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Abstract: The popularization of electricity-gas systems leads to increasing demand for state manage-
ment of systems. However, the existence of neglected measurement correlations brings uncertainties
to the electricity-gas systems state estimation. In this paper, an interval state estimation method
that considers measurement correlations existing in the electricity-gas systems is presented. We
derive the linear measurement model for the electricity-gas systems through Taylor series expansion
and estimate the measurement variance-covariance matrix with measurement correlations. The
system parameter matrix and the measurement variance-covariance matrix containing measurement
correlations are combined into an interval, and the interval state matrix considering measurement
correlations is constructed. Then, the linear equations for the state estimation interval consider-
ing measurement correlations are established based on the measurement containing correlations
and interval state matrix; as a result, the electricity-gas system state estimation model containing
measurement correlations is established. In addition, a method for determining the range of state
estimation intervals is proposed. Numerical tests on an integrated electricity-gas system comprising
a 10-node natural gas network and IEEE 30-bus system indicate that the proposed approach has more
advantages over the UT+KO approach in computation accuracy and computation efficiency.

Keywords: electricity-gas systems; measurement correlations; interval state estimation

1. Introduction

The popularization of electricity-gas systems leads to increasing demand for system
state supervision, and electricity-gas system state estimation is becoming an important
role of effective monitoring and control systems [1]. Most studies of state estimation
assumed that the measurements follow the independent Gaussian distribution and ignored
the correlations of the measurements. Nevertheless, this is not applicable in practice.
Since measurement data is usually obtained by the data acquisition system and the same
measurement equipment, every step from data acquisition may be affected by the same
errors—after the superposition and propagation of these errors, there will be a certain
correlation between the measurements [2]. The research shows that the long-term existence
of measurement correlations may have adverse effects on the results of electricity-gas
systems state estimation [3–5], such as the impact on the precision of state estimation in
distribution systems [3], as well as the impact of bad data with measurement correlations
on the measurement sets [4,5]. Thus, it is necessary to consider the existing measurement
correlations in the state estimation of electricity-gas systems. However, in practice, the
impact of these correlations on the system is hard to quantify. Therefore, we need to provide
the uncertainty range of state variables induced by measurement correlations, and ensure
that the state variables always exist in this range, for the sake of reducing the influence
of measurement correlations on system safety and ensuring the stability and reliability of
energy system.
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Currently, there are relatively few studies considering the measurement correlations
of the electricity-gas system; most focus on the study of the electricity system, and few
involve both the measurement correlation of electricity system and natural gas system.
As for the measurement correlations of electricity systems, the unscented transformation
(UT) is regarded as an effective solution. For instance, a state estimation framework of
electricity system based on UT for measurement correlations and measurements with
incomplete time synchronization was developed in [6]. In [7–9], UT was employed to
calculate the correlations between the measurements of the electricity system and the corre-
lations between the voltage phasor, active and reactive power of the bus. These methods
based on UT considered the measurement correlations of electricity systems, obtained the
correlation between the measured values through symmetric sampling strategy, and then
utilized the covariance to transfer the correlation. Although they had a certain tolerance for
measurement correlations, they need to calculate the measurements independently and
symmetrically, and are therefore mainly aimed at small-scale electricity systems. As the
system size increases, the calculation efficiency will gradually decrease.

In addition to UT, some methods based on the Kalman filter were used to solve
measurement correlations, including the Kalman filter (to predict the error covariance
matrix) [10,11], and the point estimation method based on an extended Kalman filter [12].
In addition, the combination of untracked transform and Kalman filter has been used to
detect bad data with measurement correlations [13]. These Kalman filter methods reduce
the measurement correlations by filtering the measurement values, and the state estimation
is therefore still based on the filtering and depends on the precise measurement values to a
certain extent.

Furthermore, the measured data was modeled as multivariable time series to simulate
the spatial correlation in [14,15]. Nevertheless, time series is only suitable for simulating
the system state in the short term, and, because it is difficult to accurately describe long-
term and fluctuating energy systems, such studies have not delved into the calculation
of correlations. Apart from time series, some literatures combined least squares with
point estimation to calculate the measurement correlations of electricity systems [16–18].
However, least squares is mainly used for linear calculations and is not very suitable
for calculating nonlinear relationships in power systems. Although the correlations of
load and input variables were considered in other studies, they mainly focus on pseudo-
measurements and stochastic power flow calculation [19,20].

The above methods for considering the measurement correlations existing in the state
estimation are mainly aimed at the electricity system. Of these methods considering the
measurement correlations, the method based on UT obtained the correlation between the
measured values through the symmetric sampling strategy, which is inefficient to solve.
Although the Kalman filter method reduces the measurement correlation through filtering,
the state estimation still depends on the accurate measurement value to a certain extent,
and has low tolerance for measurement correlations. The time series is only suitable for
simulating short-term system states, and the least squares method is not very suitable for
nonlinear energy systems. Individual studies that considered correlation mainly focus on
pseudo-measurements and stochastic power flow calculations. Therefore, these existing
methods that considered measurement correlations in electricity systems still have some
limitations, and current research rarely involves both electricity system and gas system.

To further effectively solve the state estimation of electricity-gas systems considering
measurement correlations, an interval state estimation method is developed in this paper.
Firstly, we derive the linear measurement model for the electricity-gas systems through
Taylor series expansion and estimate the measurement variance-covariance matrix with
measurement correlations. Subsequently, we combine the system parameter matrix with
the measurement variance-covariance matrix containing measurement correlations into an
interval to construct the interval state matrix considering measurement correlations. Then,
the linear equations for the state estimation interval considering measurement correlations
are established based on the measurement containing correlations and interval state matrix;
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as a result, the electricity-gas system state estimation model with measurement correlations
is constructed. Finally, a method for determining the range of state estimation intervals
is presented. By comparing the state estimation interval with the safe operating range of
system, we can determine if the safe operating range of the system fully covers the state
estimation interval, which helps the system administrators enhance situational awareness
capabilities, and guides administrators to make effective adjustments as well as to control
the energy system when needed. Compared with stochastic methods, the interval state
estimation method does not require iterative calculations, and the obtained interval results
are more stable, avoiding the randomness of the results. Nevertheless, stochastic methods
rely on random selection and have randomness and uncertainty. For multiple calculations
of the same case, the results may differ significantly, making it difficult to ensure the
reliability of the obtained results range. An integrated electricity-gas system comprised
of the 10-node natural gas network and IEEE 30-bus system is taken for numerical tests,
and the estimated results of gas demand, pressure at nodes, voltage amplitude, and
voltage angle in the integrated electricity-gas system are validated under different levels of
measurement correlation, to attest the effectiveness of the proposed approach.

The main contributions of this paper are summarized as follows:

(1) The derived linear model for measurements of electricity-gas systems transfers the
nonlinear electricity-gas system model into the measurements-based linear model,
describing the statistical characteristics of state variables in the nonlinear system
through linear equations and converting them into measurements.

(2) The constructed interval state matrix and the linear equations of state estimation
interval consider the correlation between measurements in the electricity-gas system
(including the correlation between pressure at node and gas mass flow in the gas
network, the correlation between active power and reactive power in the electricity
system), and establish the electricity-gas system state estimation model containing
these correlations.

(3) The proposed method for determining the range of state estimation interval allows
the existence of measurement correlations, has a certain tolerance for measurement
correlations, and provides the ideal distribution range of state variables under various
measurement correlations.

The remainder of this paper is organized as follows. Section 2 gives the basic model
and the linear measurement model for the electricity-gas systems. Section 3 gives the
measurement variance-covariance matrix containing measurement correlations, and also
establishes the interval state matrix and linear equations of state estimation interval.
Section 4 presents a method for determining the range of state estimation intervals.
Section 5 validates the effectiveness of the proposed method on an integrated electricity-gas
system. Finally, some conclusions are drawn in Section 6.

2. The Linearized Model for Measuring Electricity-Gas Systems

This part mainly introduces the basic model of electricity-gas system, as well as the lin-
ear measurement model for the electricity-gas systems deduced by Taylor series expansion.

2.1. The Gas Pipeline System Model

The transmission of natural gas in a pipe exhibits slow dynamic characteristics, and
the influence of temperature on the gas pipeline system can be ignored. It is generally
considered that the temperature of natural gas in pipe is close to the ambient temperature,
and the driving force of pressure causes natural gas to flow axially along a pipe, as shown
in Figure 1.
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Figure 1. Schematic diagram of natural gas flow inside the pipeline.

The dynamic behavior of gas system is depicted via partial differential equations [21,22],
and the state variables of natural gas flow mainly include pipeline pressure and gas flow.
The dynamic behavior of natural gas system can be expressed as follows:

∂(π)

∂t
+

ZRT
S

·
∂
( .

G
)

∂L
= 0 (1a)

∂(π)

∂L
+

f · ZRT ·
.

G
∣∣∣ .
G
∣∣∣

2d · S2 · π
= 0 (1b)

where
.

G denotes the natural gas mass flow, t denotes the time, t = 1, . . . , N, π refers to
the pressure, Z is the gas compressibility factor, R refers to ideal gas constant, f is the
friction coefficient, T represents the average temperature of natural gas in the pipeline,
L is the pipeline length, d represents the pipe inner diameter, S refers to the pipeline
cross-section area.

Since the natural gas system model is a set of partial differential equations, direct
calculation is more complex. Therefore, we linearize the above partial differential equa-
tions. It is assumed that gas flows unidirectionally in pipelines, so the time step is set as
∆t = Tn/N, the spatial step is set as ∆L = L/M, then Equation (1) is rewritten as follows:

∆πt
i+1 − ∆πt−1

i+1
∆t

+
ZRT

S
· ∆

.
G

t
i+1 − ∆

.
G

t
i

∆L
= 0 (2a)

∆πt
i+1 − ∆πt

i
∆L

+
f · ZRT ·

.
Gst

2d · S2πst
· ∆

.
G

t
i+1 + ∆

.
G

t
i

2
= 0, t = 1, . . . , N, i = 1, . . . , M − 1 (2b)

where ∆πt
i and ∆

.
G

t
i are the pressure and gas flow in the pipe; in length of i at time t, ∆πt

i+1

denotes the pressure and ∆
.

G
t
i+1 denotes gas flow in the pipe in length of i + 1 at time t.

.
Gst

and πst represent gas flow and pressure of steady state operation, respectively.
Then, we take a matrix to express the relationship between the gas flow and pressure

at the inlet of the pipe and the pressure and gas flow at the pipe outlet, and convert
Equation (2) into the matrix form in Equation (3).

[
∆πt

i+1

∆
.

G
t
i+1

]
= Ag

 ∆πt−1
i+1

∆t + ZRT·∆
.

G
t
i

S·∆L
∆πt

i
∆L − f ·ZRT·

.
Gst ·∆

.
G

t
i

4d·S2πst

 (3)

where input variables consist of pressure ∆πt−1
i+1 in the pipe in length of i + 1 at time t − 1,

gas flow ∆
.

G
t
i in the pipe in length of i at time t, pressure ∆πt

i in the pipeline in length of

i at time t. The output variables are composed of ∆πt
i+1 and ∆

.
G

t
i+1. Ag denotes network

parameter matrix.
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For a natural gas network, taking the length of the pipeline as the step, the change of
pressure and the mass flow are expressed as: ∆πt

j

∆
.

G
t
j

 = Ag

 ∆πt−1
j

∆t + ZRT·∆
.

G
t
i

S·Li,j

∆πt
i

Li,j
− f ·ZRT·

.
Gst ·∆

.
G

t
i

4dS2πst

 i, j ∈ {1, . . . , Nn} (4)

where Nn is the number of node, Li,j is the pipeline length, ∆πt−1
j is the pipeline outlet

pressure at node j at time t − 1, ∆πt
j is pipeline outlet pressure and ∆

.
G

t
j is outlet gas flow.

∆πt
i is pipeline inlet pressure and ∆

.
G

t
i is inlet gas flow. The network parameter matrix is

expressed as Equation (5). The elements A11, A12, A21, A22 of A are represented as below:

Ag =

[
A11 A12
A21 A22

]
(5a)


A11 = f ·

.
Gst · ∆t · L2

i,j/A0

A12 = −4d · S · πst · ∆t · Li,j/A0
A21 = −4d · S2 · πst · ∆t · Li,j/(ZRT · A0)
A22 = 4d · S2 · πst · L2

i,j/(ZRT · A0)

(5b)

A0 = f ·
.

GstL2
i,j − 4d · S · πst · ∆t (5c)

In a natural gas system, the gas flow at a node should satisfy the mass conservation
constraint as:

∑
i→

.
Gi,j − ∑

→i

.
Gk,i +

.
G

load
i −

.
G

inject
i = 0 (6)

where ∑
i→

.
Gi,j is the sum of gas flows from node i, ∑

→i

.
Gk,i means that the gas flows into i

from other nodes,
.

G
inject
i represents the gas injection at node i,

.
G

load
i is the gas load at node i.

2.2. The Electricity System Model

The electricity system model is represented as follows [23]:

Pi =
(

V2
i − ViVj cos θij

)
gij − ViVj sin θijbij (7)

Qi = −
(

V2
i − ViVj cos θij

)
bij − ViVj sin θijgij (8)

where Qi represents the reactive power at bus i, Pi denotes the active power at bus i, θij
denotes the voltage angle between bus i and bus j, Vi refers to the voltage magnitude at
bus i, bij refers to the susceptance, gij represents the conductance.

In the integrated electricity-gas system, the general efficiency of gas-fired generators
in converting natural gas into electric energy is stated as [24]:

Hg
i = α

g
i + β

g
i · ∆Pg

i + γ
g
i

(
∆Pg

i

)2
(9)

∆
.

G
g
i =

Hg
i

GHV
(10)

where ∆Pg
i represents the electric energy generated by gas-fired generator, Hg

i denotes the

heat value of gas, ∆
.

G
g
i represents the gas flow demand, GHV denotes the gross heat value

of gas, α
g
i , β

g
i , and γ

g
i refer to fuel coefficients.
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2.3. The Derivation of Linear Measurement Model for the Electricity-Gas Systems

In this section, we use Taylor series expansion to derive the linear measurement model
of electricity-gas systems, thereby further linearizing the nonlinear gas system model,
enabling us to then obtain a model for measurement. Firstly, we write the independent

variables in the natural gas system, namely, ∆πt
i and ∆

.
G

t
i at node i in the following

function form:

∆
.

G
t
i = φ−1

1

[
φ1

(
∆

.
G

t
i

)]
(11a)

∆πt
i = φ−1

2
[
φ2

(
∆πt

i
)]

(11b)

Then, the outlet pressure ∆πt
j and outlet gas flow ∆

.
G

t
j of the pipeline at node j in

Equation (4) are respectively written in the following form:

∆πt
j = A11

∆πt−1
j

∆t
+

ZRT · ∆
.

G
t
i

S · Li,j

+ A12

∆πt
i

Li,j
− f · ZRT ·

.
Gst · ∆

.
G

t
i

4dS2πst

 (12a)

∆
.

G
t
j = A21

∆πt−1
j

∆t
+

ZRT · ∆
.

G
t
i

S · Li,j

+ A22

∆πt
i

Li,j
− f · ZRT ·

.
Gst · ∆

.
G

t
i

4dS2πst

 (12b)

Subsequently, we linearize ∆πt
j , ∆

.
G

t
i , and ∆πt

i by Taylor series expansion, and obtain:

αg =
∂∆πt

j

∂∆
.

G
t
i

∣∣∣∣∣∣ ∆
.

G
t
i = ∆

.
G

t
i,0

∆πt
i = ∆πt

i,0

= A11 ·
ZRT

S · Li,j
− A12 ·

f · ZRT ·
.

Gst

4d · S2 · πst
(13)

βg =
∂∆πt

j

∂∆πt
i

∣∣∣∣∣ ∆
.

G
t
i = ∆

.
G

t
i,0

∆πt
i = ∆πt

i,0

= A12 ·
1

Li,j
(14)

∆
.

G
t
i − ∆

.
G

t
i,0 ≈ ∂∆

.
G

t
i

∂φ1

(
∆

.
G

t
i

)
∣∣∣∣∣∣∣∣
∆

.
G

t
i=∆

.
G

t
i,0

{
φ1

(
∆

.
G

t
i

)
− φ1

(
∆

.
G

t
i,0

)}
(15)

∆πt
i − ∆πt

i,0 ≈
∂∆πt

i
∂φ2

(
∆πt

i
) ∣∣∣∣∣

∆πt
i=∆πt

i,0

{
φ2

(
∆πt

i
)
− φ2

(
∆πt

i,0
)}

(16)

Then, we replace φ1

(
∆

.
G

t
i

)
with ∆

.
G

t
i and φ2

(
∆πt

i
)

with ∆πt
i to obtain the linearized

model for measurement ∆πt
j with respect to variables ∆

.
G

t
i and ∆πt

i :

∆πt
j ≈ αg

(
∆

.
G

t
i − ∆

.
G

t
i,0

)
+ βg

(
∆πt

i − ∆πt
i,0
)
+ ∆πt

j,0 (17)

where, we take
.

Gst and πst in steady state as the initial values, expressed as ∆πt
i,0 and ∆

.
G

t
i,0,

respectively. ∆πt
j,0 can be derived from Equations (12a), (13)–(15).

For the electricity system, the voltage amplitude V and voltage angle θij are repre-
sented in the following function form:

V = ϕ−1
1 [ϕ1(V)] (18a)
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θij = ϕ−1
2

[
ϕ2

(
θij

)]
(18b)

Then, we linearize the active power Pi injected at bus i via Taylor series expansion to
obtain the linearized model for measurement Pi, with respect to voltage amplitude V and
voltage angle θij:

Pi − Pi,0 ≈ ∂Pi
∂ViVj

∣∣∣
V = V0

θi,j = θij,0

(
ViVj − Vi,0Vj,0

)
+ ∂Pi

∂θij

∣∣∣
V = V0

θi,j = θij,0

(
θij − θij,0

)

= ∂Pi
∂ViVj

∣∣∣
V = V0

θi,j = θij,0

{
∂ViVj

∂ϕ1(Vi)

∣∣∣
V=V0

{ϕ1(Vi)− ϕ1(Vi,0)}+
∂ViVj

∂ϕ1(Vj)

∣∣∣∣
V=V0

{
ϕ1

(
Vj
)
− ϕ1

(
Vj,0

)}}

+ ∂Pi
∂θij

∣∣∣
V = V0

θi,j = θij,0

{
∂θij

∂ϕ2(θij)

∣∣∣∣
θij=θij,0

{
ϕ2

(
θij

)
− ϕ2

(
θij,0

)}}
(19)

where we take voltage amplitude, as well as voltage angle at the balance node in electricity
systems, as the initial values, denoted as Vi,0, Vj,0, and θij,0.

We define αe and βe as:

αe =
∂Pi

∂ViVj

∣∣∣∣∣ V = V0
θi,j = θij,0

(20a)

βe =
∂Pi
∂θij

∣∣∣∣∣ V = V0
θi,j = θij,0

(20b)

Assuming that there is only one branch connection between bus i and bus j, we replace
ϕ1(V) with V and ϕ2

(
θij

)
with θij to obtain a linearized model for measurement Pi with

respect to voltage amplitude V and voltage angle θij:

Pi ≈ αe
(
ViVj − Vi,0Vj,0

)
+ βe

(
θij − θij,0

)
+ Pi,0 (21)

It should be noted that Equations (19)–(21) represent the case where there is only one
branch between bus i and bus j. For other special cases with multiple branches, the flux
increment needs to be summed.

3. The Construction of State Matrix and Linear Equations of State Estimation Interval
Considering Measurement Correlations

In this section, we calculate the measurement variance-covariance matrix containing
measurement correlations, and combine the system parameter matrix and measurement
variance-covariance matrix into a unified framework to construct a state matrix considering
measurement correlations, and construct the state estimation model of the electricity-gas
systems containing measurement correlations.

3.1. The Calculation of Measurement Variance-Covariance Matrix with Measurement Correlations

We extend the gas flow ∆
.

G
t
i and pressure ∆πt

i at pipeline inlet of the natural gas

network to ∆πt
i,k and ∆

.
G

t
i,k with the same mean and variance, as follows:

∆πt
i,k =

{
∆πt

i + δ∆πt
i
, i f k = 1

∆πt
i − δ∆πt

i
, i f k = 2

(22)
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∆
.

G
t
i,k =


∆

.
G

t

i + δ
∆

.
G

t
i
, i f k = 1

∆
.

G
t

i − δ
∆

.
G

t
i
, i f k = 2

(23)

where ∆πt
i and ∆

.
G

t

i are the means of ∆πt
i and ∆

.
G

t
i , respectively, and δ∆πt

i
and δ

∆
.

G
t
i

are the

standard deviations of ∆πt
i and ∆

.
G

t
i , respectively.

Then, we replace ∆
.

G
t
i with ∆

.
G

t
i,k and ∆πt

i with ∆πt
i,k, and rewrite (15) as:

∆πt
j,k = αg

(
∆

.
G

t
i,k − ∆

.
G

t
i,0

)
+ βg

(
∆πt

i,k − ∆πt
i,0

)
+ ∆πt

j,0 (24)

where ∆πt
j,k =

{
∆πt

j,1, ∆πt
j,2

}
; similarly, we also need to calculate the expanded ∆

.
G

t
j,k, and

finally obtain ∆
.

G
t
j,k =

{
∆

.
G

t
j,1, ∆

.
G

t
j,2

}
.

We select N sets of experimental data and calculate the measurement variance-
covariance matrix on the basis of an extended matrix:

∆πt
j = E

[
∆πt

j,k

]
=

1
2N

N

∑
n=1

2

∑
k=1

∆π
t,(n)
j,k (25)

∆
.

G
t

j = E
[

∆
.

G
t
j,k

]
=

1
2N

N

∑
n=1

2

∑
k=1

∆
.

G
t,(n)
j,k (26)

σ2
∆πt

j
=

1
2N

N

∑
n=1

2

∑
k=1

[(
∆π

t,(n)
j,k − ∆πt

j

)(
∆π

t,(n)
j,k − ∆πt

j

)T
]

(27)

σ2
∆

.
G

t
j
=

1
2N

N

∑
n=1

2

∑
k=1

[(
∆

.
G

t,(n)
j,k − ∆

.
G

t

j,k

)(
∆

.
G

t,(n)
j,k − ∆

.
G

t

j,k

)T
]

(28)

where ∆πt
j and ∆

.
G

t

j are the mean values of pressure and gas flow, respectively. σ2
∆πt

j
, σ2

∆
.

G
t
j

are variances of pressure and gas flow, respectively.
We further calculate the correlation parameters of gas network measurements. For

the measurement variance-covariance matrix, the non-diagonal term corresponds to the
value of the measurement correlations. We take the product of standard deviation of the
measurements and the correlation coefficient between the measurements as measurement
correlation parameters, as follows:

Corr
∆πt

j ,∆
.

G
t
j
= σ∆πt

j
· σ

∆
.

G
t
j
· ρ

∆πt
j ,∆

.
G

t
j

(29)

∑g =

 σ2
∆πt

j
Corr

∆πt
j ,∆

.
G

t
j

Corr
∆

.
G

t
j ,∆πt

j
σ2

∆
.

G
t
j

 (30)

where σ∆πt
j

is the standard deviation of ∆πt
j , σ

∆
.

G
t
j

is standard deviation of the outlet gas flow

∆
.

G
t
j , ρ

∆πt
j ,∆

.
G

t
j

is the correlation coefficient between the measurement ∆πt
j and ∆

.
G

t
j , ∑g is the

measurement variance-covariance matrix in the gas system considering the measurement
correlations.
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Similar to the gas system, we extend voltage amplitude V as well as voltage angle θij
in the electricity system to Vi,k, Vj,k, θij,k with the same mean and variance, as follows:

Vi,k =

{
Vi + δVi , i f k = 1
Vi − δVi , i f k = 2

(31)

Vj,k =

{
V j + δVj , i f k = 1
V j − δVj , i f k = 2

(32)

θij,k =

{
θij + δθij , i f k = 1
θij − δθij , i f k = 2

(33)

Furthermore, we assume that there is only one branch connection between bus i and
bus j; we replace Vi with Vi,k, Vj with Vj,k, and θij with θij,k, and Equation (21) is rewritten as:

Pi,k = αe

(
Vi,kVj,k − Vi,0Vj,0

)
+ βe

(
θij,k − θij,0

)
+ Pi,0 (34)

where Pi,k = {Pi,1, Pi,2}, Equation (34) represents the case where there is only one branch
between bus i and bus j; for other special cases where there are multiple branches, the flux
increment needs to be summed. Similarly, we also need to calculate the expanded Qi,k, and
finally obtain Qi,k = {Qi,1, Qi,2}.

We calculate a measurement variance-covariance matrix of the electricity system
as follows:

Pi = E[Pi,k] =
1

2N

N

∑
n=1

2

∑
k=1

P(n)
i,k (35)

Qi = E[Qi,k] =
1

2N

N

∑
n=1

2

∑
k=1

Q(n)
i,k (36)

σ2
Pi
=

1
2N

N

∑
n=1

2

∑
k=1

[(
P(n)

i,k − P
)(

P(n)
i,k − Pi

)T
]

(37)

σ2
Qi

=
1

2N

N

∑
n=1

2

∑
k=1

[(
Q(n)

i,k − Qi

)(
Q(n)

i,k − Qi

)T
]

(38)

where Pi denotes mean value of active power and Qi denotes mean value of reactive power,
respectively; σ2

Pi
is variance of active power, σ2

Qi
is variance of reactive power.

We then calculate measurement correlation parameters of electricity systems. For
the electricity system measurement variance-covariance matrix, we take the product of
standard deviation of measurement and correlation coefficient between measurements as
the measurement correlation parameter, which is expressed as a non-diagonal term, as
shown below:

CorrPi ,Qi = σPi · σQi · ρPi ,Qi (39)

∑e =

[
σ2

Pi
CorrPi ,Qi

CorrQi ,Pi σ2
Qi

]
(40)

where σPi is standard deviation of active power, σQi is standard deviation of reactive power,
ρPi ,Qi represents the correlation coefficient between measurements Pi and Qi, and ∑e repre-
sent the measurement variance-covariance matrix considering measurement correlations in
electricity systems.

3.2. Constructing the State Matrix and Linear Equations of State Estimation Interval Considering
Measurement Correlations

Considering the existence of measurement correlations, we combine the natural gas
network parameter matrix Ag in Equation (5) with the measurement variance-covariance
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matrix ∑g in Equation (30) into a framework through interval to further construct the state
matrix Ãg considering the measurement correlations of natural gas network.

Firstly, we extend the natural gas network parameter matrix Ag in Equation (5),
as follows:

A∗
g =

 Ag

(
1 0
0 1

)
(

0 0
0 0

) (
1 0
0 1

)
 (41)

where A∗
g is the expanded natural gas network parameter matrix.

We represent the natural gas network state variables ∆πt
i and ∆

.
G

t
i in Equation (4) as

Xg, and include the measurement noise e∆πt
j

and e
∆

.
G

t
j

in Xg, as follows:

Xg =



∆πt−1
i+1

∆t + ZRT·∆
.

G
t
i

S·∆L
∆πt

i
∆L − f ·ZRT·

.
Gst ·∆

.
G

t
i

4dS2πst
e∆πt

j

e
∆

.
G

t
j

 (42)

where e∆πt
j

and e
∆

.
G

t
j

take the standard deviation of measurements ∆πt
j and ∆

.
G

t
j.

Then, we use B∗
g to denote the measurements ∆πt

j and ∆
.

G
t
j, and extend the matrix

as follows:

B∗
g =


∆πt

j

∆
.

G
t
j

e∆πt
j

e
∆

.
G

t
j

 (43)

The relationship between extended gas network parameter matrix A∗
g, natural gas

network state variable Xg, and measurement B∗
g is established as follows:

 Ag

(
1 0
0 1

)
(

0 0
0 0

) (
1 0
0 1

)



∆πt−1
i+1

∆t + ZRT·∆
.

G
t
i

S·∆L
∆πt

i
∆L − f ·ZRT·

.
Gst ·∆

.
G

t
i

4dS2πst
e∆πt

j

e
∆

.
G

t
j

 =


∆πt

j

∆
.

G
t
j

e∆πt
j

e
∆

.
G

t
j

 (44)

According to Equations (41)–(43), Equation (44) is further rewritten as:

A∗
gXg = B∗

g (45)

Furthermore, considering the computational dimension of the matrix and taking

∑−1
g ·

[
e∆πt

j
; e

∆
.

G
t
j

]
= [0; 0] as the target for calculation, we extend the measurement variance-

covariance matrix ∑g considering measurement correlations in Equation (30) as follows:

δg =


(

1 0
0 1

) (
1 0
0 1

)
(

0 0
0 0

)
∑−1

g

 (46)

where δg is the extended matrix with respect to ∑g.
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We take s = [s1, s2, . . . , sn] to represent correlation factor, and si ∈ { si ∈ R| − 1 ≤ si ≤ 1},
i = 1, 2, . . . , n. We combine expanded matrix A∗

g and expanded measurement variance-
covariance matrix δg considering measurement correlation into the interval, as follows:

Ãg = A∗
g + sδg, Ãg ∈

[
Ã∗

g − δg, Ã∗
g + δg

]
(47)

where Ãg denotes the natural gas system state matrix with measurement correlation.

We represent Ãg in Equation (47) as the interval
[

Ãg

]
, where Ãg ∈

[
Ãg, Ãg

]
, we

define
[

Ãg

]
as: [

Ãg

]
=

[
Ãg, Ãg

]
=

{
Ãg ∈ R

∣∣∣Ãg ≤ Ãg ≤ Ãg

}
(48)

where Ãg is lower bound of interval
[

Ãg

]
, Ãg is upper bound of interval

[
Ãg

]
.

Similarly, we rewrite the measurements B∗
g containing the correlations of natural gas

network measurements as interval
[
Bg

]
and introduce ∆Bg as follows:

Bg = B∗
g + s∆Bg, Bg ∈

[
B∗

g − ∆Bg, B∗
g + ∆Bg

]
(49)

∆Bg =


e∆πt

j

e
∆

.
G

t
j

0
0

 (50)

where e∆πt
j

and e
∆

.
G

t
j

take standard deviation of ∆πt
j , ∆

.
G

t
j, respectively.

Then, the Xg of the natural gas network is represented as interval
[
Xg

]
. Based on

Equations (45)–(50), combined with Equations (45), (47) and (49), we can obtain the approx-
imate linear equation of state estimation interval that considers measurement correlations
of the natural gas network. [

A∗
g + sδg

][
Xg

]
≈

[
B∗

g + s∆Bg

]
(51)

For electricity systems, the transformation of system model into equation form is given
by [25]; active power Pi, reactive power Qi, voltage amplitude V, and voltage angle θ are
classified according to different bus types:

PL
PS
PR
QL
QS
QR

 =



A11 A12 A13 A14 A15 A16
A21 A22 A23 A24 A25 A26
A31 A32 A33 A34 A35 A36
A41 A42 A43 A44 A45 A46
A51 A52 A53 A54 A55 A56
A61 A62 A63 A64 A65 A66





θL
θS
θR
VL
VS
VR

+



C1
C2
C3
C4
C5
C6

 (52)


P =

[
PT

L PT
S PT

R
]T

Q =
[

QT
L QT

S QT
R

]T

V =
[

VT
L VT

S VT
R

]T

θ =
[

θT
L θT

S θT
R

]T

(53)

where subscript L denotes PQ bus, subscript S denotes PV bus, subscript R denotes Vθ
bus. Aij is the electricity system parameter matrix, Ci is the constant term.
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Considering the electricity system measurement correlations, the parameter matrix
Aij is represented as Ae and it is extended as:

A∗
e =

 Ae

(
1 0
0 1

)
(

0 0
0 0

) (
1 0
0 1

)
 (54)

where A∗
e refers to the expanded electricity system parameter matrix.

The Xe is employed to represent the V and θ of electricity system in Equation (52), and
measurement noise ePi and eQi are included as follows:

Xe =


θ
V
ePi
eQi

 (55)

where ePi and eQi take the standard deviation of P and Q, respectively.
Then, we use B∗

e to represent the measurements P and Q in the electricity system, and
extend the matrix as follows:

B∗
e =


P
Q
ePi
eQi

 (56)

The relationship between the extended electricity system parameter matrix A∗
e , elec-

tricity system state variables Xe, and measurement B∗
e is established as follows: Ae

(
1 0
0 1

)
(

0 0
0 0

) (
1 0
0 1

)



θ
V
ePi
eQi

 =


P
Q
ePi
eQi

 (57)

We denote Equation (57) as:
A∗

e Xe = B∗
e (58)

Then, considering the computational dimension of the matrix and taking
∑−1

e ·
[
ePi ; eQi

]
= [0; 0] as the target for calculation, we extend the measurement variance-

covariance matrix ∑e considering measurement correlations in Equation (40) as follows:

δe =


(

1 0
0 1

) (
1 0
0 1

)
(

0 0
0 0

)
∑−1

e

 (59)

where δe is the expanded measurement variance-covariance matrix with regard to ∑e.
Similar to gas systems, we combine expanded electricity system parameter matrix A∗

e
and the expanded measurement variance-covariance matrix δe considering measurement
correlations in the interval, as follows:

Ãe = A∗
e + sδe, Ãe ∈

[
Ã∗

e − δe, Ã∗
e + δe

]
(60)

where Ãe is the electricity system state matrix containing measurement correlations.
We rewrite the measurement B∗

e containing the measurement correlations of electricity
system, and further express it via interval [Be], and introduce ∆Be, as follows:

Be = B∗
e + s∆Be, Be ∈ [B∗

e − ∆Be, B∗
e + ∆Be] (61)
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∆Be =


ePi
eQi
0
0

 (62)

where ePi and eQi take the standard deviation of P and Q, respectively.
We represent Xe of electricity system as the interval [Xe]. According to Equations (58)–(61),

the state estimation interval approximates linear equation; in considering measurement
correlations of electricity systems, we can obtain:

[A∗
e + sδe][Xe] ≈ [B∗

e + s∆Be] (63)

4. Determining the Range of State Estimation Intervals with Measurement Correlations

In this section, we put forward an approach to determine the range of state estimation
intervals containing measurement correlations. We represent the natural gas network state
variables Xg and the electricity system state variables Xe as interval [X], the gas system
measurement Bg as well as the electricity system measurement Be as electricity-gas system
measurement [B]; and A∗

g and A∗
e as A∗, respectively. Combining Equations (51) and (63),

the linear equation of state estimation interval considering electricity-gas system measure-
ment correlations is stated as:

[A∗ + sδ][X] ≈ [B∗ + s∆B] (64)

We define U = (A∗)−1sδ and multiply Equation (64) by (A∗)−1 to obtain:

[X] + U[X] = (A∗)−1B∗ + (A∗)−1s∆B (65)

Then, we replace (A∗)−1B∗ with X̃, and further define [X] = X̃ + s∆X, and
Equation (65) is stated as:

X̃ + s∆X + U
(

X̃ + s∆X
)
= X̃ + (A∗)−1s∆B (66)

After simplification, we obtain:

s∆X(k+1) =
(

Ã∗
)−1

· s∆B − UX̃ − Us∆X(k) (67)

The termination condition for iteration is set to:∥∥∥∆X(k+1)
∥∥∥

∞
−

∥∥∥∆X(k)
∥∥∥

∞
< ε, ε > 0 (68)

5. Case Studies

In the current experimental conditions, our method is validated on an integrated
electricity-gas system shown in Figure 2, which is comprised of a 10-node natural gas
network and the IEEE 30-bus system. In Figure 2, there are six generators in the electricity
system, where G2, G5 are gas-fired generators. In the natural gas network, nodes five
and ten are load nodes. Node six is connected to G5, and node nine is connected to G2.
Table 1 provides standard parameters of gas in the pipeline network, Table 2 gives the
gas network parameters, Table 3 shows the node parameters. The IEEE 30-bus system
parameters are given by Matpower 4.0 [26]. We also simulate the integrated electricity-gas
system to calculate the established state estimation model in MATLAB/Simulink (2021
version). MATLAB is an effective tool for simulating hybrid energy systems [27], which
can, in combination with Matpower [28,29], be used to test and calculate the power flow of
the power system. The widespread use of MATLAB in various energy system situations
sufficiently demonstrates its effectiveness.
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Table 1. Natural gas operating parameters.

Term Value Term Value Term Value

Z 0.9 R 500 J/(kg·K−1) T 278 K

Table 2. Node parameters of 10-node natural gas network.

Node Gas Injection (kg/s) Pressure (MPa)

5 −16.3 3.01
6 −11.8 3.04
9 −13.2 2.86
10 −18.7 2.93

Table 3. 10-node natural gas network parameters.

Number From To L (km) f d (m) Mass Flow (kg/s)

1 1 2 10 0.01 0.5 60
2 2 3 20 0.012 0.4 34.6
3 2 4 15 0.011 0.45 25.4
4 3 5 10 0.01 0.5 16.3
5 3 7 15 0.011 0.45 18.3
6 4 6 10 0.01 0.5 11.8
7 4 7 20 0.012 0.4 13.6
8 7 8 5 0.01 0.4 31.9
9 8 9 5 0.01 0.4 13.2

10 8 10 5 0.01 0.4 18.7
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Figure 2. The integrated electricity-gas system comprising 10-node natural gas network and IEEE
30-bus system. (a) Topology of 10-node natural gas network; (b) Topology of IEEE 30-bus system.
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5.1. Case 1: The Correlation Coefficient ρ
∆πt

j ,∆
.

G
t
j

between Measurements ∆πt
j and ∆

.
G

t
j and the

Correlation Coefficient ρPi ,Qi between Measurements Pi and Qi Are Set to 0.15

In this section, considering the existence of measurement correlations, our approach
is used to estimate integrated electricity-gas system state. As shown in Figure 2, the
natural gas network is connected to the electricity system through gas-fired generators
G5 and G2 respectively, and nodes six and nine are supplied with gas by nodes four
and eight respectively. Therefore, changes in gas flow at node six and node nine will
result in changes in pressure of nodes four and eight. When gas demand of gas-fired
generator G2 changes constantly, we track inlet pressure dynamic response of node 8.
We set measurement correlation coefficients ρ

∆πt
j ,∆

.
G

t
j

and ρPi ,Qi in Equations (29) and (39)

to 0.15, and set termination threshold ε in Equation (68) as ε = 10−4. The gas flow of
G2 at node 9 and pressure at node 8 are estimated with our method, and the results are
compared with those of the Krawczyk operator (KO) interval method based on unscented
transformation (UT). Krawczyk Operator (KO) is an iterative method that takes the interval
vector obtained by the interval Gaussian elimination method as the initial value, and
obtains the solution set of the interval linear equation by iterating the interval vector. The
Krawczyk operator (KO) interval method based on unscented transformation (UT) mainly
obtains the correlation between measurements through the symmetric sampling strategy of
unscented transformation (UT), and describes and calculates the interval range where the
correlation exists by using the Krawczyk operator (KO) interval method.

Figure 3 provides state estimation uncertainty ranges caused by measurement corre-
lations obtained through the proposed method and UT+KO method. This paper mainly
studies the slow change of natural gas flow. It can be intuitively seen that, compared
with the UT+KO method, the interval boundary of the state variable of gas flow variation
and pressure change given by the proposed method is more compact; while the interval
upper boundary and lower boundary provided by the UT+KO method is far from real
values, the interval range is larger. This is because UT requires independent calculation
of measurements, and the KO interval method requires measurements to participate in
multiple iterative operation. Multiple iterative operation of measurement interval at the
same time will lead to the superposition and transmission of measurement correlations,
which inevitably expands the interval range. These will easily exceed the operating limit of
the system, thus losing the reference value.

Then, the voltage magnitude and voltage angle of electricity system is estimated.
Figures 4 and 5 give voltage amplitude interval, voltage angle interval, and corresponding in-
terval widths when the measurement correlation coefficient ρPi,Qi = 0.15. In Figures 4a and 5a,
we use purple vertical lines to represent the voltage amplitude range obtained through
the proposed method, green vertical lines to represent the results provided by the UT+KO
method, and blue horizontal lines to represent the real value. In Figures 4b and 5b, we
highlight the voltage amplitude interval width and voltage angle interval width given
by our method and UT+KO method in red and blue, respectively. Obviously, the upper
boundary and lower boundary of interval obtained by our method are closer to real values,
while interval range provided by the UT+KO method is larger, and the estimation results
are somewhat conservative. This is mainly due to the superposition and transfer of mea-
surement correlations of each measurement interval in the process of iterative calculation
of multiple measurement intervals by the UT+KO method, which enlarges the interval and
makes estimation results more conservative.
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5.2. Case 2: The Correlation Coefficient ρ
∆πt

j ,∆
.

G
t
j

between Measurements ∆πt
j and ∆

.
G

t
j and the

Correlation Coefficient ρPi ,Qi between Measurements Pi and Qi Are Set to 0.3

To further verify the effectiveness of our method at different measurement correlation
levels, the measurement correlation coefficients ρ

∆πt
j ,∆

.
G

t
j

and ρPi ,Qi are set to 0.3, and the

changes in gas flow demand and pressure at nodes are estimated, as shown in Figure 6.
In Figure 6, the estimated range of gas flow demand variation and pressure change at

ρ
∆πt

j ,∆
.

G
t
j
= 0.3 is greater than that at ρ

∆πt
j ,∆

.
G

t
j
= 0.15 in Figure 3. The measurement correla-

tion level therefore affects the estimation accuracy. When the measurement correlation is
large, the upper bound and lower bound of estimation interval will deviate from the ideal
state interval. Although state estimation interval range will increase as the measurement
correlations increase, our method is superior to the UT+KO method.

Furthermore, we estimate the electricity system state when the measurement correla-
tion coefficient ρPi ,Qi = 0.3; the results are shown in Figures 7 and 8.
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In Figures 7 and 8, when measurement correlation coefficient ρPi ,Qi changes from 0.15
to 0.3, the estimated ranges of voltage magnitude and voltage angle expand. Both our
method and the UT+KO method are affected to a certain extent, but the overall variation
of our method is relatively small. This is because our method does not need to perform
the iterative calculation of measurement interval at the same time, which avoids the
accumulation and transmission of measurement correlations.

Furthermore, we evaluate the accuracy of results by using the following two indicators:

M1 =
1
n∑n

i=1(xi − xi) (69)

M2 = max(xi − xi) (70)

where xi represents the upper boundary, and xi represents the lower boundary of the
interval variable, respectively. M1 is the interval width average value, M2 is the interval
width maximum value. When M1 and M2 are smaller, accuracy is higher.

Table 4 provides statistics for the estimation results of integrated electricity-gas system
given by two methods, and provides the corresponding estimation accuracy indicators
when the measurement correlation coefficient is 0.15 and 0.3, respectively. The results
indicate that although estimation results accuracy decreases as the measurement correlation
increases, the M1 and M2 indicators corresponding to the proposed method are smaller.
This is mainly due to the accumulation of the measurement correlation of UT+KO method
during the multiple iterative calculation of various measurement intervals, which enlarges
interval range and reduces estimation results accuracy. In addition, Table 5 provides
the calculation time of our method and UT+KO method. It can be seen that when the
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measurement correlation coefficients are smaller, the average execution time is shorter.
The UT+KO method uses multiple measurement intervals iterative calculation, so the
calculation time is longer.

Table 4. Estimation accuracy (of the IEGS) of different measurement correlation coefficients.

Accuracy Indices

The Measurement Correlation Coefficients
ρ

∆πt
j ,∆

.
G

t
j
=0.15, ρPi ,Qi =0.15

The Measurement Correlation Coefficients
ρ

∆πt
j ,∆

.
G

t
j
=0.3, ρPi ,Qi =0.3

M1 M2 M1 M2

Proposed method Gas flow demand variation at
node 9: ∆

.
G

t
i

0.3964 0.4541 0.5391 0.9308
UT+KO 0.8070 0.9681 1.2772 2.0476

Proposed method Pressure change at
node 8: ∆πt

i

0.2749 0.3516 0.3704 0.6096
UT+KO 0.7523 0.7846 0.8961 1.3971

Proposed method Voltage magnitude of IEEE
30-bus system: V

0.0046 0.0065 0.0084 0.0143
UT+KO 0.0099 0.0110 0.0161 0.0176

Proposed method Voltage angle of
IEEE 30-bus: θij

0.371 0.4486 0.4055 0.5495
UT+KO 0.527 0.7703 0.8143 1.0329

Table 5. IEGS computation time with different measurement correlation coefficients.

Method

Average Execution Time (s)

The Measurement Correlation Coefficients
ρ

∆πt
j ,∆

.
G

t
j
=0.15, ρPi,Qi

=0.15
The Measurement Correlation Coefficients

ρ
∆πt

j ,∆
.

G
t
j
=0.3, ρPi,Qi

=0.3

Proposed method 2.68 3.41
UT+KO 43.59 54.37

6. Conclusions

An interval state estimation method that considers the measurement correlations
of electricity-gas systems is presented in this paper. The linear measurement model
of electricity-gas systems is derived via Taylor series expansion, and the measurement
variance-covariance matrix with measurement correlations is estimated. Then, the system
parameter matrix and the measurement variance-covariance matrix with measurement
correlations are combined into an interval, and the interval state matrix and linear equa-
tions of state estimation interval considering measurement correlations are constructed;
as a result, the state estimation method for the electricity-gas system with measurement
correlations is proposed. Finally, a method for determining state estimation interval range
is presented. Comparing the state estimation interval with the safe operating limit range
of the system will help system administrators to make effective judgments and effectively
adjust electricity-gas systems. The numerical tests on an integrated electricity-gas system
illustrate that our method outperforms the UT+KO method in terms of calculation accuracy
and efficiency.

This paper quantifies and describes the measurement correlations of electricity-gas sys-
tems, but does not deeply consider the effects of measurement correlations on electricity-gas
systems. In future work, we will further analyze the impacts of measurement correlations
on electricity-gas systems, and will develop an adaptive interval state estimation method
that dynamically adjusts the estimation process on the basis of real-time measurement data.
This will improve the robustness and adaptability of interval state estimation, helping it to
adapt to different working conditions and system changes.

Author Contributions: Conceptualization, Y.H.; methodology, Y.H.; software, L.F.; validation, Y.H.
and L.F.; formal analysis, Y.H.; investigation, Y.H.; resources, Y.H.; data curation, L.F.;
writing—original draft preparation, Y.H.; writing—review and editing, L.F.; visualization, Y.H.;
supervision, L.F.; project administration, L.F.; funding acquisition, L.F. All authors have read and
agreed to the published version of the manuscript.



Energies 2024, 17, 755 21 of 22

Funding: This research was funded by the National Natural Science Foundation of PR China
(61972064) the Liaoning Revitalization Talents Program (XLYC1806006); and the Fundamental Re-
search Funds for the Central Universities (DUT19RC(3)012).

Data Availability Statement: All data are referenced in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jiang, Y.; Ren, Z.; Yang, X. A steady-state energy flow analysis method for integrated natural gas and power systems based on

topology decoupling. Appl. Energy 2022, 306, 118007. [CrossRef]
2. Aminifar, F.; Shahidehpour, M.; Fotuhi-Firuzabad, M. Power system dynamic state estimation with synchronized phasor

measurements. IEEE Trans. Instrum. Meas. 2013, 63, 352–363. [CrossRef]
3. Muscas, C.; Pau, M.; Pegoraro, P.A. Effects of measurements and pseudomeasurements correlation in distribution system state

estimation. IEEE Trans. Instrum. Meas. 2014, 63, 2813–2823. [CrossRef]
4. Santhosh, K.C.; Rajawat, K.; Chakrabarti, S. Robust distribution system state estimation with hybrid measurements. IET Gener.

Transm. Distrib. 2020, 14, 3250–3259. [CrossRef]
5. Caro, E.; Conejo, A.J.; Minguez, R. Multiple bad data identification considering measurement dependencies. IEEE Trans. Power

Syst. 2011, 26, 1953–1961. [CrossRef]
6. Zhao, J.; Wang, S.; Mili, L. A robust state estimation framework considering measurement correlations and imperfect synchro-

nization. IEEE Trans. Power Syst. 2018, 33, 4604–4613. [CrossRef]
7. Singh, A.K.; Pal, B.C. Decentralized dynamic state estimation in power systems using unscented transformation. IEEE Trans.

Power Syst. 2013, 29, 794–804. [CrossRef]
8. Caro, E.; Valverde, G. Impact of transformer correlations in state estimation using the unscented transformation. IEEE Trans.

Power Syst. 2013, 29, 368–376. [CrossRef]
9. Zhao, J. Power system dynamic state estimation considering measurement correlations. IEEE Trans. Energy Conver. 2017, 32,

1630–1632. [CrossRef]
10. Zanni, L.; Le Boudec, J.Y.; Cherkaoui, R. A prediction-error covariance estimator for adaptive Kalman filtering in step-varying

processes: Application to power-system state estimation. IEEE Trans. Contr. Syst. Technol. 2016, 25, 1683–1697. [CrossRef]
11. Lu, Z.; Gong, D.; Sun, Y. A New State Updating Approach in Power System Dynamic State Estimation Considering Correlated

Measurements. In Proceedings of the 2017 Eighth International Conference on Intelligent Control and Information Processing
(ICICIP), Hangzhou, China, 3–5 November 2017.

12. Lu, Z.; Wei, Z.; Sun, Y. Power system dynamic state estimation considering correlation of measurement error from PMU and
SCADA. Concurr. Comp.-Pract. Exp. 2019, 31, e4726. [CrossRef]

13. Yang, Y.; Hu, W.; Min, Y. Projected unscented Kalman filter for dynamic state estimation and bad data detection in power system.
In Proceedings of the 2017 Iet International Conference on Developments in Power System Protection, Copenhagen, Denmark, 31
March–3 April 2014.

14. Chakhchoukh, Y.; Vittal, V.; Heydt, G.T. PMU based state estimation by integrating correlation. IEEE Trans. Power Syst. 2013, 29,
617–626. [CrossRef]

15. Zhao, J.; Zhang, G.; Dong, Z.Y. Robust forecasting aided power system state estimation considering state correlations. IEEE Trans.
Smart Grid. 2016, 9, 2658–2666. [CrossRef]

16. Chakhchoukh, Y.; Vittal, V.; Heydt, G.T. LTS-based robust hybrid SE integrating correlation. IEEE Trans. Power Syst. 2016, 32,
3127–3135. [CrossRef]

17. Lu, Z.; Yang, S.H.; Yang, S. Mixed measurement-based power system state estimation with measurement correlation. In 2016
Advances in Power and Energy Engineering: Proceedings of the 8th Asia-Pacific Power and Energy Engineering Conference; CRC Press:
Boca Raton, FL, USA, 2016.

18. Caro, E.; Conejo, A.J.; Minguez, R. Power system state estimation considering measurement dependencies. IEEE Trans. Power
Syst. 2009, 24, 1875–1885. [CrossRef]

19. Abedi, B.; Ghadimi, A.A.; Abolmasoumi, A.H. An improved TPM-based distribution network state estimation considering
loads/DERs correlations. Electr. Eng. 2021, 103, 1541–1553. [CrossRef]

20. Valverde, G.; Saric, A.T.; Terzija, V. Stochastic monitoring of distribution networks including correlated input variables. IEEE
Trans. Power Syst. 2012, 28, 246–255. [CrossRef]

21. Thorley, A.; Tiley, C.H.; Terzija, V. Unsteady and transient flow of compressible fluids in pipelines—A review of theoretical and
some experimental studies. Int. J. Heat Fluid Flow. 1987, 8, 3–15. [CrossRef]

22. Osiadacz, A. Simulation of transient gas flows in networks. Int. J. Numer. Methods Fluids 1984, 4, 13–24. [CrossRef]
23. Abur, A.; Exposito, A.G.; Sun, Y. Power System State Estimation: Theory and Implementation; CRC Press: Boca Raton, FL, USA, 2004;

pp. 79–93.
24. Sheikhi, A.; Bahrami, S.; Ranjbar, A.M. An autonomous demand response program for electricity and natural gas networks in

smart energy hubs. Energy 2015, 89, 490–499. [CrossRef]

https://doi.org/10.1016/j.apenergy.2021.118007
https://doi.org/10.1109/TIM.2013.2278595
https://doi.org/10.1109/TIM.2014.2318391
https://doi.org/10.1049/iet-gtd.2020.0260
https://doi.org/10.1109/TPWRS.2011.2157366
https://doi.org/10.1109/TPWRS.2018.2790390
https://doi.org/10.1109/TPWRS.2013.2281323
https://doi.org/10.1109/TPWRS.2013.2279189
https://doi.org/10.1109/TEC.2017.2742405
https://doi.org/10.1109/TCST.2016.2628716
https://doi.org/10.1002/cpe.4726
https://doi.org/10.1109/TPWRS.2013.2284560
https://doi.org/10.1109/TSG.2016.2615473
https://doi.org/10.1109/TPWRS.2016.2632723
https://doi.org/10.1109/TPWRS.2009.2030385
https://doi.org/10.1007/s00202-020-01185-2
https://doi.org/10.1109/TPWRS.2012.2201178
https://doi.org/10.1016/0142-727X(87)90044-0
https://doi.org/10.1002/fld.1650040103
https://doi.org/10.1016/j.energy.2015.05.109


Energies 2024, 17, 755 22 of 22

25. Liu, Y.; Wang, Y.; Zhang, N. A data-driven approach to linearize power flow equations considering measurement noise. IEEE
Trans. Smart Grid. 2019, 11, 2576–2587. [CrossRef]

26. Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for
power systems research and education. IEEE Trans. Power Syst. 2010, 26, 12–19. [CrossRef]

27. Xu, X.; Jia, H.; Chiang, H.D. Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid.
IEEE Trans. Power Syst. 2014, 30, 1212–1221. [CrossRef]

28. Xu, J.; Wu, Z.; Dou, X. An interval arithmetic-based state estimation for unbalanced active distribution networks. In Proceedings
of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017.

29. D’Antona, G. Power system static-state estimation with uncertain network parameters as input data. IEEE Trans. Instrum. Meas.
2016, 65, 2485–2494. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSG.2019.2957799
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2014.2343021
https://doi.org/10.1109/TIM.2016.2595999

	Introduction 
	The Linearized Model for Measuring Electricity-Gas Systems 
	The Gas Pipeline System Model 
	The Electricity System Model 
	The Derivation of Linear Measurement Model for the Electricity-Gas Systems 

	The Construction of State Matrix and Linear Equations of State Estimation Interval Considering Measurement Correlations 
	The Calculation of Measurement Variance-Covariance Matrix with Measurement Correlations 
	Constructing the State Matrix and Linear Equations of State Estimation Interval Considering Measurement Correlations 

	Determining the Range of State Estimation Intervals with Measurement Correlations 
	Case Studies 
	Case 1: The Correlation Coefficient jt,0mu mumu GGsubsectionG.jt  between Measurements jt  and 0mu mumu GGsubsectionG.jt  and the Correlation Coefficient Pi,Qi  between Measurements Pi  and Qi  Are Set to 0.15 
	Case 2: The Correlation Coefficient jt,0mu mumu GGsubsectionG.jt  between Measurements jt  and 0mu mumu GGsubsectionG.jt  and the Correlation Coefficient Pi,Qi  between Measurements Pi  and Qi  Are Set to 0.3 

	Conclusions 
	References

