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Abstract: Hot-dip Al–Si alloy coatings with excellent resistance to corrosion and high-temperature
oxidation have emerged as promising lightweight substitutes for conventional corrosion-resistant
coatings. The introduction of Mg can be an effective strategy for enhancing the sacrificial protection ca-
pability of Al–Si coatings. In this study, the effects of Mg addition on the morphology, electrochemical
behavior, and mechanical properties of Al–Si coatings were investigated, along with the Mg-content
optimization of the coating layer. Adding Mg promoted the formation of finely distributed eutectic
intermetallic phases, such as Al/Mg2Si and the primary Mg2Si phase. Notably, the Mg2Si phase
coarsened significantly when ≥15 wt.% of Mg was added. In addition, an Al3Mg2 intermetallic
compound was observed in coating layers containing >20 wt.% of Mg, reducing the adhesion of the
coating layers. Samples containing 5–10 wt.% of Mg exhibited excellent corrosion resistance (owing
to a uniform distribution of the fine eutectic Al/Mg2Si phase and the formation of stable corrosion
products), whereas those containing 20 wt.% of Mg exhibited unremarkable corrosion resistance
(owing to the formation of an Al3Mg2 phase that is susceptible to intergranular corrosion).

Keywords: hot-dip coating; Al–Si coated steel; Al3Mg2; corrosion resistance

1. Introduction

Hot-dip Al-coated steel sheets with excellent corrosion resistance, high-temperature
durability, and thermal insulation properties are employed in several industrial applica-
tions, such as power plants, exhaust systems, and heating equipment [1–3]. Al-based
coatings can be classified into two categories based on their composition: type-1 and
type-2 [1,4]; type-1 coatings comprise Al–Si alloys with 7–11 wt.% of Si, while type-2
coatings comprise pure Al (with no Si) [4]. Although such coatings exhibit high corrosion
resistance under atmospheric conditions owing to the formation of stable Al2O3 surface
films, they are unstable in chloride-containing environments [1,5,6]. Moreover, type-2 Al
coatings frequently exhibit delamination owing to the excessive growth of the brittle Fe–Al
intermetallic-compound layer during processing [5]. Si addition improves the processabil-
ity of type-1 Al–Si coatings by reducing the intermetallic-layer thickness by suppressing
Fe–Al inter-diffusion [1]. Therefore, Al-Si coatings have been recently used as pre-coatings
to prevent the severe oxidation and decarburization of steel during the hot-stamping pro-
cess [7–11]. However, the limited solubility of Si in the Al matrix results in Si precipitation
within these coating layers [12]. Moreover, the corrosion potential of Si (−0.17 VSCE [13])
is higher than that of Al (−0.7 VSCE [14]); the negative activity of Si reduces the corrosion
resistance of the coating layer through localized corrosion [15,16].

Based on recent studies, the corrosion resistance of Al-based coatings can be effec-
tively enhanced by including alloying elements, such as Mg and Zn, that modify the
coating potential [5–7,17–19]. Kim et al. [4] examined the anti-corrosion mechanism of
Al–Si coatings with small amounts of Mg (approximately 0.1–0.5 wt.%) and observed
that the addition of Mg to Al–Si coatings increased their corrosion resistance in hot-press-
forming applications [19]. Furthermore, the addition of 24 wt.% Zn to Al–10%Si coatings
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improved the corrosion resistance of the heat-treated Al–Si coatings [7]; this is because the
introduction of Zn induces an additional self-healing effect by facilitating the sacrificial
dissolution of the alloying elements [1,20,21]. Similarly, studies on Al–Si–Mg cast alloys
have indicated that the addition of Mg into Al–Si alloys increases their corrosion resis-
tance, owing to the formation of various intermetallic compounds [22–24]. The Mg2Si
phase exhibits sacrificial-protection properties because of its negative corrosion poten-
tial (−1.54 VSCE) [5,17,25,26], and induces the formation of stable and dense Mg-based
corrosion products, such as MgAl2O4, enhancing the corrosion-protection performance
of Mg-added Al–Si cast alloys [27,28]. However, the addition of >20 wt.% of Mg into
Al–4%Si alloys induces the formation of an Al3Mg2 phase [29], which is vulnerable to
intergranular corrosion and stress-corrosion cracking [30–34], thereby reducing the corro-
sion resistance of the cast alloys. The aforementioned studies confirmed that the presence
of Mg significantly influences the corrosion resistance of Al–Si alloys. Therefore, Mg
content of Al–Si alloys must be optimized to facilitate their widespread application. To
date, the correlation between the microstructural changes and corrosion resistance of
hot-dip Al–Si-based coating layers with different Mg compositions has not been com-
prehensively analyzed. Consequently, to elucidate the influence of the Mg content of
Al–Si-based alloy coatings on their properties, this study investigates the morphological
properties, electrochemical-corrosion performance, and mechanical properties of hot-dip
Al–Si–Mg ternary-alloy coating layers containing different amounts of Mg.

2. Materials and Methods

A 0.8 mm-thick commercial quality low-carbon cold-rolled steel sheet (POSCO Co., Ltd.,
Pohang, Republic of Korea) was used as the substrate. The nominal chemical composition
(in wt.%) of the substrate was as follows: C (0.14), Mn (0.33), S (0.01), P (0.012), Si (0.05),
Al (0.03), N (0.004), and Fe (Bal.). Each sample was cut into a specific size (150 × 30 mm2) and
immersed in an Al–Si–xMg alloy coating bath of the required composition using a laboratory
scale batch-type hot-dip simulator [35]. The alloy coating compositions were analyzed
using an X-ray fluorescence spectrometer (listed in Table 1 with sample labels). Before
hot-dipping, the substrates were degreased in NaOH solution (100 g/L) at 60 ◦C for 10 min
to remove the impurities and residual oils on their surfaces. The samples were then rinsed
with deionized water and pickled in 10% HCl at room temperature for 10 min to remove
any retained oxides. These samples were then fluxed using ZnCl2·3NH4Cl·SnCl2 (550 g/L)
at 60 ◦C for 3 min, followed by oven drying at 100 ◦C for 5 min to promote the reaction
between the molten metal and the steel substrate [36]. All the samples were fabricated
under identical coating conditions (a bath temperature of 730 ◦C and an immersion time
of 1 min). The surface roughness was measured using a high-speed, three-dimensional
(3D) laser confocal microscope (SURFiEW-PRO, GLtech, Daejeon, KOREA). Field-emission
scanning electron microscopy (FE-SEM, Hitachi SU6600, Tokyo, Japan) coupled with energy
dispersive spectrometry (EDS) was used to analyze the coating-layer surfaces and cross-
sectional microstructures. A spherical aberration-corrected field-emission transmission
electron microscopy (FE-TEM) instrument (JEOL-ARM200F) was used to investigate the
elemental composition of the coatings. The coating-layer alloy phases were confirmed via
X-ray diffraction (XRD, Rigaku RINT-2000, Tokyo, Japan) using monochromatic Cu-Kα

radiation (λ = 0.15406 nm). The coating adhesion was evaluated through bending tests
(according to the ASTM E290 standard [37]); the area fraction was estimated from the
percentage of coating adhering to the tape after removal from the bent surface. The corrosion
performance of each sample was analyzed using a potentiostat (GAMRY INTERFACE
1010E). A three-electrode system was employed with a saturated calomel electrode (SCE)
as the reference electrode, graphite as the counter electrode, and the coated sample as the
working electrode. Before electrochemical impedance spectroscopy (EIS) analysis, each
sample was immersed in a NaCl solution (3.5 wt.%) for 1 h to ensure a stable open circuit
potential (OCP). EIS was conducted from 100 kHz to 100 MHz (10 points per decade) with a
10 mV sinusoidal voltage perturbation and potentiodynamic polarization in the range of
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−0.3 to 0.5 V (vs. OCP), at a scan rate of 0.5 mV/s. The corrosion current density (icorr),
corrosion potential (Ecorr), and corrosion rate (mpy) were evaluated via Tafel extrapolation;
a built-in Gamry Echem Analyst software 7.10.0 module was used for the EIS Nyquist-plot
curve fitting and analysis. Salt spray tests (SSTs, SUGA) were conducted at 35 ◦C (according
to the ASTM B117 standard) to investigate the long-term corrosion behavior of the coatings.
A constant-concentration NaCl spray (5 wt.%) at a flow rate of 1.5 ± 0.5 mL/h was used for
the SSTs.

Table 1. Compositions of Al–Si–xMg coatings and their corresponding labels.

Sample
Composition (X-Ray Fluorescence, wt.%)

Al Si Mg

AlSi 91.11 8.89 -
AlSiMg5 86.51 8.61 4.88

AlSiMg10 82.20 8.25 9.55
AlSiMg15 77.46 7.76 14.78
AlSiMg20 72.99 7.39 19.62

3. Results
3.1. Visual Inspection and Surface Roughness

Photographs of the coated sample surfaces are shown in Figure 1. As shown in Figure 2,
the addition of Mg increased the roughness of the Al–Si–xMg layer, reducing its surface
glossiness; this phenomenon was quantitatively evaluated using 3D surface topography
analysis, which was conducted on five distinct samples and the results were averaged.
Al–Si coating layers with ≤15 wt.% and 20 wt.% of Mg showed slightly and significantly
higher surface roughness, respectively, than the corresponding sample without Mg (AlSi).
This can be primarily attributed to two factors: the formation of a thick Mg-oxide layer on
the coating-bath surface and a reduction in the coating-bath fluidity [38].
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Figure 2. Three-dimensional (3D) surface topography of: (a) AlSi; (b) AlSiMg5; (c) AlSiMg10;
(d) AlSiMg15; (e) AlSiMg20.

3.2. Cross-Sectional Microstructure and Compositional Study

Cross-sectional microstructures of the Al–Si–xMg alloy coatings are shown in Figure 3;
EDS analysis results of the points marked in Figure 3 are listed in Table 2. The average
coating thicknesses were 44.1, 28.2, 27.4, 30.8, and 39.3 µm for AlSi, AlSiMg5, AlSiMg10,
AlSiMg15, and AlMg20, respectively. The coating cross-sections of all the samples showed
the presence of an interfacial intermetallic layer and an Al-rich top layer. As shown
in Figure 3a, AlSi contained a top layer (comprising α-Al and Si) and two interfacial
intermetallic layers (comprising Fe2Al5 and τ5, respectively). In contrast, the Mg-added
samples contained an interfacial intermetallic layer comprising FeAl3 and Fe2Al5 phases.
The transformation of τ5 into FeAl3 in the Mg-added samples can be attributed to Si
consumption owing to the formation of the Mg2Si phase. The presence of a τ5 phase at the
interface reduced the intermetallic-layer thickness of the alloy coatings [4]. Therefore, the
Mg-added samples (without the τ5 phase) contained thicker intermetallic interfacial layers
than AlSi. Additionally, the formation of a fine Al/Mg2Si eutectic mixture in the AlSiMg5
top layer was observed in Figure 3b. This eutectic-mixture phase was also observed to
coexist with the coarse primary Mg2Si phase in AlSiMg10, as shown in Figure 3c. Moreover,
Figure 3d,e show the coarse primary Mg2Si phase inside Al–Mg matrices in AlSiMg15
and AlSiMg20, respectively; both these samples contained high Mg contents (≥15 wt.%).
Notably, EDS point and mapping analyses confirmed the formation of an additional Al–Mg
intermetallic compound (IMC), Al3Mg2, in AlSiMg20 (Figure 3e).

For a comprehensive analysis of the Al–Mg IMC within AlSiMg20, the interface
between the Al–Mg IMC and Al(Mg) matrix was analyzed using FE-TEM. Figure 4a shows
the bright-field image of the interface. The selected area electron diffraction (SAED) patterns
in Figure 4b,c indicate that the Al–Mg IMC has an Al3Mg2 phase and FCC-structured Al
phase, respectively [39,40]. As shown in Figure 4d, the interplanar distance of the Al3Mg2
phase was 0.249 nm, corresponding to the (880) plane in all directions. Furthermore, the
lattice image in Figure 4e indicates Al-phase interplanar distances of 0.233 and 0.209 nm,
corresponding to the (111) and (200) planes, respectively.
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Table 2. EDS analysis of the points marked in Figure 3 and their corresponding phases.

Sample Point
Composition (wt.%)

Al Si Mg Fe Alloy Phase

AlSi

1 52.47 2.41 - 45.12 Fe2Al5
2 58.51 9.83 - 31.66 Fe2Al7Si(τ5)
3 51.13 48.57 - 0.30 Si
4 96.33 3.40 - 0.27 α-Al

AlSiMg5
1 52.73 1.45 0.02 45.80 Fe2Al5
2 64.06 3.83 0.92 31.19 FeAl3
3 86.44 3.85 8.51 1.20 Al/Mg2Si Eutectic

AlSiMg10

1 53.27 1.53 0.05 45.15 Fe2Al5
2 64.45 1.69 2.05 31.81 FeAl3
3 0.31 62.48 36.59 0.62 Mg2Si
4 85.18 4.99 9.09 0.74 Al/Mg2Si Eutectic

AlSiMg15

1 51.28 3.35 - 45.37 Fe2Al5
2 62.02 1.43 2.17 34.38 FeAl3
3 0.14 46.36 52.75 0.75 Mg2Si
4 90.27 0.28 8.77 0.68 Al(Mg) Matrix

AlSiMg20

1 52.50 2.37 0.18 44.95 Fe2Al5
2 63.35 1.20 2.19 33.26 FeAl3
3 0.80 34.10 64.73 0.37 Mg2Si
4 67.87 0.06 31.86 0.21 Al3Mg2
5 86.96 0.42 12.53 0.09 α-Al
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3.3. Crystallographic Study of Alloy Coatings

XRD was used to investigate the effects of the Mg content on the crystallographic
properties of the Al–Si–xMg alloy coatings; the corresponding patterns are provided in
Figure 5. All the samples predominantly contained the α-Al phase, with additional peaks
corresponding to the Mg2Si phase observed in the patterns of all the Mg-added samples.
Our findings revealed a noticeable shift in the peak associated with the (111) crystallo-
graphic plane of α-Al toward lower scattering angles. This shift indicates the presence
of a solid solution of Mg atoms within the Al-matrix, fostering lattice expansion [41,42].
Peaks corresponding to the Fe2Al7Si (τ5), Al5FeSi, and Fe2Al5 alloy phases were observed
in the XRD pattern of AlSi, whereas the XRD patterns of the Mg-added samples indicated
Mg2Si formation and the transformation of the τ5 phase into the FeAl3 phase. Furthermore,
the addition of Mg resulted in the disappearance of the Fe2Al7Si (τ5) and Al5FeSi phases.
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Notably, the AlSiMg20 pattern contained peaks corresponding to the Al3Mg2 phases, which
is consistent with the SEM–EDS results (Figure 3 and Table 2).
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3.4. Study of Surface Microstructures and Composition

The surface microstructure affects the corrosion and mechanical performance of surface
coatings; therefore, its analysis is crucial. FE-SEM images of the surface microstructures
of all the samples are provided in Figure 6, and the results of the EDS analyses are listed
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in Table 3. A distinct formation comprising the acicular β-Al5FeSi phase was observed on
the AlSi surface; this structure was embedded within an Al–Si eutectic lamellar matrix, in
which Si is distributed in the interdendritic spaces of Al, as indicated by the EDS phase
map shown in Figure 6a. Upon Mg addition, this coarse Al–Si eutectic lamellar structure
transformed into a fine Al/Mg2Si eutectic mixture, as observed in the FE-SEM image of
AlSiMg5. Figure 6c indicates a significant volume fraction of the coarse Mg2Si phase in the
samples containing ≥10 wt.% of Mg. Moreover, a phase-map analysis of the Mg and Si
EDS results confirms the coexistence of the fine Al/Mg2Si and coarse Mg2Si phases. As
the amount of Mg in the samples increased (>15 wt.%), the volume fraction of the fine
Al/Mg2Si eutectic-mixture phase gradually decreased, whereas the coarse primary Mg2Si
phase emerged as the predominant constituent (Figure 6d) [43]. As shown in Figure 6e,
the coarse primary Mg2Si phase completely replaced the Al/Mg2Si eutectic mixture in
AlSiMg20. The EDS point analysis (points 1–3) and phase maps (Al and Mg) confirmed
the formation of the Al3Mg2 phase. The Al3Mg2 phase, which forms along the grain
boundaries, is inherently brittle and prone to cracking. Several surface cracks (extending
up to the Fe substrate) were detected in AlSiMg20. Furthermore, discernible wrinkle-defect
patterns were observed on the surface of AlSiMg20. The high roughness of the sample
can be attributed to these wrinkle-defect patterns, based on the 3D surface topographical
analysis shown in Figure 2.

Table 3. EDS analysis of the points marked in Figure 6, with the corresponding phases.

Sample Point
Composition (wt.%)

Al Si Mg Fe Alloy Phase

AlSi
1 80.39 18.11 - 1.50 Al/Si eutectic
2 60.70 17.28 - 22.02 β-Al5FeSi

AlSiMg5 1 96.56 1.21 1.22 1.01 α-Al
2 66.94 13.65 18.52 0.89 Mg2Si

AlSiMg10
1 0.80 35.34 63.34 0.52 Mg2Si
2 59.66 16.19 23.43 0.72 Mg2Si
3 91.86 0.57 6.81 0.76 α-Al

AlSiMg15 1 - 36.78 62.70 0.52 Mg2Si
2 88.81 0.01 10.71 0.47 α-Al

AlSiMg20
1 0.91 34.33 63.92 0.84 Mg2Si
2 80.02 0.03 19.24 0.71 α-Al
3 64.49 0.01 35.15 0.35 Al3Mg2

To analyze the different phases in the coatings, the phases were quantified by esti-
mating their volume fractions using SEM images and image analysis software, as shown
in Figure 7 and Table 4. The AlSi sample comprised 66.56% of an Al–Si matrix, along
with 30.08% and 3.36% of the α-Al and β-Al5FeSi phases, respectively. In AlSiMg5, the
Al–Si matrix was transformed into a fine Al/Mg2Si eutectic mixture, comprising ~56.35%
of the sample. With the increase in the Mg content in the samples, the volume fraction
of this Al/Mg2Si eutectic mixture gradually decreased, and it completely disappeared in
AlSiMg20. Notably, the volume fraction of the primary Mg2Si phase increased linearly
with increasing Mg content of the Al–Si–xMg alloy; the highest volume fraction (22.99%)
was observed in AlSiMg20. Interestingly, an additional Al3Mg2 alloy phase was observed
only in the AlSiMg20 sample (comprising ~33.72% of the sample). As shown in Figure 7f,
the AlSiMg5 sample contained the highest volume fraction of the Mg2Si-containing phase
(from both the primary Mg2Si phase and Al/Mg2Si eutectic mixture) among the analyzed
samples; therefore, it was expected to provide the most sacrificial active sites, significantly
delaying the dissolution of Al [44].
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Table 4. Volume fractions of the different phases in the alloy coating samples.

Phase
Sample AlSi AlSiMg5 AlSiMg10 AlSiMg15 AlSiMg20

α-Al 30.08 38.74 47.51 62.16 43.28
Al-Si Matrix 66.56 - - - -
β-Al5FeSi 3.36 - - - -

Al/Mg2Si Eutectic - 56.35 44.05 19.96 -
Primary-Mg2Si - 4.91 8.44 14.98 22.99

Al3Mg2 - - - - 33.72

3.5. Coating Adhesion

An adhesive tape was attached to the bent surface of the samples to evaluate their
coating adhesion. The appearance of the peeled-off coating layers upon tape removal
is shown in Figure 8. An analysis of the delaminated areas (using an image analyzer)
indicated no peeling in the AlSi sample and samples with <15 wt.% of Mg. A delaminated
area of 15.02% was observed for AlSiMg20, indicating decreased coating adhesion, possibly
owing to the formation of a brittle Al3Mg2 phase within this coating layer.
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3.6. Corrosion Performance
3.6.1. Potentiodynamic Polarization

The potentiodynamic polarization plots of the Al–Si–xMg samples are shown in
Figure 9, and the electrochemical corrosion parameters are listed in Table 5. Hot-dip galva-
nized (GI) steel sheets were also tested for comparison. A Zn coating layer (approximately
35 µm thick) was produced by immersing the substrate in a pure Zn pot at a temperature
of 470 ◦C for 5 min. The corrosion rate (mpy) was calculated based on the corrosion current
density (measured via the Tafel extrapolation method), as follows:

Corrosion rate (mpy) =
icorr × K·EW

dA

where icorr is the corrosion current density of the sample; K is the corrosion rate constant
(1.88 × 105); EW is the equivalent weight; d is the density (g/cm3); A is the sample area
(cm2). The corrosion potential of the Mg-added samples shifted negatively (−0.911 to
−1.190 VSCE) compared with that of AlSi (−0.711 VSCE). This corrosion-potential reduction
enhances the sacrificial-protection ability of the Mg-added coatings, thereby improving
the corrosion resistance of the coated steel substrates. The corrosion current density of the
Mg-containing samples decreased with increasing Mg content (from 5 to 15 wt.%). Notably,
all the obtained values were lower than the corrosion current density of the AlSi. The
current density of a material is analogous to its corrosion rate; consequently, a decrease in
the current density indicates a reduced corrosion rate [7,25]. Among all the Al–Si–xMg alloy
coatings, AlSiMg5 showed the lowest corrosion rate (0.198 mpy). Notably, both AlSiMg10
(0.239 mpy) and AlSiMg15 (0.431 mpy) exhibited higher corrosion resistance than AlSi
(2.115 mpy). This confirms that the addition of Mg (≤15 wt.%) into AlSi improved its
corrosion resistance. The higher corrosion resistance of AlSiMg5, AlSiMg10, and AlSiMg15
than that of AlSi can be attributed to the presence of a fine, uniformly distributed Al/Mg2Si
eutectic mixture in the coatings, which facilitates the formation of stable corrosion products
on the coating-layer surface [44]. In contrast to the other Mg-added samples, AlSiMg20
exhibited a significantly lower corrosion resistance than AlSi. This can be attributed to the
corrosion damage incurred by the formation of an Al3Mg2 phase that is highly susceptible
to intergranular corrosion and stress-corrosion cracking [30–34].
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Table 5. Electrochemical corrosion parameters of hot-dip Al–Si–xMg alloy-coated steel sheets.

Sample Ecorr (V) icorr (µA/cm2)

GI −1.060 7.690
AlSi −0.711 4.930

AlSiMg5 −0.930 0.471
AlSiMg10 −0.911 0.558
AlSiMg15 −0.915 0.945
AlSiMg20 −1.190 5.810

3.6.2. EIS Study

Two time constants were observed in the Nyquist plots of each coating (Figure 10a).
The first time constant in the high-frequency (HF) region corresponds to the corrosion
product formed on the coating-layer surface, whereas the second time constant in the
low-frequency (LF) region corresponds to the corrosion resistance at the corrosion prod-
uct/coating interface [45]. The electrochemical parameters estimated from the fitted EIS
results (Figure 10b) of all the samples are summarized in Table 6. The solution resistance
(Rs) of the electrolyte, film resistance (Rf) of the corrosion product formed, charge transfer
resistance (Rct) of the double layer, and CPE1 and CPE2 values, which are constant phase
angle elements representing the capacitance of the corrosion product and capacitance
of the coating layer, respectively, are listed in Table 6. The CPE can be calculated using
equation ZCPE = Y0

−1·(jω)−n, where Y0 is related to the size of the CPE [Ω−1·cm−2·s−n],
j is an imaginary number (j2 = −1), andω is the angular frequency [rad·s−1] (ω = 2πf) [46]
(n1 and n2 are constants corresponding to CPE1 and CPE2, respectively, with values in the
range of 0–1). As shown in Figure 10, a large capacitive loop radius was observed in the
HF and LF regions of AlSiMg5, indicating the formation of corrosion products with better
protective effects than those formed by the other samples. Notably, AlSiMg5 exhibited the
highest polarization resistance (Rp, summation of Rf and Rct). As the Mg content increased,
the diameters of the HF and LF capacitive loops gradually decreased; AlSiMg20 showed
the smallest capacitive loop.
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Figure 10. (a) Nyquist plots, (b) equivalent circuit used to fit EIS results of hot-dip Al–Si–xMg
alloy coatings.

Table 6. Electrochemical parameters estimated from the fitted EIS results (Figure 10b) of the hot-dip
Al–Si–xMg alloy coatings.

Sample Rs
(Ω cm2)

CPE1
(F/cm2) n1

Rf
(Ω cm2)

CPE2
(F/cm2) n2

Rct
(Ω cm2)

Rp
(Ω cm2)

AlSi 12.75 1.13 × 10−6 0.81 3123 8.70 × 10−6 1.00 9221 12,344
AlSiMg5 15.56 9.89 × 10−6 0.92 5598 3.23 × 10−4 1.00 75,580 81,178
AlSiMg10 16.29 3.09 × 10−5 0.89 3904 3.21 × 10−4 0.98 47,720 51,624
AlSiMg15 14.29 9.60 × 10−5 0.86 1686 4.94 × 10−4 0.98 15,970 17,656
AlSiMg20 16.00 2.08 × 10−5 0.86 349 2.83 × 10−4 0.77 1866 2215

3.6.3. Salt Spray Test

The long-term corrosion behavior of the Al–Si–xMg coatings was analyzed using
1920 h SSTs; the results are shown in Figure 11. Although the AlSi sample exhibited a
better corrosion resistance than the GI sample, localized red-rust formation was observed
after 552 h of the SST. This red-rust area rapidly increased with time, and severe red-rust
formation was observed after 1920 h. Interestingly, no red-rust formation was observed
for AlSiMg5, AlSiMg10, and AlSiMg15, even after 1920 h of the SST. This confirms their
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excellent corrosion resistance compared to that of AlSi. However, severe red-rust formation
occurred in AlSiMg20 after 1056 h, indicating that it has a lower corrosion resistance than
AlSi. These results are consistent with the corrosion rates listed in Table 5 and the Rp data
summarized in Table 6.
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4. Conclusions

In this study, the effect of the Mg content of hot-dip Al–Si–xMg alloy coatings on
their microstructure, electrochemical behavior, and corrosion resistance was investigated.
The introduction of Mg into Al–Si coatings increased the surface roughness; the coating
layer containing 20 wt.% of Mg showed a significantly higher surface roughness than AlSi.
Moreover, the fine eutectic Al/Mg2Si phase and coarse primary Mg2Si phase coexisted
in Al–Si coatings containing ≤15 wt.% of Mg (namely, AlSiMg5 and AlSiMg10). Notably,
an additional Al3Mg2 phase was observed in AlSiMg20. According to the microstructural
analysis, among the analyzed samples, AlSiMg5 contained the highest fraction (>60%) of
the fine Al/Mg2Si eutectic phase, along with a small fraction of the Mg2Si single phase.
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The volume fraction of the primary Mg2Si phase increased with increasing Mg content.
Electrochemical testing and SSTs were used to assess the corrosion resistance of the coatings.
Samples containing 5–15 wt.% of Mg exhibited a higher corrosion resistance than AlSi,
with AlSiMg5 exhibiting the most optimized result. Notably, AlSiMg20 showed the lowest
corrosion resistance among the analyzed samples (even lower than that of AlSi), which
may be attributed to the formation of the Al3Mg2 phase. We believe that the optimized
AlSi-5wt.%Mg alloy-coated steel can be effectively utilized in industries that demand ultra-
high corrosion resistance, particularly in energy materials used in marine environments,
such as offshore wind power generators and floating solar cell frames.
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