oil
firms in the world from 2003 to 2013. Their findings imply that compared to other oil and
gas companies, CNPC and Sinopec Group’s efficiency has improved somewhat since the
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global financial crisis, and Chinese state-owned oil enterprises still need to be enhanced by
foreign managerial expertise.

Jarboui [5] evaluates the OE and EE of 45 U.S. OGC during 2000–2018. Furthermore,
the purpose of this study is to assess the impact of renewable energies on both forms of
efficiency. In this study, the author employed two methods: the TFE model to calculate
efficiency scores and identify causes of inefficiency, and the GMM to analyze the impact
of US energy and environmental policies on both forms of efficiency. The findings show
that OGC in the United States have begun to migrate to low CO2 emissions in recent
years. Furthermore, biofuels, hydroelectric electricity, wind power, and solar power are
contributing to the EE of U.S. OGC. Jia et al. [11] provide an overview of cutting-edge theory
and technology in analytical chemistry and geochemistry as applied in the upstream oil
and gas sector. They suggest enhancing high-resolution chemistry capabilities to promote
efficient and sustainable energy development.

Recently, the SFA approach has been widely used to evaluate firms’ efficiency. The
SFA model identifies the firm deviation from the optimal frontier of production function
and distinguishes between individual heterogeneity and inefficiencies [12]. Some problems
and restrictions may arise when conducting research using the SFA approach. The model
proposed by Battese and Coelli [13–15] enables an overestimation of the inefficiency term,
resulting in a mismatch between the projected efficiency outcomes and the actual conditions.
However, Greene [16–18] concentrated on the effect of heterogeneity on the efficiency
measure. Greene [16] examined the efficiency of health care services in 191 countries and
showed that it is important to separate inefficiency from heterogeneity. The SFA cost
technique for panel data was also used by Farsi et al. [19], and their ability to distinguish
change in inefficiency from unobserved heterogeneity was contrasted. The importance of
variability in efficiency assessment has been underlined by a growing body of research in
recent literature. Wang and Ho [20] demonstrated that individual heterogeneity needs to be
appropriately managed in this situation since otherwise, its influence will be recognized in
both the inefficiency term and the efficiency estimation. Estimates of energy efficiency that
disregard technology variety will be skewed [21,22]. A fixed-effects model evaluating the
influence of environmental efficiency on rail transportation was created by Song et al. [23]. A
True Fixed Effect model was presented by Greene [17] to separate between the time-varying
and time-invariant component, thus distinguishing between inefficiency and heterogeneity.
Heterogeneity presents the individual component in the TFE Model, which is assumed to
be constant, while inefficiency is presented by the time-varying component.

3. Methodology

In order to assess the efficiency of the larger OGC, a two-step methodology is used
in this research, and in each step, we used two methods. In the first step, it is necessary
to measure the operational and environmental efficiency using two methods, namely the
TFE model proposed by Wang and Ho [20] and the stochastic frontiers method developed
by Batesse and Coeli [15]. In the second step, it is important to assess the effect of global
energy transition policy on different types of efficiency. At this stage, the system GMM
approach and TFE model are introduced as two methods to verify the effect of global
energy transition on EE and OE scores.

3.1. Stochastic Approach: TFE and Heterogeneity

The SFA model for panel data is defined using the following equation [24]:

yit = α + βx′ it + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T (1)

εit = vit − ui

vit ∼ N
(

0, σ2
v

)
ui ∼ N+

(
0, σ2

u

)
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where, yit indicates the output of the firm i in the period t; x′ it indicates the inputs of
company i for period t; β indicates the estimated coefficients; εit stands for the error
component, which is broken down into two components: vit and ui; vit denotes the random
error, and ui denotes the error related to the technical inefficiency. Several research papers
are interested in the distribution and the conditions of time-varying of ui after the study of
Pitt and Lee [25]; the methods developed by Battese and Coelli, [14] (BC92), Battese and
Coelli, [15] (BC95) are the most used to study the efficiency of an organization [26].

Greene [17] presents a thorough examination of the implications of heterogeneity. Ac-
cording to Greene [27], if every firm shared identical characteristics, disregarding random
disturbance terms, they would be homogeneous; however, individual heterogeneity would
persist. Due to the highly diverse manufacturing environment, numerous enterprises ex-
hibit distinct traits influenced by various circumstances. Moreover, variations exist among
nations in governmental policies, social norms, business reform strategies, and economic
growth rates. These institutional traits or unobservable heterogeneities may impact a firm’s
efficiency. Significantly, there are substantial differences among oil and gas companies
concerning management strategies, organizational characteristics, investment objectives,
and operational procedures. These factors undergo gradual changes and predominantly
influence the goods firms produce rather than their production methods. Furthermore,
these factors are unlikely to directly influence production [6].

Greene’s [16–18] True Fixed Effect model is used in this study to determine whether
time-invariant heterogeneity influences inefficiency.

yit = αi + βx′ it + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T (2)

εit = vit − uit

vit ∼ N
(

0, σ2
v

)
uit ∼ N+

(
0, σ2

u

)
In this model, x′ it, vit and uit are independent. uit indicates the inefficiency score

of firms, which can change over time and between firms. αi denotes the modelling of
heterogeneity across several firms.

Comparing the current True Fixed Effect model with the Battese and Coelli [15] models
reveals three significant distinctions. Firstly, in the True Fixed Effect model, heterogeneity
remains consistent over time. This refers to the unique characteristics of individual compa-
nies, such as their operational approach, relevant policies, and variations in corporate assets.
In contrast, the Battese and Coelli models do not maintain this consistency, potentially
overlooking the influence of company-specific effects on efficiency scores. Secondly, the
True Fixed Effect model addresses the issue of heterogeneity more effectively by ensuring
that any removed elements are unrelated to each other, thereby minimizing the risk of
erroneous values. In contrast, the Battese and Coelli models may not fully mitigate the
impact of heterogeneity on efficiency scores, leading to less reliable results. Lastly, the
efficiency scores in the True Fixed Effect model are dynamic and can change over time,
making it suitable for analyzing panel data and reflecting the technical progress of firms.

The objective of this article is not just to compare EE and OE of the largest OGC, but
also to evaluate the effect of global energy transition policy on the two types of efficiency.
Indeed, we use the proposed model of Wang and Ho [20], Sun et al. [7] and Jarboui [5].
Their model is presented as follows:

yit = αi + βx′ it + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T (3)

εit = vit − uit

vit ∼ N
(

0, σ2
v

)
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uit = hit × u∗
i

hit = f (δz it)

u∗
i ∼ N+

(
µ, σ2

u

)
3.2. Estimated Model

In this study, we utilize the translog production structure to estimate the true fixed
effects model. Thus, the equation representing the model’s structure is provided below:

lnYit = αi + βtt + βklnkit + βllnlit + βkllnkit × lnlit + βk2lnkit × lnkit + βl2lnlit × lnlit + vit − f (δz it) u∗
i (4)

i = 1, 2, . . . , N, t = 1, 2, . . . , T

hit = δ1(Bio f uels)it + δ2(Solar)it + δ3(Wind)it + δ4(Hydropower)it + δ5(Geothermal)it
+δ6(Total renewable Energy)it

(5)

where Yit indicates the output of firm i company at the t period; lit indicates the labor input;
kit indicates the capital input; zit stands the factors explaining the inefficiency; αi, β and δ
are the estimated coefficients; vit is the random error.

3.3. GMM Approach

This paper evaluates the effect of global transition energy on the efficiency of 20 largest
OGC. For this purpose, the GMM approach for the dynamic panel data model is applied to
panel data of 20 OGC over the period 2010–2019. Based on the efficiency scores already
calculated using the stochastic frontier method, we aim to investigate the effect of the
global energy transition on both types of efficiency (operational and environmental) of
the companies. This study introduces the different measures reflecting the global energy
transition, especially the production of different renewable energies, namely biofuels, solar
energy, wind energy, hydropower and geothermal energy. Therefore, the dynamic panel
model is presented via the following equation:

EFit = αEFit−1 + βXit + µi + φt + εit (6)

where EFit stands the efficiency score of desirable or undesirable output (operational score
or environmental score) of oil and gas companies measured through the True Fixed Effect
model; EFit−1 represents the lagged efficiency score; Xit stands the vector of the various
variables of renewable energy reflecting global transition energy; µi measures company-
specific fixed effects; εit stands for the random error shocks that are specific for each firm i
and over time t. Finally, we introduce time dummy variables in the regression φt, because it
would be more feasible that no association between individuals’ idiosyncratic disturbances
exists [28].

4. Data

The dataset introduced in this study includes the twenty largest OGC by market
capitalization (see Table 1). They were all listed in the Thomson Financial Database from
2010 to 2019. This paper will analyze the effect of the global energy transition on the
environmental and operational efficiency of the twenty major OGC. In order to use the real
fixed effect model, this study proposes two outputs: a desired and an undesired output,
and also uses two inputs. The quantity of CO2 emissions from production and exploration
is the undesired output. Therefore, this research evaluates the EE using CO2 emissions as
the undesired output and operational revenue as the desired output to evaluate the OE;
this study also aims to compare the two types of efficiency.
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Table 1. List of the largest oil and gas companies by market capitalization.

Company Saudi Aramco Exxon Mobil Chevron Shell ConocoPhillips

Market Cap 2105 413.09 310.31 185.45 147.58

Company PetroChina Total Energies Equinor BP Gazprom

Market Cap 125.44 124.59 108.63 95.67 85.50

Company Petrobras Enbridge Southern
Company EOG Resources Duke Energy

Market Cap 77.67 76.78 74.79 73.88 72.39

Company Sinopec Occidental
Petroleum CNOOC Canadian Nat.

Resources
Pioneer Nat.
Resources

Market Cap 71.69 63.09 62.98 62.57 59.94

Operating expenses and the number of employees are used in this study as substitutes
for capital and labor inputs, respectively. The operating income is employed as a measure
of desired output, whereas CO2 emissions are a measure of undesired output [5,6,29]. The
production of biofuels, solar energy, wind energy, hydropower, geothermal energy, and
total renewable energy are employed as drivers of inefficiency term in order to assess the
effects of the global energy transition, especially the effect of renewable energy on the OE
and EE of the major OGC. These are the main sources of renewable energy. The chosen
variables and data are described as follows:

• Desirable output

Operational revenue: Despite the fact that OGC have a variety of outputs, all sales
would be converted to operational revenue, thus the appropriate measure for reflecting
a company’s output is operating revenue. Higher revenue often indicates a company’s
success in business and higher profitability. This variable also reveals the firms’ operating
sizes. Additionally, even with a huge income stream, a firm may be inefficient if it has high
expenditures.

• Undesirable output

CO2 emissions: This variable indicates the CO2 emissions from the company’s pro-
duction and exploration. Depending on the extent of current emissions, there is scope for
investment in prevention policies.

• Inputs

The number of employees: This factor shows the firm’s human capital investment. As a
labor-intensive business, investing in human capital is crucial to determining the efficiency
of OGC.

Total assets: This factor represents the sum of all current and non-current assets,
including all balance-sheet components. This factor represents the capital investments of a
firm. Therefore, in this paper, we use total assets as a proxy for the capital variable.

• Inefficiency determinants

The different types of renewable energies are introduced in this study as a factor reflecting
the global energy transition that are proposed as determinants of the EE and OE of OGC. The
main types of renewable energy sources are biofuels, solar energy, wind energy, hydropower
and geothermal energy.

5. Results
5.1. TFE Model Results

Using data from the 20 largest OGC during 2010–2019, this research develops the TFE
model (Model 1) to evaluate the efficiencies of the companies in the sample with reference
to Equation (3). The estimated results of Model 1 are reported in Table 2. The estimated
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results of Model 1 indicate that the coefficients of t are not significant for the two types of
outputs (desirable and undesirable); the coefficients of lnkit and lnkit × lnlit are positively
significant at the 1% level in the different models, which reflects the importance of these
variables in this industry. The estimated coefficients of lnkit × lnkit are positively significant
at the 1% level in the different models; the estimated coefficients of lnlit are negatively
significant at the 5% level for the two types of outputs (desirable and undesirable), and the
estimated coefficients of lnlit × lnlit are negatively significant at the 5% level only for the
undesirable output estimation (undesirable model). The findings presented above are still
inadequate to detect the effect of time on efficiency values. The estimated results indicate
that σu is the standard deviation of the inefficient term uit; σv is the standard deviation of
the random error vit, while λ = σu

σv
is the ratio of σu over σv, which assesses the accuracy of

the estimation. Our results show that σu and σv are significant at the 1% level; the value of λ
is 1.053 at the 1% level of significance, which indicates that for the purpose of assessing the
efficiency of the 20 largest OGC, it is appropriate to use the SFA approach in combination
with the TFE model.

Table 2. Estimation results of TFE model.

Variable Parameters Desirable Output
Operational Revenue

Undesirable Output
CO2 Emissions

t βt
0.006 0.008

(0.897) (0.487)

lnkit βk
1.080 1.197

(4.564) *** (3.012) ***

lnlit βl
−0.127 −0.468

(2.159) ** (2.138) **

lnkit × lnlit βkl
0.897 1.289

(2.965) *** (2.225) **

lnkit × lnkit βk2
0.434 0.506

(3.732) *** (3.005) ***

lnlit × lnlit βl2
−0.103 −0.151
(0.837) (2.122) **

σu
0.302 0.298

(4.768) *** (3.856) ***

σv
0.287 0.276

(3.723) *** (2.907) ***

λ
1.052 1.079

(4.325) *** (5.317) ***

Log likelihood 47.432 58.343
**, and *** significant at the 10%, 5% and 1% levels, respectively.

The time-invariant country-specific impact and the inefficiency effect may be taken
into account independently in the assessment of efficiencies according to the TFE model
proposed by Greene [17], assuring the accuracy of these estimations. However, Wang
and Ho [20] noted that the number of fixed effect parameters for a fixed effect model
rises as does the sample size (N). As a result, the estimate of the TFE model would be
challenging, since it takes into account both the inefficiency impact and the individual fixed
effects. In addition, the incidental parameter problem would bias the TFE model. As a
result, Wang and Ho [20] suggested an alternative stochastic panel frontier model that has
the specification of the TFE model and enables model conversions while preserving the
tractable likelihood function.

The TFE model was chosen for this research because, firstly, the sample size in this
article is small; consequently, the problem of the random parameter would not bias the
results of the estimation. Secondly, the TFE model is easy to use and has excellent perfor-
mance in this research. Thirdly, in order to assess the robustness of the estimated results in
this research, stability tests can be carried out.
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Referring to the study of Sun et al. [7], we include the cross terms and the time square
with time in Model 1 in order to evaluate the findings stability and examine the impact
of the time variable. Our results confirm that Model 1 is mostly unaffected by the time
variable, confirming the validity of the efficiency scores estimation.

5.2. Result of Battese and Coeli 95 Model

The model of Battese and Coelli [15] is among the most widely applied models in the
literature to measure efficiency through stochastic approach. However, the Battese and
Coelli [15] model does not include the effect of heterogeneity on measuring the efficiency
of the sample, and considers heterogeneity as an inefficient element, which would lead to
a distortion of the findings. The estimated findings of the Battese and Coelli [15] model
(B.C.95) are presented in Table 3.

Table 3. Estimation results of B.C.95 model.

Variable Desirable Output
Operational Revenue

Undesirable Output
CO2 Emissions

t
0.010 0.022

(1.415) (1.315)

lnkit
2.537 0.928

(6.744) *** (5.615) ***

lnlit
0.597 0.463

(1.781) * (1.793) *

lnkit × lnlit
0.021 0.063

(1.487) *** (1.921) **

lnkit × lnkit
0.049 0.137

(2.201) *** (2.368) ***

lnlit × lnlit
−0. 154 0. 041
(1.096) (0.776)

δu
0.660 0.732

(3.626) *** (2.888) ***

δv
0.037 0.021

(3.076) *** (3.241) ***

γ = σ2
U/

(
σ2

V + σ2
U
) 0.946 0.976

(7.638) *** (5.596) ***

log likelihood 57.663 48.448
*, **, and *** significant at the 10%, 5% and 1% levels, respectively.

Based on Battese and Coelli [15], the estimation method of the B.C.95 model is different
from that of the TFE model. Based on the regression findings, γ = σ2

u/ (σ 2
v + σ2

u

)
is the ratio

of the variance parameters of the random errors and technical efficiency effects, where γ is
used to determine if the regression model is plausible. The alternative hypothesis considers
the impact of inefficient technology, whereas the null hypothesis assumes the complete
effectiveness of technology for the stochastic frontier production function. If γ = 0, then
σ2

u → 0 , which further allows us to obtain εit = vit, reflecting that the firms’ technologies
are efficient. If γ gets closer to 1, inefficiency would have a very important effect on oil and
gas companies. Referring to Table 4, the estimation result of γ equals 0.946 for the desirable
output and equals 0.976 for the undesirable output, which reveals that the inefficiency has
a significant effect on the efficiency of the largest 20 OGC.

The estimation results in Table 3 show that the coefficients of t are insignificant for
the two types of output (desirable and undesirable); the coefficients of lnkit are positively
significant at the 1% level for all the estimated Models, which confirm the result of the
estimation of TFE model. The estimated coefficients of lnkit and lnkit × lnkit are positively
significant at the 1% level for all the Models (desirable and undesirable output); the
estimated coefficients of lnlit are positively significant at the 10% level for the two types
of outputs (desirable and undesirable), and the estimated coefficients of lnKit × lnlit are
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positively significant at the 1% and 5% level for the desirable output and undesirable
output, respectively. The above results confirm the effect of the capital factor on OE and EE
of the 20 largest OGC. This implies that the technology adopted by the OGC contributes
significantly to the improvement of operational efficiency, but it is not environmentally
friendly and contributes to the increase in CO2 emissions.

Table 4. Estimation results of inefficiency effect using TFE model.

Variable Parameters

Desirable Output
Operational Revenue

Undesirable Output
CO2 Emissions

Model 1 Model 2 Model 3 Model 4

t βt
0.014 0.012 0.017 0.016

(1.172) (1.294) (0.981) (0.792)

lnkit βk
1.592 1.671 1.493 1.724

(4.132) *** (3.045) *** (4.251) *** (3.112) ***

lnlit βl
0.045 0.025 0.072 0.068

(2.355) *** (2.632) *** (2.124) ** (2.103) **

lnkit × lnlit βkl
0.453 0.462 0.103 0.025

(2.657) *** (2.786) *** (2.816) *** (2.548) ***

lnkit × lnkit βk2
−0.117 −0.132 0.421 0.513

(2.738) *** (2.461) *** (3.112) *** (3.385) ***

lnlit × lnlit βl2
−0.019 −0.012 −0.011 −0.012
(1.815) * (2.107) ** (0.736) (0.738)

z1it δ1
−0.093 −0.115 1.176 0.159

(2.072) ** (3.437) *** (3.452) *** (2.171) **

z2it δ2
- −0.937 - 0.384
- (2.824) ** - (3.341) ***

z3it δ3
- −0.378 - 0.176
- (1.113) - (2.452) ***

z4it δ4
−0.462 −0.042 2.381 0.576
(1.637) (1.632) * (−3.452) *** (3.521) ***

z5it δ5
- −0.031 - 0.043
- (−1.153) - (1.823) **

z6it δ6
−0.873 - 2.031 -
(1.413) - (2.924) *** -

σu
0.121 0.118 0.133 0.128

(4.616) *** (3.432) *** (4.087) *** (3.211) ***

σv
0.132 0.133 0.146 0.126

(4.516) *** (3.622) *** (4.277) *** (3.455) ***

λ
1.080 1.054 1.070 1.013

(3.586) *** (3.092) *** (3.088) *** (3.322) ***

log likelihood 55.264 59.837 67.987 64.927
*, **, and *** significant at the 10%, 5% and 1% levels, respectively.

5.3. Inefficiencies Modelling Results
5.3.1. True Fixed Effect Model Results

In order to investigate the effects of the global energy transition on the EE and OE of the
largest 20 OGC, this study incorporates the global production of different renewable energy
sources into this analysis. These variables are introduced as factors affecting efficiency by
referring to the model developed by Wang and Ho [20] presented in Equations (4) and (5).
The estimation results of the Wang and Ho [20] model are presented in Table 4.

In order to explore the effect of the energy transition on the OE of the largest 20 oil
and gas companies, this empirical study explores the effect of different renewable energy
variables (biofuels, solar, wind, hydropower, geothermal, and total renewable energy) on
the direction of efficiency scores. The estimation results are presented in Table 4 (Model 1
and 2). However, the estimated coefficients of biofuels (z1it) are negatively significant at
the 5% level (Model 1), which indicates the negative correlation between the operational
inefficiency of OGC and this variable. However, the estimated coefficients of hydropower
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(z4it) and total renewable energy production (z6it) are not significant. The estimation results
of Model 2 shows that biofuels, solar and hydropower are negatively significant at the
level of 1%, 5%, 10%, respectively. This involves that the biofuels, solar and hydropower
contribute to promote the OE of the largest 20 OGC. Consequently, the global energy
transition does not sufficiently and significantly affect the operational efficiency of the
largest 20 oil and gas companies.

On the other hand, our research aims to explore the effect of global transition energy
on EE. In this way, different renewable energy sources are introduced in this study. The
estimation results are presented in Table 4 (Models 3 and 4). According to the estimated
results, the estimated coefficients of biofuels (z1it) hydropower (z4it) and total renewable
energy (z6it) are positively significant at the 1% level. This means there is a negative effect
of these variables on the efficiency of undesirable output (CO2 emissions). This result is
confirmed by the estimation result of Model 4. The estimated coefficient of solar (z2it), wind
(z3it), and hydropower (z4it) are positively significant at the 1% level, and the estimated
coefficient of biofuels (z1it) and geothermal (z5it) are positive and significant at the 5% level.
This confirms the negative effect of these variables on the environmental inefficiency of
OGC. Therefore, biofuels, solar energy, wind energy, hydropower and the total renewable
energy contribute to improve the EE of the largest 20 OGC. Consequently, the global energy
transition has a significant and important effect on the EE of the largest 20 OGC. This
confirms the work of Scott, 2018, where some major OGC have concentrated on protecting
the environment while concentrating on improving economic efficiency. They recognized
earlier the significant importance of a low-carbon transition for OGC and thus they began
to take action.

The effect of renewable energy demonstrated in this study is a further testament to
the resilience of renewable energy. The remarkable performance demonstrated in this
study allows governments and OGC to gain even more from the numerous economic and
socioeconomic benefits of renewable energy. Despite this optimistic general trend, our
analysis demonstrates that the energy transition is still far from being competitive with
demand for fossil fuels and hence with OGC in order to avert the grave repercussions of
climate change. This confirms the work of Morgunova and Shaton [30], who found that
OGC have the capacity and motivation to contribute to the energy transition. According
to the international organization, in order to achieve climate goals, renewable energy
must expand at a faster rate than energy demand. Despite a huge growth in the usage of
renewable energy for power generation, many nations are still far from reaching this level.
Moreover, in many countries, energy demand is growing faster than green energy.

5.3.2. Dynamic Panel Data Model Results

In order to test the robustness of our results found using the TFE model, and to verify
the effect of the global energy transition on the EE and OE of the 20 largest OGC, we use the
dynamic panel data model by adopting the GMM estimator. The results of this estimation
are presented in Table 5. In order to investigate the effect of energy transition on the OE of
the 20 largest OGC, this study explores the effect of different renewable energy variables
(biofuels, solar, wind, hydro, geothermal, and total renewable energy) on the direction of
the efficiency scores. The estimation results are presented in Table 4 (Models 1 and 2). So,
the estimated coefficients of the lagged efficiency scores, biofuels, solar energy, geothermal
energy and total renewable energy are positively significant at 1% level (Table 4, Model 2),
which indicates the positive effect of these variables on the OE scores of OGC, and thus
they contribute to promoting OE. In addition, the estimated coefficient of wind energy is
positively significant at the 1% level, which implies the positive effect that wind energy has
on the OE. Therefore, the best solution for OGC in the transition to low-carbon emissions
is renewable energy. While some OGC are still on the sidelines, others have long since
started integrating renewables into their operations. For instance, several OGC generate
steam for increased oil recovery using solar energy rather than natural gas [3]. In addition,
OGC’ investment in renewable energy is principally focused on solar, geothermal, wind
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and bioenergy. Others seek risk capital that will create renewable energy solutions as well
as improve energy use in the developing world.

Table 5. The System GMM regression results.

Variable Parameters

Desirable Output
Operational Revenue

Undesirable Output
CO2 Emissions

Model 1 Model 2 Model 3 Model 4

eff.scores t−1 α
0.943 *** 0.874 *** 0.723 *** 0.655 ***
(0.092) (0.097) (0.089) (0.094)

Biofuels β1
0.356 ** 0.122 *** −0.342 *** −0.048 **
(0.082) (0.148) (0.126) (0.276)

Solar Energy β2
- 0.785 *** - −0.797 ***
- (0.105) - (0.117)

Wind Energy β3
- −0.068 ** - −0.128 ***
- (0.645) - (0.092)

Hydropower β4
0.072 0.143 * −0.038 ** −0.028 **

(0.232) (0.072) (0.142) (0.092)

Geothermal Energy β5
- 0.082 *** - −0.047 ***
- (0.232) - (0.175)

Total Renewable
Energy

β6
0.726 ** 0.232 *** −0.631 *** −0.283 ***
(0.071) (0.122) (0.082) (0.165)

Constant
−0.543 * −0.068 * −0.440 * 0.123
(1.371) (0.645) (0.275) (1.73)

Hansen 9.456 7.763 9.911 7.048
Difference-in-Hansen 0.260 0.810 1.510 0.130

AR (2) 0.834 0.643 0.341 0.717
***, **, and * represent the level of significance at 1%, 5%, and 10%, respectively.

On other hand, our research aims to investigate the effect of global transition energy on
EE. Thus, different renewable energy sources are introduced in this study. The estimation
results are presented in Table 4 (Models 3 and 4). According to the estimation results, the
estimated coefficients of the lagged efficiency scores are positively significant at the 1%
level, implying that the EE is affected by the lagged EE scores. However, the estimated
coefficients of biofuels, solar energy, wind energy, geothermal energy and total renewable
energy are negatively significant at the 1% level (Table 4, Model 2), which indicates the
negative effect of these variables on the EE scores (undesirable output) of OGC, and so
they contribute to promoting EE. In addition, the estimated coefficient of hydropower
is negatively significant at the 5% level and therefore also contributes to promoting EE.
Recently, major OGC have established carbon emission goals to halt the acceleration of
global warming. In order to meet the low carbon objectives established by the 20 OGC,
indirect carbon emission reductions can be accomplished by reducing methane intensity
(e.g., BP) and flaring intensity (e.g., Chevron and Saudi Aramco), which have achieved
certain results to varying degrees.

5.4. Operational an Environment Efficiency Scores

OE and EE scores of the largest OGC estimated using the BC95 model and TFE model
are shown in Table 6. For a certain level of inputs, a firm lost income owing to operational
inefficiencies, which resulted in a minus of the efficiency score from 2010 to 2019. The
overall average OE of major OGC during the period 2010–2019 measured through the
BC.95 model and TFE model is 66% and 85%, respectively (see Table 6); that is, without
increasing the quantity of inputs, OGC enjoyed a 34% (B.C.95 model) and 15% (TFE model)
improvement in efficiency. In addition, the overall average level of CO2 emissions efficiency
(undesirable output) of the largest oil and gas companies measured using the B.C.95 model
and TFE model is 69% and 87%, respectively, for a 10-year period. This indicates that OGC
have reduced their CO2 emissions by 31% with this amount of investment (B.C.95 model)
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and 13% (TFE model). Otherwise, the overall average level of environmental efficiency for
oil and gas companies over a 10-year period is 31% (based on the B.C.95 model) and 13%
(based on the TFE model).

Table 6. Average OE and EE scores of the largest OGC.

Company
Operational Eff.

(Desirable Output)
Environmental Eff.

(Undesirable Output)

B.C.95 TFE B.C.95 TFE

1 Saudi Aramco 0.8795 0.9201 0.8486 0.9302
2 PetroChina 0.4978 0.8652 0.8134 0.8801
3 Exxon Mobil 0.8735 0.9166 0.8773 0.9257
4 Total Energies 0.7064 0.8974 0.6315 0.8173
5 BP 0.7193 0.8996 0.8284 0.8992
6 Chevron 0.7892 0.9313 0.8796 0.9424
7 Shell 0.6452 0.8902 0.8493 0.8876
8 Occidental Petroleum 0.7943 0.8453 0.7624 0.8824
9 ConocoPhillips 0.4372 0.7864 0.3621 0.8763
10 Equinor 0.7462 0.8326 0.6132 0.7853
11 Gazprom 0.3383 0.8365 0.8856 0.9231
12 Petrobras 0.4291 0.8983 0.8357 0.9074
13 Enbridge 0.6859 0.7946 0.5534 0.8437
14 Southern Company 0.7985 0.8285 0.4193 0.8776
15 EOG Resources 0.8352 0.8466 0.3428 0.8091
16 Duke Energy 0.4921 0.7425 0.4912 0.7819
17 Sinopec 0.5958 0.9138 0.7618 0.8736
18 CNOOC 0.3839 0.7392 0.3631 0.7583
19 Canadian Nat. Resources 0.7177 0.7978 0.7668 0.8351
20 Pioneer Nat. Resources 0.8116 0.8859 0.8607 0.9152

Average Efficiency Level 0.6588 0.8502 0.6873 0.8676

Generally, the OE found using the BC95 model is less than those found using the TFE
model. The OE of PetroChina, ConocoPhillips, Gazprom, Petrobras, Duke Energy, Sinopec,
and CNOOC, for example, are lower when assessed using the BC95 model than when
tested through the TFE model, and the disparities are all more than 0.3, which confirms the
work of Sun et al. [7]. Specifically, the disparities between the results of the TFE model and
the BC95 model for the OE values of PetroChina, ConocoPhillips, and Sinopec are 0.3674,
0.3492 and 0.318, respectively. The discrepancies in OE values between the TFE model and
the BC95 model for Gazprom and Petrobras are 0.4982 and 0.4692, respectively.

The results presented in Table 6 highlight that the difference is extremely hetero-
geneous and huge in some cases, such as PetroChina, Gazprom and Petrobras. This
confirms the analysis of Greene [17], which shows that the methods proposed by Battese
and Coelli [15] may overestimate the inefficiency term, resulting in estimated efficiency
results that are lower than in real situations. This is why Greene [17] focused on the impact
of heterogeneity between firms on the measurement of production efficiency.

Referring to Table 6 and Figure 1, no company has achieved full efficiency equal to 1.
Based on the estimation result of TFE model, CNOOC, Duke Energy, ConocoPhillips had
the worst OE level, at 0.7392, 0.7425 and 0.7864, respectively, which is confirmed by the
results of Model B.C.95. Furthermore, three companies have the highest OE scores for all
ten years, namely Chevron, Saudi Aramco and ExxonMobil, with average OE scores of
0.9313, 0.9201 and 0.9166, respectively. Therefore, firms with the lowest OE values often
had the lowest level of CO2 emissions, similar to CNOOC, Duke Energy, with average
CO2 emission efficiency scores of 0.7583 and 0.7819, respectively. Furthermore, firms with
the greatest OE values had the highest CO2 emissions scores, such as Chevron and Saudi
Aramco with average CO2 emission efficiency scores of 0.9424 and 0.9302, respectively.
This signifies that these firms are working to improve environmental protection; however,
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its environmental strategy may be out of sync with its operating efficiency, which verifies
our findings in Section 5.3 on the negative link between renewable energy and OE.
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Figure 1. OE and EE scores of major OGC.

According to the International Energy Agency, global carbon dioxide emissions in 2021
were 36.3 gigatons, with natural gas and oil products accounting for almost 60% of total
emissions [2,31]. Recently, the largest OGC have established equivalent carbon emission
targets to prevent global warming from getting worse. It is evident that among the major
oil and gas firms’ low carbon aims, regulating methane intensity (as undertaken by BP)
and flaring intensity (such as Chevron and Saudi Aramco) can indirectly reduce carbon
emissions, in addition to reducing carbon dioxide emissions.

The low-carbon transition, being gradual and long-term, necessitates reducing carbon
emissions by improving energy efficiency, tapping high-quality reserves, enhancing product
quality, and utilizing carbon capture and storage (CCS) technologies. ExxonMobil employs
cogeneration and CCS to cut emissions, while Saudi Aramco, Chevron, and Total S.A.
reduce flaring. Shell and Total S.A. utilize solar steam flooding to enhance oil recovery and
curb emissions [3]. Such measures have yielded notable results. Transitioning to renewable
energy represents the most comprehensive yet challenging approach. Major oil and gas
firms have varying investment strategies in renewables, with Shell focusing on biofuels,
hydrogen, and wind, and Total S.A. heavily investing in solar, wind, biofuels, and smart
grids. Geothermal energy is particularly advantageous for these companies due to their
expertise, foreseeing a shift towards integrated energy companies with a greater emphasis
on electricity [3].

There has been improved investment by major OGC in the transition to a low-carbon
economy, including projects, acquisitions and emissions-reducing technologies, in addi-
tion to setting low-carbon objectives. Members of the OGCI, including Saudi Aramco
and PetroChina, will invest USD 1 billion in emission-reducing technologies in the next
decade [3]. In recent years, Chevron’s investment in battery technology, research and devel-
opment and alternative fuels is USD 8.5 million and USD 1.1 billion in the carbon dioxide
injection project, and they have also spent over USD 75 million on carbon capture and
storage research [3]. Major OGC have made various amounts of investments in emerging
energy areas and carbon capture and storage technology. The electrical system has received
significant funding from Shell and Total. Additionally, due to the transportation sector’s
substantial reliance on oil and gas, major OGC are also invested in alternative energy
vehicles including electric cars, which results in a relatively big investment in batteries and
quick charging technologies.
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6. Conclusions

A modern society that strives for sustainable growth must address concerns like
energy conservation and environmental protection. Nations have worked together to
minimize CO2 emissions in order to promote sustainable development. Two such accords
and protocols include the Paris Agreement of 2015 and the Kyoto Protocol of 1997. So, in
order to combat climate change and safeguard the environment, an energy shift is required.
However, the current development model requires a decrease in oil production. Only 13%
of the world’s known reserves of crude oil must be used up in order to fulfil the Paris
Agreement. In addition, even if the global energy structure is changing significantly and the
status of renewable energy is rising, oil and gas still account for 50% of the energy market.
In the energy industry, renewable energy sources are becoming more and more significant.
Oil and gas firms are increasingly converting into energy corporations by adhering to
energy transition rules.

Firstly, this paper examines two types of efficiency measures—OE and EE—for
20 largest OGC during the period 2010–2019. Secondly, this research aims to explore
the effect of the global energy transition on both EE and OE. Based on three estimation
methods, two estimation steps are applied in this study. In the first step, the TFE model
and B.C.95 model are applied to evaluate, measure and compare the EE and OE scores. In
the second step, the TFE Model and GMM approach for the dynamic panel data model are
used to explore, evaluate and verify the effect of the global energy transition on EE and OE
of the largest 20 OGC in the world.

The empirical finding of this research reveals that the average OE of major OGC during
the period 2010–2019 when measured using the BC.95 model and TFE model is 66% and
85%, respectively, which indicates that without modifying the volume of inputs, the OGC
have a margin to improve their efficiency by 34% (B.C.95 model) and 15% (TFE model).
In addition, the average EE (undesirable output) of the largest OGC measured using the
B.C.95 model and TFE model is 69% and 87%, respectively, for a 10-year period, which
indicates that without modifying the volume of inputs, OGC have controlled their CO2
emissions by 31% (B.C.95 model) and 13% (TFE model). Otherwise, the average EE for
OGC over a 10-year period is 31% (based to B.C.95 model) and 13% (based to TFE model).

The empirical findings reveal that biofuels, solar and hydropower contribute to pro-
mote the OE of the largest 20 OGC. Therefore, the global energy transition is not sufficiently
and significantly affecting the OE of the largest 20 OGC. On the other hand, biofuels, solar
energy, wind energy, hydropower and the total renewable energy contribute to improve
the EE of the largest 20 OGC. Therefore, the global energy transition has a significant and
important effect on the EE of the largest 20 OGC.

The effect of renewable energy demonstrated in this study is a further testament to
the resilience of renewable energy. The excellent performance verified in this research
offers countries and oil companies the opportunity to benefit to an even greater extent
from the many economic and socio-economic advantages of renewable energy. Despite this
positive worldwide trend, our study demonstrates that the energy transition is far from
being competitive enough with the oil industry to prevent the catastrophic effects of climate
change from occurring. According to the worldwide organization, renewable energy must
increase more quickly than energy consumption in order to meet climatic targets.

However, the global energy transition and the low-carbon transformation of the OGC
will take a very long time and face several difficulties. OGC require political backing from
a country or organization, in addition to continuing to be transparent and cooperative.
Countries or regions can give matching subsidy programs in the early phases of OGC’
low-carbon transition, particularly for enterprises adopting renewable energy routes, and
can subsequently reduce or discontinue subsidies when the development costs are lowered.
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