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Abstract: In this study, a neural network and a multi-objective genetic algorithm were used to
optimize the geometric parameters of segmented thermoelectric generators (TEGs) with trapezoidal
legs, including the cold end width of thermoelectric (TE) legs (Wc), the ratios of cold-segmented
length to the total lengths of the n- and p-legs (Sn,c and Sp,c), and the width ratios of the TE legs
between the hot end and the cold end of the n- and p-legs (Kn and Kp). First, a neural network with
high prediction accuracy was trained based on 5000 sets of parameters and the corresponding output
power values of the TEGs obtained from finite element simulations. Then, based on the trained neural
network, the multi-objective genetic algorithm was applied to optimize the geometric parameters of
the segmented TEGs with the objectives of maximizing the output power (P) and minimizing the
semiconductor volume (V). The optimal geometric parameters for different semiconductor volumes
were obtained, and their variations were analyzed. The results indicated that the optimal Sn,c, Sp,c,
Kn, and Kp remained almost unchanged when V increased from 52.8 to 216.2 mm3 for different
semiconductor volumes. This work provides practical guidance for the design of segmented TEGs
with trapezoidal legs.

Keywords: thermoelectric generator; muti-objective optimization; neural network; genetic algorithm

1. Introduction

With the rapid development of the global economy, the consumption rates of tradi-
tional fossil fuels, such as coal, oil, and natural gas, have been continuously increasing,
leading to a worsening energy crisis. Ensuring a sustainable and efficient energy supply
requires the widespread adoption of clean and high-efficiency energy technologies. Ther-
moelectric generators (TEGs) are energy conversion devices that directly convert thermal
energy into electrical energy by the Seebeck effect of thermoelectric (TE) materials [1]. Due
to their compact structures and absence of moving parts [2], they have wide application
prospects in areas such as body heat power generation and industrial waste heat recov-
ery [3,4]. The conversion efficiencies of TEGs are closely related to the performances of
the TE materials and the geometric dimensions of the devices [5–7]. Over the past thirty
years, scientists have conducted extensive research on developing TE materials with high
figures of merit (ZT), achieving significant results [8–11]. As the performances of TE ma-
terials have improved, the structural design and optimization of TEGs have also gained
increasing attention.

Lavric [12] and Meng et al. [13] investigated the influences of the length and cross-
sectional area of TE legs on the output performances of rectangular-cross-section TEGs
using one-dimensional and three-dimensional numerical models. The research by Madu-
abuchi et al. [14] demonstrated that compared to rectangular TE legs with equal heights and
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volumes, trapezoidal legs had larger temperature gradients, resulting in higher conversion
efficiencies. Fabian-Mijangos et al. [15] compared the performances of rectangular and
trapezoidal TE legs through finite element simulations and experiments, and the results
showed that the output power of the trapezoidal legs was approximately twice that of
rectangular legs with the same volume. However, Sahin et al. [16] compared the output
performances of TEGs with rectangular and trapezoidal legs, and the results showed that
trapezoidal legs had higher conversion efficiencies but poorer output powers. Liu et al. [17]
proposed a shape factor, m, to describe variable-cross-section TE legs, and the results indi-
cated that the choice of boundary conditions determined whether the output performances
of the trapezoidal legs were improved, while the shape factor m determined the extent
of the performance enhancement or degradation. To further improve the conversion effi-
ciency, the design concept of segmented TE legs has been proposed, which utilizes more
suitable TE materials in different temperature ranges to enhance the output performances
of TEGs [18,19]. Liu et al. [20] established a novel numerical model for a TEG, where the
n-leg was a single-stage rectangular leg and the p-leg was a segmented trapezoidal leg.
With the optimal segment length ratio (5:7) between the cold end and hot end materials,
the output power of the segmented TEG was found to be 14.9% higher than that of the TEG
using only the P1 material and 16.6% higher than that using only the P2 material.

In addition to the structural design of TE legs, the structural optimization of TEGs
is also crucial. Ge et al. [21] combined the finite element method and the non-dominated
sorting genetic algorithm (NSGA-II) to optimize the structure and load current of segmented
TEGs, achieving the objectives of a minimum semiconductor volume and a maximum
output power. However, the extensive numerical computations based on the finite element
method are time-consuming. Zhu et al. [22] demonstrated the application of artificial
neural networks and genetic algorithms in the geometric optimization of TEGs. The
neural network achieved geometric optimization of TE legs within 40 s, which was more
than 1000-times faster than the average optimization speed of finite element simulations.
However, Zhu only performed geometric optimization for a single objective. The volume
of semiconductor materials significantly impacts the power output of TEGs. TEGs with
high power density may require the use of high-performance materials and advanced
manufacturing processes, which could increase costs or technical challenges. A balanced
analysis between output power and the volume of semiconductor materials is necessary
to better meet practical requirements. Neural networks can learn complex nonlinear
mapping relationships, aiding in understanding the intricate correlations between the
internal structure and performance of TEGs, thus guiding the optimization design of
TEG structures. Traditional optimization methods based on finite element models require
extensive computation time and resources, while neural networks can learn from existing
data, swiftly establish models, and make predictions, thereby expediting the process
of structural optimization and saving time and costs. The use of the NSGA-II genetic
algorithm enables simultaneous optimization of multiple objectives, rather than being
limited to the optimization of a single performance indicator, thereby comprehensively
exploring the design space and finding the optimal balanced solution. This is particularly
useful for complex design spaces and large-scale parameter optimizations. Therefore,
combining the neural network with the multi-objective genetic algorithm can help us
design high-performance segmented TEGs with trapezoidal legs.

In this study, neural networks and multi-objective genetic algorithms were combined
to optimize the cold end width of TE legs (Wc), the ratios of cold-segment lengths to the total
lengths of n- and p-legs (Sn,c and Sp,c, respectively), and the width ratios of TE legs between
the hot end and the cold end of n- and p-legs (Kn and Kp, respectively) of a segmented
TEG with trapezoidal legs for the objectives of maximum output power (P) and minimum
semiconductor volume (V). Based on the optimization results, the maximum output power
and corresponding geometric parameters of segmented TEGs with different semiconductor
volumes were obtained. This study investigated the variations in the optimized geometric
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parameters, providing practical guidance for industrial applications of segmented TEGs
with trapezoidal legs.

2. Methods
2.1. Model and Boundary Conditions

A schematic diagram of the segmented TEG model with trapezoidal legs is shown in
Figure 1. The device consisted of a pair of n- and p-type TE legs, copper electrodes, and
ceramic plates. In this work, the thickness of the ceramic plate was 0.7 mm, the thickness
of the copper electrodes was 0.3 mm, and the length of the TE legs (L) was 5 mm. The
cross-sections of the n- and p-type TE legs were square, and the cross-sectional areas at the
cold end were equal.
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Figure 1. Schematic of the segmented thermoelectric generator (TEG) model with trapezoidal legs.

The TE materials selected for this study were n-type Bi2Te3 and n-type skutterudite for
the n-type TE leg, and p-type Bi2Te3 and p-type skutterudite for the p-type TE leg. Bi2Te3
was used in the low-temperature region, while skutterudite was used in the intermediate-
temperature region. The temperature-dependent properties and corresponding ZT values
of these materials obtained from the literature are shown in Figure 2 [23].

Figure 2. Cont.
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Figure 2. Temperature-dependent (a) thermal conductivity, (b) electrical conductivity, (c) Seebeck
coefficient, and (d) figure of merit (ZT) of the n-type and p-type semiconductors used for the
segmented TEG.

The boundary conditions used in this study were as follows: the surface temperature
of the ceramic plate at the hot end was 700 K, the ambient temperature of the surroundings
at the cold end was 300.15 K, and the convective heat transfer coefficient on the surface of
the ceramic plate at the cold end was 1200 W/(m2K) [24]. Except for the surfaces of the
ceramic plates at the hot and cold ends, all other surfaces were insulated, and the contact
thermal resistance and contact electrical resistance were neglected [25]. The segmented
TEG with trapezoidal legs was connected to external resistance to form a circuit, where the
cold end copper electrode of the n-type TE leg was coupled with the external resistance,
and the cold end copper electrode of the p-type TE leg was grounded [24].

2.2. Governing Equations

To simulate the TE performance of the segmented TEG, a three-dimensional finite
element model was established to solve the temperature field and electric field equations.
The coupled equations for the TE potential and temperature of the segmented TEG were
as follows:

∇·q′′ = Q′ (1)

∇·J = 0 (2)

where q′′, Q′ and J represent the heat flux vector, joule heat energy, and current density,
respectively. Q′ and q′′ can be rewritten as follows:

Q′ = J·E (3)

q′′ = −k∇T + P′J (4)

E = −∇V (5)

In the above equations, P′ represents the Peltier coefficient, while E represents the
electric field intensity, and V represents voltage. The Peltier coefficient P′ and current
density J can be expressed as:

P′ = αT (6)

J = −σ(E − α∇T) (7)
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When there is a temperature difference ∆T across the two ends of the segmented TEG,
according to the Seebeck effect, a stable open-circuit voltage V will be generated across the
semiconductor. The voltage equation was:

V = α∆T (8)

When an external resistor RL is connected to the segmented TEG to form a circuit loop,
under the influence of the temperature difference, the load current I in the circuit at this
time can be represented as:

I =
α∆T

RL + RI
(9)

The output power Pout of the segmented TEG can be represented as:

Pout =
(α∆T)2

(RL + RI)
2 RL (10)

From Equation (10), it can be seen that the maximum output power occurs when the
load resistance equals the internal resistance of the segmented TEG (RL = RI). At this point,
the maximum power Pmax of the segmented TEG can be represented as:

Pmax =
(α∆T)2

4RL
(11)

Assuming the hot side area of the segmented TEG is Ah, when the heat input to the
segmented TEG is a constant heat flux q′′, neglecting heat loss, the total heat absorbed by
the hot side Qh can be expressed as:

Qh = q′′ × Ah (12)

Then, the conversion efficiency η of the segmented TEG can be obtained as:

η =
Pout

Qh
(13)

2.3. Neural Network Dataset Generation and Training

The dataset used in this study consisted of a parameter set and the corresponding
output power of the segmented TEG with trapezoidal legs. For the parameter set, 5000 ran-
dom values were uniformly generated within the range of each geometric parameter, and
the ranges and resolutions of each geometric parameter are listed in Table 1. The 5000 sets
of randomly obtained parameters were used for finite element simulations, with a refined
mesh configuration selected for the numerical calculations to determine the maximum
output power of the segmented TEG with trapezoidal legs. During the simulation of the
finite element models, the external load was not fixed. The range of the external resistor
varied from 0.0001 Ω to 1 Ω. For each parameter set, the electrical terminals were directly
connected to the external resistor and swept from 0.0001 Ω to 1 Ω. The maximum output
power was then extracted from a parabolic fit of the output power against the external
resistor. The total computation time for three-dimensional finite element models was 167 h.

A radial basis function (RBF) neural network was employed in this study, and the
structure of the network is shown in Figure 3. The network connected the input layer of the
geometric parameters (Wc, Sn,c, Sp,c, Kn, Kp) with the output layer of the output power (P)
through a hidden layer. The neural network contained one hidden layer with 4250 neurons.
Prior to training the neural network, the dataset was divided into two sub-datasets for
training (4250 samples) and testing (750 samples) of the neural network. The 4250 samples
used for training were randomly selected from the dataset, and the remaining 750 samples
of the dataset were used for the testing dataset of the neural network. The training dataset
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was fed into the neural network, and the neural network model was optimized by adjusting
various network parameters. The prediction accuracy of the neural network model was
evaluated using the testing dataset.

Table 1. Ranges and resolutions of the parameters used in this work.

Geometric Parameter Value Range Resolution

Width of cold end TE leg Wc 3–6 mm 0.1 mm
Ratio of cold-segment length to total length n-leg Sn,c (Sn,c = Ln,c/L) 0.10–0.60 0.01
Ratio of cold-segment length to total length p-leg Sp,c (Sp,c = Lp,c/L) 0.10–0.60 0.01
Width ratio between hot end and cold end n-leg Kn (Kn = Wn,h/Wc) 0.10–1 0.01
Width ratio between hot end and cold end p-leg Kp (Kp = Wp,h/Wc) 0.10–1 0.01

Width of hot end n-leg Wn,h 0.3–6 mm
Width of hot end p-leg Wp,h 0.3–6 mm
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2.4. Multi-Objective Optimization with Constraint Condition

The two objective functions used in this study are defined as follows:

J1 = V =
W2

c L
3

(
K2

n + K2
p + Kn + Kp + 2

)
(14)

J2 = −P (15)

where P is predicted by the trained neural network model. In this study, the non-dominated
sorting genetic algorithm (NSGA-II) was employed to optimize the above two objective
functions. Smaller values of J2 and J1 corresponded to larger fitness values. During the
evolution process, individuals were ranked based on their fitness values, with individuals
having higher fitness values more likely to be selected and preserved. As the iterative
process continued, the Pareto optimal solutions evolved gradually [21].



Energies 2024, 17, 2094 7 of 13

During the optimization process, infeasible situations may arise where the output
power is negative (p < 0 W) and the semiconductor volume is negative (V < 0 mm3).
Considering the practical situation, the constraints are set as positive output power and
positive semiconductor volume. In this study, a penalty function was used to address
this issue by increasing the objective function values of individuals that did not meet the
constraint conditions to a large number, thereby eliminating them. After sufficient time, the
Pareto front was obtained, and the optimization process ended. The entire optimization
process is illustrated in Figure 4, with a population size of 150 and 200 evolution generations
employed in this study. The crossover rate was 0.9, and the mutation probability was 0.1.
The NSGA-II genetic algorithm optimization process took 12 min, indicating that the RBF
neural network model can quickly predict the maximum output power of segmented TEGs
with trapezoidal legs, thereby accelerating their structural optimization process.
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3. Results and Discussion
3.1. Neural Network Prediction

Figure 5 presents a comparison between the true values of P (obtained from finite
element simulations) in the test dataset and the values predicted by the neural network. The
R2, also known as the coefficient of determination, is a metric used to assess the predictive
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accuracy of regression models. If R2 approached 1, it indicated that the RBF neural network
model could perfectly fit the data, resulting in high predictive accuracy. The results
predicted by the neural network closely aligned with the true values in the test dataset,
with a coefficient of determination (R2) for P exceeding 0.999. This high R2 value indicates
that the trained neural network model exhibited a high level of prediction accuracy.
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3.2. Optimization Results

The Pareto front obtained from the optimization is presented in Figure 6a, which
shows the maximum P of the segmented TEGs with different V values. Clearly, as V
increased, P also increased, indicating that all Pareto solutions were non-dominated, with
no solution superior to the others across all objective functions. V varied from 33.9 to
349.4 mm3, and P varied from 0.060 to 0.934 W. Moreover, the absolute value of the ratio
between J2 and J1 is the power density (PDmax) of the segmented TEG with trapezoidal
legs. Figure 6b presents the maximum PDmax of segmented TEGs with different V values.
When V was 52.8 mm3, the corresponding maximal value of PDmax was 3.47 W/cm3, and
the corresponding geometric parameters and output performance are listed in Table 2. It
should be noted that when V decreased from 216.2 to 52.8 mm3, PDmax increased by 4.4%,
while P decreased by 74.5%. In industrial production, a higher power density of TEGs can
improve the operating efficiency. However, pursuing high-power density at the expense of
output power is not desirable. Thus, a trade-off analysis between volume and power is
more aligned with actual industrial requirements.

Table 2. Geometric parameters and performance corresponding to the maximum PDmax.

Geometric Parameter Performance

Wc (mm) Sn,c Sp,c Kn Kp V (mm3) P (W)

Value 3 0.27 0.27 0.47 0.54 52.8 0.183

The variations in the optimized geometric parameters along with the Pareto front
are shown in Figure 7a,b, where V was calculated using Equation (1). It can be observed
that when the range of V was from 52.8 to 216.2 mm3, the optimal Sn,c, Sp,c, Kn, and Kp
values remained relatively constant as V increased. The optimal Wc increased with V, while
Sn,c and Sp,c were 0.27, Kn was 0.5, and Kp was 0.55. When V was less than 52.8 mm3, the
optimized Wc was always 3 mm. Increasing Wc for a fixed V of the TE legs resulted in a
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decrease in Kn (or Kp), thereby increasing the resistance of the segmented trapezoidal TEG
and reducing its output power. When V was greater than 216.2 mm3, the optimized Wc was
always 6 mm. Decreasing Wc for a fixed V of the TE legs led to an increase in Kn (or Kp),
thereby reducing the temperature gradient of the segmented trapezoidal TEG and lowering
its output power. The results demonstrate that when V ranged from 52.8 to 216.2 mm3,
the optimal Sn,c, Sp,c, Kn, and Kp for different V values remained relatively constant. In
this range, the geometric parameter Wc played a significant role in determining the output
performance of the segmented TEG with trapezoidal legs. There are certain limitations to
this study. The ranges of parameters for network training and finding the optimal geometry
are the same. The whole procedure has full meaning if the optimal geometry is extracted
for a different range of parameter values.
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3.3. Comparison Results

According to Figure 6b, it can be observed that when the range of semiconductor
volumes varies from 52.8 to 216.2 mm3, the power density of segmented TEGs with trape-
zoidal legs changes only slightly. Therefore, we compared the output power and conversion
efficiency before and after optimization of segmented TEGs with trapezoidal legs within
this volume range. We also performed numerical simulations in COMSOL Multiphysics
software version 5.6 using the parametric sweep functionality to calculate the maximum
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output power and maximum conversion efficiency of segmented TEGs under different
external loads. The range of variation for the resistance values of the external load was
from 0.0001 Ω to 0.1 Ω. The output power or conversion efficiency generated in the circuit
reaches its maximum value when the resistance value of the external load is equal to the
internal resistance value of the segmented TEG. A comparison of the output power P and
the conversion efficiency η of the segmented TEGs with different V values before and after
optimization is shown in Figure 8a,b. As shown in Figure 8a, when V was 104, 156, and
206 mm3, the optimized P was increased by 14.2%, 26.6%, and 22%, respectively. As shown
in Figure 8b, when V was 104, 156, and 206 mm3, the optimized η increased by 19.1%,
23.3%, and 24.7%, respectively. The geometric parameters of the segmented TEGs with
trapezoidal legs before and after optimization are listed in Table 3, where the geometric
parameters before optimization were randomly generated, and the geometric parameters
after optimization were determined based on Figure 7a,b. The geometry before optimiza-
tion was randomly generated, and another randomly selected non-optimized geometry
(one for each volume) may yield either better or worse results.
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Table 3. Geometric parameters of the optimal model and the random model.

Model Volume Wc (mm) Sn,c Sp,c Kn Kp

Optimal-104 104 4.1 0.26 0.27 0.52 0.57
Random-104 104 3.7 0.13 0.44 0.72 0.76
Optimal-156 156 5 0.28 0.27 0.54 0.57
Random-156 156 4.3 0.53 0.34 0.84 0.83
Optimal-206 206 5.6 0.27 0.27 0.52 0.55
Random-206 206 5 0.12 0.41 0.93 0.68

The temperature distributions of segmented TEGs with trapezoidal legs before and
after optimization are shown in Figure 9. Table 4 lists the temperature differences between
the hot end and the cold end of segmented TEGs with different V values before and after
optimization. Optimizing the geometric parameters can improve the thermal dissipation
performance of segmented TEGs with trapezoidal legs, resulting in lower temperatures at
the cold end ceramic plate of the TEG, thus increasing the temperature difference between
the cold and hot end ceramic plates. The temperature difference between the hot end and
the cold end of the segmented TEG after optimization was significantly higher than that
before optimization, which was the main reason for the improved output performance.
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Table 4. Temperature difference of the optimal and random models.

Model Volume (mm3) Temperature Difference (K)

Optimal-104 104 329
Random-104 104 310
Optimal-156 156 330
Random-156 156 307
Optimal-206 206 333
Random-206 206 309
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4. Conclusions

This study demonstrated the application of a neural network and a multi-objective
genetic algorithm in the geometric optimization of segmented TEGs with trapezoidal legs.
Based on the optimized results, the following conclusions are drawn:

1. A trade-off analysis between V and P is more in line with practical industrial re-
quirements. Only through comprehensive consideration can the most suitable design
solution be found.

2. The computation time for 5000 sets of finite element models was 167 h, while the
optimization process of the NSGA-II genetic algorithm took only 12 min. The RBF
neural network model can rapidly predict the maximum output power of segmented
TEGs with trapezoidal legs, thereby accelerating their structural optimization process.

3. For the optimized segmented TEG with trapezoidal legs, when the range of V was
from 52.8 to 216.2 mm3, as V increased, the optimal Sn,c, Sp,c, Kn, and Kp values
remained basically unchanged. In this range, the geometric parameter Wc played an
important role in the output performance of the segmented TEG with trapezoidal legs.

4. When V was 104, 156, and 206 mm3, the optimized output power was increased by
14.2%, 26.6%, and 22%, respectively. The optimized conversion efficiency was also
improved by 19.1%, 23.3%, and 24.7% respectively. The geometry before optimization
is randomly generated, and another randomly selected non-optimized geometry (one
for each volume) may yield either better or worse results.
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