
Citation: Lin, B.; Wei, C.; Feng, F.; Liu,

T. A Predictive Energy Management

Strategy for Heavy Hybrid Electric

Vehicles Based on Adaptive

Network-Based Fuzzy Inference

System-Optimized Time Horizon.

Energies 2024, 17, 2288. https://

doi.org/10.3390/en17102288

Academic Editor: Ahmed Abu-Siada

Received: 9 April 2024

Revised: 7 May 2024

Accepted: 8 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Predictive Energy Management Strategy for Heavy Hybrid
Electric Vehicles Based on Adaptive Network-Based Fuzzy
Inference System-Optimized Time Horizon
Benxiang Lin 1,2 , Chao Wei 1,2,*, Fuyong Feng 1,2 and Tao Liu 3

1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
linbenxiang@126.com (B.L.); ffymieluo@126.com (F.F.)

2 National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology,
Beijing 100081, China

3 Inner Mongolia First Machinery Group Co., Ltd., Baotou 014030, China; liutao02508@163.com
* Correspondence: weichaobit@163.com

Abstract: Energy management strategies play a crucial role in enhancing the fuel efficiency of hybrid
electric vehicles (HEVs) and mitigating greenhouse gas emissions. For the current commonly used
time horizon optimization methods that only target the trend curve of the optimal battery state of
charge (SOC) trajectory obtained offline, which are only suitable for buses with known future driving
conditions, this paper proposed an energy management strategy based on an adaptive network-based
fuzzy inference system (ANFIS) that optimizes the time horizon length and enhances adaptability to
driving conditions by integrating historical vehicle velocity, accelerations, and battery SOC trajectory.
First, the vehicle velocity prediction model based on the radial basis function (RBF) neural network is
used to predict the future velocity sequence. After that, ANFIS was used to optimize and update the
length of the forecast time horizon based on the historical vehicle velocity sequence. Finally, compared
with the fixed time horizon energy management strategy, which is based on model predictive control
(MPC), the average calculation time of the energy management strategy is reduced by about 23.5%,
and the fuel consumption per 100 km is reduced by about 6.12%.

Keywords: energy management strategy (EMS); model predictive control (MPC); adaptive network-
based fuzzy inference systems (ANFIS); hybrid electric vehicle (HEV)

1. Introduction

With the escalating global environmental challenges, governments worldwide are
increasingly adopting stringent measures to curb carbon emissions, leading to a growing
trend of electrifying heavy vehicles. As an intermediate solution, range-extended hybrid
power technology not only addresses the limited driving distance issue of heavy vehicles
but also significantly mitigates carbon emissions in line with governmental environmental
protection requirements. Moreover, it offers potential cost reductions that align with
consumer demands. Consequently, enhancing the energy efficiency and dynamic response
time of electric power in heavy hybrid electric vehicles (HEVs) has become paramount.

Energy management strategy is the focus and difficulty of research in the field of hybrid
electric vehicles, is the core technology of hybrid electric vehicles that directly determines
the fuel economy, power, and drivability of the vehicle, and is of great significance for
improving the economy and efficiency of the vehicle. The main task of energy management
is to achieve the optimal distribution of power source or torque under the premise of
satisfying the driver’s power demand to optimize the vehicle performance. The different
control strategies proposed in the existing literature are all aimed at achieving one or
more optimal goals, which mainly include optimal fuel economy, lowest emission, lowest
system cost, and best vehicle performance. Yang et al. [1] proposed a rolling convergent
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equivalent consumption minimization strategy (ECMS) for the energy management of
PHEV under two real-world driving cycles; the optimized energy management strategy
improved fuel economy by 3.7% and 5.2%, respectively, over PHEVs using traditional
energy management strategies. Tang et al. [2] proposed a predictive energy management
strategy considering PHEV driving route information. The results demonstrate that the
proposed model predictive control (MPC) approach yields a significant reduction in total
cost, achieving a decrease of 21.1% compared to the CD-CS method. Additionally, the
implementation of the performance measurement program (PMP) method only leads to
a marginal increase in total cost by 2.3%. In addition, in Refs. [3–7], the impact of energy
management strategies on the energy utilization rate of HEVs has been discussed in detail,
so the optimization of energy management strategies is the main method for improving the
energy utilization rate of hybrid power system for HEVs.

At present, there are two main categories of energy management strategies, the rule-
based (RB) energy management strategy [8–10] and optimization-based EMS [11–13]. Early
energy management methods adopted control methods based on clear rules [10,14] and
fuzzy control algorithms based on fuzzy rules [15–17]. Later, control methods based on
global optimization were widely used, such as the dynamic programming (DP) energy
management algorithm [18–20] and the genetic algorithm (GA) [21–23]. However, the
real-time performance of global optimization algorithms is poor, and it is only applicable to
vehicles with known future working conditions, such as HEV buses. In recent years, with
the emergence of various advanced intelligent energy management methods, representative
methods have included an equivalent fuel consumption control algorithm (ECMS) based
on instantaneous optimization [24–26], local optimization algorithms, such as the model
predictive control (MPC) algorithm [27–29], etc. In the abovementioned optimization-based
energy management methods, MPC, which takes into account both local optimal and
real-time performance, has attracted attention and has been widely used in the research of
energy management strategies.

MPC is based on different prediction models and adopts the rolling horizon optimiza-
tion principle. It has the advantages of strong robustness, good control effect and high
stability and has been widely used in linear and nonlinear control systems. Hao et al. [30]
optimized the predictive model, combining driving intention recognition and driving
condition prediction with MPC, with the goal of improving fuel consumption while main-
taining the SOC of the battery. To further improve the calculation efficiency, the model
was discretized and linearized, and the MPC problem was transformed into a quadratic
programming problem, which can be effectively solved using the interior point method.
Compared with the rule-based method, the predictive control strategy successfully im-
proved the fuel economy of hybrid electric vehicles. Xiang et al. [31] optimized the predic-
tion model and proposed a vehicle speed predictor based on radial basis function (RBF)
neural network, which is used to predict short-term vehicle speed and has the advantages
of fast convergence and low computational complexity. Then, energy management is
regarded as a nonlinear constrained optimization problem, which is solved by nonlin-
ear MPC. Kohut et al. [32] used the prediction model of integrated traffic data to obtain
real-time traffic information from an intelligent traffic system (ITS) and predicted vehicle
velocity by considering the influence of traffic density. Yu et al. [33] proposed an energy-
saving predictive control strategy considering traffic signal light information and used
two model predictive controller switching strategies to solve the problem of traffic signal
light information model discontinuity, which can significantly improve the fuel economy of
vehicles. Shu et al. [34] applied DP to MPC architecture; with an increase in the predicted
line-of-sight, the calculation time increased rapidly, and the equivalent fuel consumption
gradually decreased. Zhang et al. [35] adopted the Pontryagin maximum principle (PMP)
in the role of rolling optimization and developed the MPC real-time optimization energy
management strategy based on PMP; the advantage of this method is that the calculation
time for updating control input is basically constant, but the disadvantage is that the dif-
ferential equation obtained using the continuous method must be discretized in the time
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domain, and the algorithm may fail due to the discretization error. The abovementioned
studies assume that future driving conditions have been determined, but the velocity of
the vehicle is constantly changing during the actual driving process, so the electric power
required by the HEVs for future driving is also uncertain. In addition, some scholars
combined robust control with MPC for the non-deficiency of the electric power demand
side, and verified the effectiveness of the method through simulation; due to the dynamic
changes in driving environment and driving conditions, the system’s constraints (such as
driving style) are also randomly changing, especially for complex nonlinear systems. How
to effectively describe random constraints and implement real-time optimization control
is a challenge. Robust MPC is not yet suitable for HEV energy management strategies in
complex driving conditions [36].

Therefore, combining vehicle velocity prediction with MPC can be a way to optimize
the energy management strategy for HEVs [37–41]. In ref. [42], the research shows that the
combination of energy management strategy and vehicle velocity prediction can greatly
improve the real-time performance and fuel economy of energy management strategy and
improve the working condition adaptability of energy management strategy. With the
rapid development of reinforcement learning (RL) algorithms, Chen et al. combined vehicle
velocity prediction with MPC to build an Elman neural network velocity predictor with
multiple feature inputs. They also used the double Q-learning (DQL) algorithm to optimize
the allocation of battery output power [43]; however, when the vehicle velocity suddenly
changes, the predicted future vehicle velocity deviates significantly from the actual future
vehicle velocity, and the power output of the battery optimized by DQL may not be optimal.
However, the abovementioned MPC methods all assume a constant prediction time horizon.
Cao et al. proposed a method to control the accuracy of vehicle speed prediction by
changing the prediction time scale and constructing a real-time prediction model with
variable levels. The experiment verifies the correctness of the strategy, and the fuel economy
of the vehicle is greatly improved compared with the traditional fixed line-of-sight MPC [44].
If the prediction time domain is set short, it can reduce the amount of calculation and make
it easy to achieve real-time control, but it may lead to poor control results and cannot
approach the optimal results. If the prediction time domain is set long, the number of
calculations is too large, which is not conducive to real-time control. Therefore, selecting
an appropriate prediction time domain length is crucial to the performance of MPC. For
the current commonly used time horizon optimization methods that only target the trend
curve of the optimal battery state of charge (SOC) trajectory obtained offline, which are only
suitable for buses with known future driving conditions [45], this paper proposed an energy
management strategy based on an adaptive network-based fuzzy inference system (ANFIS)
that optimizes the time horizon length and enhances adaptability to driving conditions by
integrating historical vehicle velocity, accelerations, and battery SOC trajectory. ANFIS has
both the advantages and characteristics of the strong learning ability of neural networks
and the advantages of a fuzzy logic system that makes it easy to absorb expert and empirical
knowledge. It can effectively solve highly nonlinear problems and has good robustness
and high accuracy [24].

The major contributions of this paper are the following:

1. To further optimize the predictive energy management strategy and improve the
fuel economy of HEVs, a predictive energy management strategy based on ANFIS
optimization was proposed.

2. The RBF neural network is applied to predict vehicle velocity in MPC, aiming at
optimal fuel consumption; DP is used to solve the optimal diesel genset output power
in the forecast time domain.

3. The performance is verified through comparison among different methods.

The rest of this paper is organized as follows. Section 2 describes the plant model of
HEVs. In Section 3, the ANFIS method is provided with a detailed description of how to
optimize the time horizon and use it in an energy management strategy based on MPC.
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Section 4 provides simulation verification for the proposed method, and Section 5 draws
the main conclusion.

2. The Plant Model of HEV

The topology of the distributed independent electric drive-heavy HEV is shown in
Figure 1, and the power source is composed of two parts, a lithium-ion power battery pack
and a diesel genset. The diesel genset consists of a generator rated at 150 kW with a peak
of 260 kW and a diesel engine with a displacement of 12 L. The distributed independent
electric drive is composed of six hub motors, with the specific parameters presented
in Table 1.
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Figure 1. Configuration for hybrid electric vehicles.

Table 1. Basic parameters of the HEV.

Component Item Value

Vehicle

Curb weight (kg) 16,000
Wheel radius (m) 0.56
Wind area (m2) 3.2

Coefficient of rolling resistance 0.008
Air drag coefficient 0.35

Gravity acceleration (m/s2) 9.8

Diesel genset

Peak power (kW) 260
Rated power (kW) 150

Engine rotational inertia (kg·m2) 92.77
Generator rotational inertia (kg·m2) 3.297

Hub motor

Peak power (kW) 66
Rated power (kW) 46

Maximum speed (rpm) 5000
Peak torque (Nm) 1750
Rated torque (Nm) 1200

Battery
Type Lithium battery

Capacity (Ah) 75
Rate Voltage (V) 601.2

Hub motor transmission Gear Ratio 7.885

Hub motor controller Efficiency (%) 90
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2.1. Vehicle Dynamics

According to the vehicle power balance formula, the dynamic formula of the range-
extended hybrid vehicle is expressed as follows [46]:

Ftrac = fgmcarg cos θ +
ρA f Cdv2

car

2
+ mcarg sin θ + δm

dvcar

dt
(1)

where Ftrac is the vehicle driving force, f g is the coefficient of rolling resistance, mcar is the
vehicle mass, vcar is the vehicle velocity, g, θ, Af, and Cd represent gravity acceleration, road
slope, wind area, and air drag coefficient, and ρ is the density of the air. The relationship
between wheel speed and wheel torque is expressed as follows [46]:Twheel = Ftrac·rwheel

nwheel =
vpre

rwheel

(2)

where Twheel is the driving moment at the center of the vehicle’s driving wheel, and rwheel
is the wheel radius.

The total power balance equation is given as follows [46]:

Preq =
Ftrac·vcar

ηm·ηtran
= Pbat + Pg (3)

where Preq is the vehicle demand power, ηm is the efficiency of the hub motor, ηtran is the
efficiency of the hub motor transmission (90%) with the driving moment at the center of
the vehicle’s driving wheel, and rwheel is the wheel radius.

2.2. Diesel Genset Model

The output shaft of the engine is rigidly connected with the input shaft of the generator,
and the speeds of the two are equal. Considering the rotational inertia of the engine and
the generator, the speed, torque, and output power of the engine and the generator meet
the following requirements [47]:

.
m f uel = f (ne, Te)

Pg =
Tg·ng

ηg·9550

Te − Tg =
(

Je + Jg
)

π
30

dne
dt

ng = ne

(4)

where
.

mfuel is the engine fuel consumption rate, ne is the engine speed, Te is the engine
torque, Tg is the generator torque, Pg is the generator output power, ηg is the generator
efficiency, Jg is the generator rotational inertia, and Je is the engine rotational inertia.

A brake-specific fuel consumption (BFSC) map of the engine is shown in Figure 2. The
generator efficiency diagram is shown in Figure 3.

According to Figure 2, we can find out the corresponding fuel consumption of the
engine under different speeds and torques to calculate the fuel consumption. According to
Figure 3, we can find out the generator efficiency corresponding to the different speeds and
torques of the generator.
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2.3. Battery Model

As the second electric power source of the vehicle, the power battery is used to adjust
the balance of the front and rear power chains in the energy management strategy, which
can not only make up for the problem of insufficient power caused by the sluggish response
of the engine but also recycle braking energy and improve the energy utilization rate.
Because of the advantages of high power density and high charge–discharge efficiency, a
power battery cell is selected in this paper, and the power battery pack is equivalent to a
circuit composed of a voltage source and a battery internal resistance in series.

This paper does not consider the impact of temperature on the battery’s state of charge
(SOC) and internal resistance. According to the battery equivalent circuit diagram, the
relationship between the battery current and the output power in the circuit is formulated
as follows [24]: 

Pbat = Ebatibat − Rbati2bat

ibat =
Ebat

2Rbat
−
√(

Ebat
2Rbat

)2
− Pbat

Rbat

Ubat = Ebat − Rbatibat

(5)

where Pbat is the battery output power, Ebat is the open-circuit voltage of the battery, ibat
is the battery output current, Rbat is the internal battery resistance, and Ubat is the battery
terminal voltage.
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The relationship between the battery open-circuit voltage and the SOC of the power
battery can be obtained using the table. The relationship between the battery open-circuit
voltage and the SOC of the power battery in the battery charging mode and the battery
discharging mode is shown in Figure 4.
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The calculation of the power battery SOC is obtained using the ratio of residual
capacity to total capacity, expressed as follows [24]: SOCbat =

Qbat_max−Qbat_used
Qbat_max

Qbat_used = (1 − SOCbat_initial) +
∫ ∆t

0 ibatdt
(6)

where SOCbat is the battery SOC, Qbat_max is the maximum battery capacity, Qbat_used is the
power consumption of the battery, and SOCbat_initial is the initial SOC of the battery.

2.4. Hub Motor Model

The establishment of the hub motor model is similar to that of the engine and generator,
that is, the electromagnetic and thermal effects of the motor are ignored, and the test
modeling method is also adopted to model the motor by obtaining the steady-state test
data of the motor. Figure 5 shows the external characteristics and efficiency diagram of the
hub motor.
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The working efficiency of the wheel motor is obtained using steady-state test data and
can be expressed by the formula as follows [24]:

ηm = f (Tm, nm) (7)

where, ηm is the working efficiency of the hub motor, and Tm and nm are the torque and
speed of the hub motor, respectively.

The output power formula of the hub motor is expressed as follows [24]:

pm =
Tm·nm

9550·ηm
(8)

3. Architecture of Control System

The energy management strategy with MPC for time horizon length optimization
based on ANFIS is shown in Figure 6.
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First, through the vehicle velocity prediction model based on RBF, the historical speed
is used to predict the velocity sequence in the future period of time. At the same time,
according to the historical vehicle velocity sequence, the average vehicle velocity, the
difference between maximum acceleration and minimum acceleration, and the deviation
between the current SOCbat and the reference trajectory SOCbat_ref can be obtained in the
past period of time. The abovementioned parameters are taken as input values of the
ANFIS controller, and the prediction time domain of the current moment can be obtained
through the rules formulated using ANFIS. The time horizon length of the predicted future
velocity sequence is updated, and a future velocity sequence that is more suitable for the
current driving condition is obtained. Then, the power distribution controller obtains the
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future power demand sequence by updating the predicted velocity sequence. Then, to
optimize the fuel economy, the future diesel genset control quantity sequence is obtained
through a DP solution, and the first control quantity in the future control quantity sequence
is taken as the target quantity of the bottom actuator. Finally, the vehicle model state
variables are fed back to the power distribution and ANFIS controllers.

3.1. Prediction Model

Vehicle velocity prediction is a typical nonlinear time series prediction problem. The
radial basis function neural network has obvious advantages in solving this kind of predic-
tion problem. In this paper, the vehicle velocity prediction model is established by using
the RBF neural network.

The RBF neural network is classified as a static neural network, which represents a
static mapping relationship between input and output. To apply the theory of the RBF
neural network to the vehicle velocity prediction model, it is crucial to determine the
model’s input and output variables. In vehicle velocity prediction, factors such as time,
weather conditions, and traffic information may play significant roles in influencing future
vehicle velocity. However, obtaining and integrating these data with current vehicle velocity
information can be challenging. Conventional vehicle velocity prediction models often
combine acceleration prediction with vehicle velocity prediction to make accurate forecasts
because acceleration reflects changes in velocity and serves as an indicator of driving
conditions. Neural networks possess learning and fitting capabilities that enable them
to effectively incorporate acceleration into the process of understanding and adapting to
various driving conditions. The process of vehicle velocity prediction model based on RBF
is shown in Figure 7.
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This paper adopts the Gaussian activation function [48], so the Gaussian activation
function is defined as follows:

ξα = exp
(
− 1

2σ2 ∥xm − ci∥2
)

, (α = 1, 2, · · · , n) (9)

In Formula (9), ∥xm − ci∥2 represents the Euclidean distance, ci is the activation func-
tion center, and σ is the Gauss function of variance.

The output of the RBF layer is shown in the following formula [48]:

yj =
h

∑
i=1

sjk exp
(
− 1

2σ2 ∥xm − ci∥2
)

(10)
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In Formula (10), xm = (x1
p,x2

p,. . .xn
p) represents the nth in the input sample vector, sjk is

the weight of the output point, and the formula of calculation is as follows [48]:

sjk = exp
(
− p

c2
max

∥xm − ci∥2
)

(11)

where cmax is the maximum.
Based on the above RBF neural network, a neural network computing model for fitting

the future time series of vehicle velocity in the predicted time horizon can be established. The
input parameters of this neural network consist of past vehicle velocity [vhis_1, vhis_2, . . ., vhis_n],
while the output parameters represent the predicted series of vehicle velocity within that
specific time horizon [vpre_1, vpre_2, . . ., vpre_k].

3.2. Tables and Schemes B. Time Horizon Optimization Based on ANFIS

ANFIS is a fuzzy inference system based on the Takagi–Sugeno model. It realizes
fuzzification, fuzzy inference, and the defuzzification of fuzzy control by neural net-
works. It adjusts fuzzy inference control rules using offline training and online learning
algorithms, making the system develop itself toward self-adapting, self-organizing, and
self-learning [49]. Due to its inherent simplicity and remarkable efficacy, it has found ex-
tensive applications in diverse real-world problem domains [24,50–52]. The basic structure
of ANFIS is shown in Figure 8.
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3.2.1. Fuzzy Neural Network Structure

The ANFIS structural model has five layers [24]. For the convenience of introducing
this network, Qm,n represents the output value of the n node in the m layer, and the value
of m is 1 to 5.

The first layer consists of a fuzzy segmentation layer, in which the variable vhis is
represented by fuzzy sets A1, A2, and A3, and the variable ∆ahis is represented by fuzzy sets
B1, B2, and B3. Similarly, the variable ∆SOCbat is expressed using fuzzy sets C1 and C2. Each
fuzzy set is characterized by a node function, with the output of each node indicating the
membership degree that signifies how well the input belongs to a specific fuzzy rule [24].

Q1,i = µAi (vhis), i = 1, 2, 3

Q1,j = µBj(∆ahis), j = 1, 2, 3

Q1,k = µCk (∆SOCbat), k = 1, 2

(12)
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where, Q1,i, Q1,j, and Q1,k are membership functions of fuzzy sets Ai, Bj, and Ck, respectively,
and are expressed as follows using Gaussian functions:

Q1,i = µAi (vhis), i = 1, 2, 3

Q1,j = µBj(∆ahis), j = 1, 2, 3

Q1,k = µCk (∆SOCbat), k = 1, 2

(13)

where parameters z and λ represent the center and width of the Gaussian function, respec-
tively, serving as crucial precondition factors in our model.

The second layer is the rule inference layer, which is responsible for calculating the
intensity of fuzzy rule excitation and multiplying it with the input signals to generate the
corresponding output product. The mathematical expression can be formulated as follows:

Q2,i = ωi = µAi (vhis)µBj(∆ahis)µCk (∆SOCbat) (14)

The third layer is referred to as the fuzz layer, with the excitation intensity being standardized.

Q3,i = ωi =
ωi

ω1 + ω2 + ω3
(15)

The fourth layer consists of adaptive nodes that function as the deblurring layer, with
each node outputting an adaptive formula.

Q4,i = ωi fi = ωi(pivhis + qi∆ahis + ri∆SOCbat + ni) (16)

where, the parameters pi, qi, ri, and ni represent the variables in the latter part.
The fifth layer serves as the output layer, wherein the cumulative output of all input

signals is computed, as depicted by the following expression:

Q5,i =
j

∑
i=1

ωi fi =
∑i ωi fi

∑i ωi
(17)

3.2.2. Learning Algorithms for Fuzzy Neural Networks

The fuzzy neural network system uses a BP backpropagation algorithm and the least
squares method to complete the model of input/output data pairs. This method can
extract the corresponding information (fuzzy rules) from the dataset, making the generated
Takagi–Sugeno-type fuzzy inference system better at simulating the desired or actual
input/output relationship. When the fuzzy neural system is learning, the learning error
can be calculated according to the actual output value and the expected output value of the
system, and then the system parameters can be adjusted through error backpropagation.
The main adjusted system parameters are the weight ω, the center z of the Gaussian
function, and the width λ. The learning error function is expressed as follows:

e =
1
2

j

∑
i=1

(
fi − f ′i

)2 (18)

where, fi and fi′ are the desired output and the actual output, respectively.
The adjustment method of parameters in the learning process is described in the

following expression: 
ωij(k + 1) = ωij(k)− γ ∂e

∂ωij

zij(k + 1) = zij(k)− γ ∂e
∂zij

λij(k + 1) = λij(k)− γ ∂e
∂λij

(19)
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where k is the number of iterations and γ > 0 is the learning rate.

3.2.3. Training Results

In this paper, the powerful self-organization, self-adaptation, and self-learning capa-
bilities of ANFIS in function approximation are utilized to learn the optimal time horizon
dataset of the dataset, as shown in Figure 9.
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Because the backpropagation algorithm relies on the gradient information of each
neuron’s transfer function, excessively large inputs can result in extremely small gradients
for the corresponding independent variables, hindering smooth weight and threshold
adjustments. Therefore, prior to training, it is essential to normalize the input parameters to
ensure convergence. Three input membership functions in the adaptive neural fuzzy system
trained in this paper are all Gaussian functions, and the number of input membership
functions is 3, 3, and 2, in turn, and the training times is 100. The ANFIS model structurally
obtained after training is shown in the Figure 10, with the number of nodes being 58 and
the number of fuzzy rules being 18.
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3.3. Cost Function and Limitations

The hybrid power system employs SOC maintenance mode. In this study, an ANFIS
method is utilized to optimize the prediction time horizon and an MPC energy management
strategy with fuel economy as the optimization objective is applied, solving it through
dynamic programming (DP).

The DP algorithm is fundamentally a multi-stage decision-making optimization pro-
cess, which is discretized into several stages in the time sequence, and each decision made
in each stage leads to a corresponding state transition. Arranging the decisions made in
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each stage in the time sequence ultimately forms the entire process’s control sequence.
Therefore, to apply the DP algorithm for global optimization, the system equation needs to
be discretized. In this solution, one second is a stage, and the HEV is considered a whole
system. The SOCbat is considered the state variable, while engine speed ne and generator
torque Tg are regarded as control variables, resulting in the derivation of the following
state transition equation: S

.
OCbat(k + 1) = SOCbat(k)−

Ebat−
√

E2
bat−4(Preq(k)−Pg(k))Rbat

2RbatQbat_max

u(k) = g
(
ne(k), Tg(k)

) (20)

where SOCbat(k) is the state variable for stage k, SOCbat(k + 1) is next phase of the system
status, u(k) is the k stage that controls the control variables of the diesel genset, g is the state
transition function, Preq is the vehicle’s required power, Pg is determined by the power
of the diesel genset, and Rbat is the internal resistance of the battery. The principle of no
aftereffect of the DP algorithm can also be verified from Equation (20), that is, the state of
stage k + 1 is only related to the state and control variables of stage k and is not related to
the state of any previous stage.

The real-time optimization energy management of HEV is to optimize the optimization
objective in the prediction time horizon at each sampling moment to obtain the optimal
control sequence in the prediction time horizon, and only the first control quantity is used
as the optimal control quantity at the current moment. Formulating a reasonable target
cost function is the key to real-time optimization to achieve the optimal control effect. The
primary goal of energy management is to reduce fuel consumption, so the cost function
includes the fuel consumption of the engine. The battery of series HEV cannot be charged
from the outside, and the electric energy fundamentally comes from the engine.

The battery is charged or discharged according to the driving demand, and the SOCbat
needs to be maintained within a certain range, so the cost function needs to limit SOCbat.
The solution of model predictive control is different from global optimization, which is to
optimize the solution in the prediction time domain in the form of rolling optimization.
The battery is in the state of charging or discharging at each moment, so this paper only
penalizes the deviation of SOCbat at the end of the prediction time horizon. In summary,
the target cost function in the prediction time domain is as follows:

J =
∫ k+kn

k

.
mengine (k)dt + β(SOCbat(k + kn)− SOC0) (21)

where, kn represents the length of the forecast time domain, SOC bat (k + kn) represents the
SOCbat value at the end of the forecast time horizon, and SOC0 is the reference SOCbat_ref
value. The second term in the formula is the terminal penalty term, which is used to
penalize the ∆SOC at the end of the forecast time domain, and its weight coefficient is β.

When solving the transmission DP, this paper combines the idea of ECMS and opti-
mizes it using the equivalent factor. Therefore, the product of penalty factor β and SOCbat
deviation and fuel consumption are not in the same dimension, and the electric energy is
equivalent to fuel consumption through the equivalent conversion factor. Referring to the
ECMS idea, the terminal electric energy consumption is converted into fuel consumption,
and the terminal part of the cost function is improved as follows:

β(SOCbat(k + kn)− SOC0) = fequ(SOCbat(k + kn)− SOCbat_ref)

= se
Qfuel

(
EbatQbat_max(SOCbat(k + kn)− SOCbat_ref)−

(Qbat_max(SOCbat(k + kn)− SOCbat_ref))
2Rbat

)
(22)
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where Qfuel is the calorific value of fuel oil, Se is the oil–electric conversion factor, and the
formula incorporates the transformation of the SOCbat deviation penalty in the predicted
time horizon terminal into equivalent fuel consumption, which is denoted as f equ.

Consequently, the optimal target cost function of the system can be reformulated
as follows:

J =
∫ k+kn

k

.
mengine (k)dt + fequ(SOCbat(k + kn)− SOCbat_ref) (23)

If the f equ is fixed, the driving condition adaptability is poor, resulting in continuous
fluctuations in the SOCbat when the vehicle is working. When the f equ is small, the equiva-
lent fuel consumption of the battery is relatively low, and the energy management system
tends to use electricity, which easily leads to over discharge of the SOCbat. On the contrary,
when the f equ is too large, the energy management system prefers oil, causing the SOCbat
to rise and deviate from the target value. To improve the fuel economy of tractors and
maintain the stability of the SOCbat, it is necessary to dynamically adjust the oil–electric
equivalent factor to improve its adaptability. Through offline simulation, the relationship
between the oil–electric conversion factor Se and ∆SOCbat is shown in the Figure 11.
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The inclusion of system constraints is imperative to ensure the safe and rational
operation of both the diesel genset and battery. In the solution process, state variables,
control variables, and output variables are discretized, leading to the formulation of the
optimal problem as follows:

min
u(k)

J(SOC(k), u(k))

s.t.



SOC(k + 1) = f (SOC(k), u(k))

ne,min ≤ ne(k) ≤ ne,max, Tg,min ≤ Tg(k) ≤ Tg,max

SOCbat,min ≤ SOCbat(k) ≤ SOCbat,max

Pbat,min ≤ Pbat(k) ≤ Pbat,max

Pe,min ≤ Pe(k) ≤ Pe,max

(24)

where ne,max denotes the maximum value of engine speed, while ne,min represents its
minimum value. Similarly, Tg,max and Tg,min correspond to the maximum and minimum
values of generator torque, respectively, whereas Pe,max and Pe,min signify the upper and
lower bounds of diesel genset power, respectively.

3.4. Optimization Based on DP Algorithm

The forecasted vehicle velocity determines the power demand in the forecasted time
horizon, and on this basis, a rolling optimization model is established by using DP.
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The solution based on DP is shown in Figure 12. In each stage moment in the prediction
time horizon, the system state variable SOCbat is discretized, and the engine speed and
torque are indirectly obtained by using the diesel genset power in the solution process.
Starting from the terminal moment, the control quantity within the constraint range is
traversed under the feasible state at each moment, the optimal solution and its control path
are searched in reverse, and finally, the solution is searched forward.
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When the DP algorithm is used for optimization, the terminal moment is different
from the non-terminal moment. Because SOCbat is constantly changing during vehicle
driving, according to the cost function established by analysis in Section C, equivalent
fuel consumption caused by SOCbat change is not considered in the stage changes, except
terminal moment, and only the terminal penalty term for SOCbat deviation is added at the
termination moment of the prediction time horizon.

When predicting the terminal in the time horizon, the cost function is as follows:

Jk+kn = min
{

Lk+kn(SOCbat(k + kn), u(k + kn)) + fequ(SOCbat(k + kn)− SOCbat_ref)
}

(25)

The state variable of the DP solving model is the SOCbat, and the control variable is
the generator torque and engine speed. The state of the system can be determined using
the state variable SOCbat and the diesel genset power. Discrete SOCbat and diesel genset
power, for each SOCbat discrete value at time, traverse the diesel genset power that meets
the constraint conditions and apply the corresponding optimal engine speed and generator
torque to the system to obtain the SOCbat at time. If the constraint range is not exceeded,
the cost caused by the control quantity is calculated; otherwise, the control quantity is
discarded. Starting from the prediction terminal, the optimal cost function of the state
quantity that may be passed at each time is obtained, and it is iterated until the initial time
to determine the optimal SOCbat change sequence and control sequence in the prediction
time horizon.

4. Simulation Results and Analysis
4.1. Training Setting

Given the variegated velocity of heavy-duty vehicles, which range from low to high,
and the distinct urban conditions they operate in, it becomes imperative to develop a robust
training set for the RBF neural network.

The information on five different cycles, including the Urban Dynamometer Driv-
ing Schedule (UDDS), New European Driving Cycle (NEDC), Highway Fuel Economy
Test (HWFET), Supplemental Federal Test Procedure-US06 (SFTP-US06), and World Light
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Vehicle Test Procedure (WLTP), is shown in Table 2. To validate the performance of the pre-
diction model-based RBF in different cycles, five datasets of velocity profiles as sample cycle
sets were combined into a training cycle set (UDDS–NEDC–HWFET–SFTP–US06–WLTP),
as shown in Figure 13. Normalize the cycle datasets by transforming them into training
data with a mean of zero and a standard deviation of one, and construct an RBF prediction
model based on this normalized training data for predicting driving conditions. The China
heavy-duty commercial vehicle test cycle-tractor trailer (CHTC-TT), as shown in Figure 14,
was used to test the prediction model.

Table 2. Detailed cycle information of six different cycles.

Cycle Velocity Max
(km/h)

Average
Velocity (km/h) During Time (s) Distance (km)

CHTC-TT 88 46.44 1800 21.3
UDDS 91.2 31.5 1370 12.07
NEDC 120 24.7 1180 11.02

HWFET 96.37 77.7 765 16.45
SFTP-US06 129.2 77.9 596 12.8

WLTP 131.3 46.5 1800 23.27
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the observed value and the true value to the number of observations. It is commonly
expressed as follows:

RMSE(k) =

√√√√√ N
∑

i=1

(
vpre(k + i)− vcar(k + i)

)2

N
, (i = 1, 2, · · · , N) (26)

where vpre(k + i) and vcar(k + i) are respectively the predicted value and true value of the
vehicle velocity at the i time.

4.2. Simulation Analysis of RBF–MPC

In this section, the CHTC-TT cycle conditions were taken as an example, simulation
experiments were conducted to study the effect of vehicle velocity prediction accuracy
under the different time horizon lengths of vehicle velocity prediction, and the impact on
the final energy consumption of the MPC energy management strategy was compared to
improve the fuel economy of the energy management strategy. The simulation results and
analysis are described below.

To study the influence of different prediction time horizon lengths on the velocity
prediction effect, this section compares the simulation experiments of the RBF neural
network velocity prediction model with the prediction time domain lengths of 5 s, 10 s,
and 15 s respectively. Among these, the historical time horizon length is consistent with
the prediction time horizon length, and the simulation results of the prediction accuracy
are shown in Figure 15. As can be seen in Figure 15, when the vehicle velocity is low and
the acceleration changes frequently, the predicted future vehicle velocity sequence has a
large error; it also can be seen that with the extension of time in the prediction horizon, the
vehicle velocity prediction error gradually increases, the vehicle velocity prediction error is
more concentrated in acceleration sudden change, and the vehicle velocity prediction is
more accurate in medium vehicle and high vehicle conditions.
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In addition, at 100–600 s, the vehicle velocity is low, the velocity is in a state of frequent
change, and the acceleration change rate fluctuates greatly. Therefore, as shown in Figure 15,
at 100–600 s, it is obvious that with an increase in the time horizon length, the deviation
between the predicted vehicle velocity sequence and the future actual vehicle velocity
sequence increases. When the velocity changes from large to small, the vehicle demand
power decreases at this time. However, the error of the vehicle velocity prediction model
will cause the predicted velocity to increase. The energy management strategy will plan
the optimal output power of the diesel genset to meet the predicted vehicle demand power.
In this way, the output power of the diesel genset will be greater than the actual demand
power of the vehicle, so the electric power will be supplemented by the battery, resulting in
an increase in SOC and fuel consumption.

At 1000–1600 s, when the vehicle velocity is high and the velocity state is stable, the
fluctuation in the acceleration change rate is small. Therefore, as shown in Figure 15, with
the increase in the time horizon length between 1000 and 1600 s, the predicted vehicle
velocity sequence has a small deviation from the actual future velocity sequence. Even if
the vehicle velocity fluctuates, the error of the vehicle velocity prediction model has no
effect on the predicted velocity. At this time, the time horizon length increases, and the
energy management strategy will solve the optimal output power of the diesel genset in
the longer prediction time horizon length to achieve a better power output scheme and
reduce fuel consumption.

The data in Figures 15–17 were counted, and Table 3 was obtained. As shown in
Table 3, the prediction error of vehicle velocity and the corresponding simulation results
of energy consumption under different prediction time horizons were counted. With
an increase in the prediction time horizon, the prediction error of vehicle velocity also
increases. When the prediction time horizon of vehicle velocity is extended from 5 s to
15 s, the prediction error of vehicle velocity is increased from 0.061 to 2.595. Therefore,
considering the accuracy of vehicle velocity prediction, 5 s should be chosen as the optimal
prediction time domain length.

However, from the perspective of vehicle energy efficiency, with an increase in the
prediction time horizon, the MPC energy management strategy can obtain more adequate
information on effective driving conditions, which is conducive to the improvement of
the global optimization of the strategy, and the total vehicle fuel consumption is grad-
ually reduced. As the vehicle velocity prediction time horizon length changes from 5 s
to 15 s, vehicle fuel consumption is reduced from 17.85 to 17.16 L. In addition, due to
the characteristics of model predictive control theory, the computational cost of energy
management strategy also increases linearly with the increase in the prediction time hori-
zon. Considering the real-time performance and fuel economy of the energy management
strategy, 10 s is selected as the best predictive time domain length of RBF–MPC energy
management strategy.
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Table 3. Comparison of vehicle velocity prediction and fuel consumption simulation results under
different prediction time horizon lengths with RBF–MPC.

Time
Horizon (s) RMSE Initial SOC Final SOC Fuel

(L/100 km)
Calculation

Time (s)

5 0.061 60 61.42 17.85 0.016
10 1.326 60 61.26 17.16 0.034
15 2.595 60 61.15 17.23 0.059

4.3. Simulation Analysis of RBF–ANFIS–MPC

To verify whether the energy management strategy based on MPC with an ANFIS-
optimized time horizon established in this paper can more reasonably allocate the power
of the engine–generator set and the battery and obtain better fuel economy compared with
the energy management strategy based on RBF–MPC in a fixed time horizon, the CHTC-TT
condition is selected for simulation. The simulation duration is 1800 s, with a time step of
0.01 s. The maximum time horizon is 15 s, while the fixed time horizon length is 10 s. The
initial SOC is set to 60%, and the simulation results and analysis are described below.

The change in time horizon length is shown in Figure 18. The choice of time horizon
length is crucial to update the predicted vehicle velocity sequence. As can be seen from
Figure 18, the ANFIS controller designed in this paper has completed the time horizon
length optimization. The ANFIS controller can output different time horizon length values
according to different driving conditions. As can be seen in Figure 18, when the changes
in history vehicle velocity and acceleration deviation were small, the time horizon length
increased, and the maximum time domain length was 15 s. For comparison, the time
horizon length of the energy management strategy with RBF–MPC is 10 s all the time.
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Under the same input conditions, the same cost function and constraint conditions are
adopted, and the SOC trajectory pairs of the MPC energy management strategy with a fixed
time horizon length and an ANFIS-based variable time horizon MPC energy management
strategy are shown in Figure 19. The fuel consumption is illustrated in Figure 20. The data
in Figures 18 and 20 were counted, and Table 4 was obtained.
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Table 4. Comparison of simulation results with two methods of RBF–MPC and RBF–ANFIS–MPC.

Method Initial SOC Final SOC Fuel (L/100 km) Calculation
Time (s)

RBF–MPC 60 61.26 17.16 0.034
RBF–ANFIS–MPC 60 60.51 16.11 0.026

As shown in Figure 19, the SOC maintenance effect of the method of RBF–ANFIS–MPC
is better in the global cycle condition. As can be seen in Figure 20, the energy management
strategy based on RBF–ANFIS–MPC has lower fuel consumption. As shown in Table 4,
compared with the RBF–MPC energy management strategy, the RBF–ANFIS–MPC energy
management strategy has a smaller calculation cost, the average calculation time is reduced
from 0.034 s to 0.26 s, and the final SOC value is closer to the initial SOC value, which is
60.51%. In addition, the simulation results show that on this basis, the vehicle fuel economy
was also improved, with the final fuel consumption reduced from 17.16 L to 16.11 L.

5. Conclusions

This paper presented an energy management strategy with an ANFIS-based optimiza-
tion of time horizon length, using distributed electric drive hybrid heavy-duty vehicles as
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the research object. First, the velocity prediction model based on an RBF neural network
is used to predict the future velocity sequence. After that, ANFIS was used to optimize
and update the length of the forecast time horizon based on the predicted vehicle velocity
sequence. Finally, compared with the fixed time horizon energy management strategy,
which is based on MPC, the average calculation time of the energy management strategy is
reduced by about 23.5%, and the fuel consumption per 100 km is reduced by about 6.12%.

When the vehicle is under different driving conditions, although the vehicle velocity
error predicted by the prediction model in the prediction time horizon length leads to an
error in the future vehicle velocity sequence, when the prediction time horizon length is
short, if the power allocation calculation is carried out based on a fixed time horizon length,
the power allocation results of the diesel genset and the power battery obtained are not
the local optimal solution. Through simulation, it is obtained that appropriately increasing
the prediction time horizon length can still reduce the vehicle fuel consumption, even if
there is a situation of the accuracy of the vehicle horizon prediction result being reduced.
It can not only further improve the local optimal performance of the energy management
strategy but also improve the average calculation efficiency to achieve the global optimum.
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