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Abstract: This article presents the mineralogical and chemical characteristics of zinc and lead smelting
slags, with particular reference to the slags formed during the simultaneous production of Zn and
Pb by the Imperial Smelting Process. These slags, because of the presence of many metals in their
composition, mainly in the form of crystalline phases, are a valuable source for their extraction.
Slags from Zn-Pb metallurgy are processed on an industrial scale using pyrometallurgical and
hydrometallurgical methods, alongside which a number of experiments conducted to recover metals
as efficiently as possible, including bioleaching experiments.
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1. Introduction

Metallurgical slags resulting from zinc and lead production processes are characterised
by a diversity of technical parameters, chemical and mineral composition, which in turn
depend on the type of feedstock used, i.e., zinc–lead concentrates (type of bed), additives
used in the processing (e.g., fluxes), the technological process applied and its course.

Currently, two methods are used to obtain zinc and lead, the pyrometallurgical method
and the hydrometallurgical method. This article discusses in detail the slags formed in the
pyrometallurgical Imperial Smelting Process (ISP), the target products of which are both Zn
and Pb. The chemical and mineral composition of slags from Zn-Pb metallurgy depends
on the type of feedstock and on the process conditions.

The process produces two types of slag: shaft furnace slag and refining slag. Shaft
furnace slag, which is a waste product of the shaft furnace process, due to its physical and
chemical properties, especially its high mechanical strength and low solubility in water, is
widely used in road construction, for backfilling in the mining industry and for capping
waste dumps with an insulating layer [1–5].

Refining slags, resulting from the lead refining process, contain numerous elements
(including toxic metals) and are therefore classified as hazardous waste and deposited in
landfills, posing a potential threat to the environment [6,7], in particular to soil and water.
On the other hand, refining slags contain numerous strategic and scarce metals and can
provide a valuable source of these materials.

The choice of the best slag processing technology is determined by the mineral and
chemical composition of the slag.

2. Zn-Pb Extraction Technologies

Lead is mainly extracted by pyrometallurgical processing of primary sulphide
ore [2,8,9]. Pyrometallurgical methods involve recovering materials (especially metals) at
sufficiently high temperatures by transferring them to specific condensed phases (including
metallic alloys) or the gas phase with subsequent condensation. Pyrometallurgical methods
are chemical processes that take place due to the heat from burned fuel or other exothermic
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reactions. Obtaining metals from these methods is based on the reduction of metal oxides,
most often using carbon (C) or carbon monoxide (CO) [8,9].

Two basic pyrometallurgical processes are used to obtain lead from lead (II) sulphide or
mixed concentrates of lead sulphide and zinc sulphide: sintering/smelting (Imperial Smelt-
ing Process, ISP) or direct smelting. These processes can also be applied to concentrates
containing secondary raw materials.

Zinc is produced by hydrometallurgical and pyrometallurgical methods, which ac-
count for 80% and 20% of global production, respectively [7–11]. Hydrometallurgical
methods involve leaching a roasted concentrate with an H2SO4 solution. The zinc sulphate
solution obtained by leaching is purified from admixtures, and zinc is then separated
from the purified solution in electrolytic tanks. These methods allow high-quality metal
production with much lower environmental impact than that of pyrometallurgical methods.
However, hydrometallurgical methods cannot be used for lead production because lead
salts are only weakly soluble [12–15].

The most widely used pyrometallurgical method for obtaining zinc is the ISP, which
is a highly efficient technique that allows for the processing of complex polymetallic raw
materials that cannot be processed by other methods [8–11]. This approach enables the
production of not only zinc but also crude lead. The process is based on the reduction of
roasted zinc–lead concentrate with coke [16–18].

The process line of a typical smelting plant comprises the following components
(Figure 1):

– Sintering unit;
– Shaft furnace unit;
– Lead refining unit;
– Zinc rectification unit.

The feedstock for the ISP process is zinc–lead concentrates and Zn- and Pb-containing
oxide waste materials (in-house recyclable waste, i.e., sludge, dust, dross, secondary raw
materials—zinc alloy scrap, hard zinc, and foreign crude lead; imported waste, including
dust from steel making, zinc dust and dross, zinc sludge, lead oxide, cable scrap (leaden
cables), hard zinc waste).

The charge mixture is subjected to an oxidative roasting process at 1200 ◦C in a
Dwight–Lloyd (DL) sintering machine. The products of this process are zinc–lead sinter
and post-reaction gas. The gas is transferred to a sulphuric acid production line while the
sinter, after crushing and segregation, forms the feedstock for the shaft furnace process [19].

Sinter (and zinc scrap intermittently), heated coke, and lime (as a flux) are automat-
ically fed into the shaft furnace according to a predetermined weight ratio. However, to
ensure optimal performance of the reduction process, the ratio of coke to sinter introduced
into the furnace, determined by the C/Zn ratio, ranges from 0.8 to 1.2. Upon exposure to
hot air blown into the furnace at 1000 ◦C, the coke is burned to produce CO, which serves
as the reducing agent in the process [16–18].

The reduction process occurs in three distinct zones in the furnace shaft:

– upper zone—reduction of lead oxide:

PbO(s) + CO(g) = Pb(l) + CO2 (1)

– middle or equilibrium zone—Boudouard reaction:

CO2(g) + C(s) = 2CO(g) (2)

– lower zone—reduction of zinc oxide:

ZnO(s) + C(s) = Zn(g) + CO(g) (3)



Materials 2023, 16, 7295 3 of 19Materials 2023, 16, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Imperial Smelting Process flowsheet [19]. 
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gases containing CO2, CO, N2, and Zn vapours are formed in the melting zone. The zinc 
vapours discharged from the furnace, along with the post-reduction gases, are fed into a 
condenser where they are condensed in splashed liquid lead circulating in a closed loop. 
The lead with dissolved zinc is pumped from the condenser to a separation system where 
the zinc condenses. When the temperature is lowered to 450 °C, the zinc is separated 
from the lead. From the separation system, the zinc is then transferred to a zinc tank and 
subsequently to the rectification column feed furnaces [16–18]. 

Slag and lead are discharged at intervals from the bottom of the shaft furnace into a 
settling tank, where the lead is separated from the slag. After segregation, the slag is di-
rected into a granulation trough, and the residual lead is poured into a ladle and cast into 
blocks of bullion lead, which are then sent to a lead refinery [19]. 

Lead refining is based on a thermal process carried out in 13 refining boilers and a 
short rotary kiln. The refining step aims to separate the precious metals contaminating 
the lead bullion as efficiently as possible and purify it of admixtures. To separate them 
from the lead, minor constituent properties are used such as decreasing solubility with 
decreasing temperature (Cu, intermetallic phases), ability to form lead-insoluble inter-
metallic phases (Ag, Bi), and higher chemical affinity to oxygen (Sn, As, Sb, Zn, Ca, Mg). 

Figure 1. Imperial Smelting Process flowsheet [19].

The essential sinter melting processes take place in the lower part of the shaft furnace
in the melting and reduction zone, where zinc and lead oxides are reduced, and the slag
is liquefied. Lead, liquid slag with a melting point of around 1200 ◦C and process gases
containing CO2, CO, N2, and Zn vapours are formed in the melting zone. The zinc vapours
discharged from the furnace, along with the post-reduction gases, are fed into a condenser
where they are condensed in splashed liquid lead circulating in a closed loop. The lead
with dissolved zinc is pumped from the condenser to a separation system where the zinc
condenses. When the temperature is lowered to 450 ◦C, the zinc is separated from the lead.
From the separation system, the zinc is then transferred to a zinc tank and subsequently to
the rectification column feed furnaces [16–18].

Slag and lead are discharged at intervals from the bottom of the shaft furnace into
a settling tank, where the lead is separated from the slag. After segregation, the slag is
directed into a granulation trough, and the residual lead is poured into a ladle and cast into
blocks of bullion lead, which are then sent to a lead refinery [19].

Lead refining is based on a thermal process carried out in 13 refining boilers and a
short rotary kiln. The refining step aims to separate the precious metals contaminating the
lead bullion as efficiently as possible and purify it of admixtures. To separate them from the
lead, minor constituent properties are used such as decreasing solubility with decreasing
temperature (Cu, intermetallic phases), ability to form lead-insoluble intermetallic phases
(Ag, Bi), and higher chemical affinity to oxygen (Sn, As, Sb, Zn, Ca, Mg). Precious metals
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(Ag, Au) are removed using the Parkes process, which exploits the ability of alloyed zinc
to mix with lead, leading to the formation of a so-called silver froth or silver crust, which
is then processed in a liquation muffle and distillation furnace to produce a Pb-Ag alloy
containing approximately 20–40% silver. Refined lead is cast using a casting machine into
ingots which form the final product (Figure 2).
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3. Slags Formed in Zn-Pb Metallurgy
Chemical and Mineral Composition

The main chemical components of metallurgical slags formed directly during Zn
and Pb processing include FeOtotal, SiO2, Al2O3, CaO, MgO, ZnO, and PbO [3,19–24]
(Table 1). These slags are characterised by significant variability in the content of their
main constituents, with ranges including FeOtotal 0.88–59.6 wt%, SiO2 2.04–57.1 wt%, CaO
0.18–32.23 wt%, MgO 0.61–15.9 wt%, ZnO 0.03–47.3 wt%, and PbO 0.002–6.4 wt% (Table 1).

Refining slags exhibit different chemical compositions from slags from the shaft process
of Zn-Pb metallurgy. Refining slags are dominated by ZnO (average content 12.2 wt%), PbO
(average content 17.5 wt%), CuO (average content 11.5 wt%), and SO3 (average content
13.6 wt%), whereas the average content of these components is several times lower in slags
from the shaft process (Table 1). Like slags from the shaft process, their composition also
varies considerably (Table 1).

In addition to the main constituents represented in oxide form, Zn-Pb metallurgical
slags contain numerous minor constituents, including As, Ba, Cd, Co, Cr, Cu, Ni, Sb, Sn,
and V, the concentrations of which also vary within a wide range (Table 1).

The variation in the chemical composition of slags taken from different layers results
from several factors, some of which include the variability in the feedstock for the lead
refining process, the conditions involved in the industrial process, and weathering processes
occurring in the landfill body (in the case of landfilled slags).
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Table 1. Summary of major chemistry (in wt%) and minor chemistry (in mg kg−1) of Zn-Pb metallur-
gical slags and Pb refining slags [3,19].

Component
Zn-Pb Slags Pb Refining Slags

Min Max Average * Min Max Average **

Al2O3 0.90 21.9 8.3 0.57 7.8 2.8
CaO 0.18 32.2 17.3 0.14 5.65 2.8
FeOTotal 0.88 59.6 16.7 8.3 31.1 20.0
K2O 0.02 3.91 0.60 0.04 0.27 0.15
CuO - - - 0.98 20.93 11.5
MgO 0.61 15.9 5.4 0.10 0.81 1.1
PbO 0.0002 6.4 0.93 0.72 44.6 17.8
ZnO 0.03 47.2 4.93 6.6 18.07 12.2
MnO 0.01 3.0 0.5 0.02 0.55 0.21
SO3 0.05 14.9 2.99 5.83 23.1 13.6
SiO2 2.04 57,1 28.6 2.45 35.5 11.1
TiO2 0.07 1.14 0.4 0.04 0.34 0.16

Element Min Max Average * Min Max Average **

As 1 10,710 1181 147 15,558 8843
Ba 76 17,914 1126 336 778 508
Cd 0.38 575 31.2 85 19,757 5595
Co 8.5 242 35.7 0.01 452 232
Cr 4 700 155 132 708 435
Ni 13 240 59.7 76 447 311
Cu 16 7400 802 - - -
P 43.57 26,400 5138 - - -
Sb 0.16 245 42.6 81 9869 472
Sn 0.1 500 23.4 0.01 617 323
V 6 9980 2294 - - -

* Arithmetic average values according to Piatak et al., 2021 [3]; ** arithmetic average values of 64 samples according
to Nowińska, 2022 [19].

Due to the great variety of forms of mineral constituents, which usually occur as
multiphase conglomerates with numerous admixtures, it is extremely difficult to determine
the phase composition of metallurgical slags.

The phase composition of Zn-Pb metallurgical slags varies greatly, and the most
common mineral constituents are presented in Table 2 (Figure 3). The phase composition of
slags also includes metallic precipitates (Zn, Pb, Cu, Fe) and multicomponent metal alloys
(Pb, Zn, Cu, Fe, As, Sb) doped with numerous elements: Sn, Bi, Tl, Na, S, Fe, Cd, Sn, Ti, Ca.

Table 2. Main phase components of Zn-Pb slags [3,19,25–43].

Group Phase Chemical Formula

Oxides
Zincite ZnO
Wüstite FeO
Hematite Fe2O3

Hydroxides Goethite FeO(OH)

Sulphides

Sphalerite ZnS
Galena PbS
Pyrite FeS2
Pyrrhotite FeS
Digenite (Cu,Fe)9S5
Cubanite CuFe2S3
Covellite CuS
Chalcocite Cu2S

Sulphate Anglesite PbSO4
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Table 2. Cont.

Group Phase Chemical Formula

Hydrated sulphates

Goslarite ZnSO4·7H2O
Gypsum CaSO4·2H2O
Rapidcreekite Ca2(SO4)(CO3)·4H2O
Ktenasite ZnCu4(SO4)2(OH)6·6H2O
Posnjakite Cu4[(OH)6|SO4]·H2O

Silicates

Willemite Zn2SiO4
Fayalite Fe2SiO4
Kirschsteinite CaFe2+SiO4
Forsterite Mg2SiO4

Aluminosilicate Melilites (Ca,Na)2(Al,Mg)[(Si,Al)2O7]

Carbonates Cerussite PbCO3
Smithsonite ZnCO3
Hydrozincite Zn5[(OH)3/CO3]2
Hydrocerussite Pb3(CO3)2(OH)

Spinels Magnetite Fe3O4
Hercynite FeAl2O4
Franklinite ZnFe2O4
Gahnite ZnAl2O4
Ulvöspinel Fe2TiO4

In Zn-Pb metallurgical slags, in addition to the crystalline components, there is also
amorphous glass, the content of which depends on the cooling rate of the slags. The glass
content of rapidly cooled slags is significantly higher than that of slags cooled slowly, e.g.,
in an air atmosphere. Quantifying glass is highly challenging due to its amorphous nature
and varying SiO2 content, resulting in an ambiguous interpretation of the reflections related
to the corresponding dhkl values in X-ray structural studies [27,44]. The glass also contains
elements such as Fe, Al, Ca, Pb, Zn, Cu, and As, which occur in the form of nanometric
oxide inclusions and intermetallic compounds [3,19,27,44].
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Figure 3. Examples of microareas of Pb refining slag samples [19]: (a) example of an image of the
investigated microareas: 001- and 002-wüstite and zinc oxide in glass, 003-willemite, 004-alamosite,
005-lead oxide, 006-quartz [19]; (b) example of an image of the investigated microareas: 001-Na2Zn
(Si2O6) with impurities of wüstite, 002-wüstite, 003-alloy type Pb27Fe24Zn10Cu10O16C7Rs7 [19];
(c) example of an image of the investigated microareas: 001- and 002-kirschteinite with Na2Zn(Si2O6)
and carnegieite with admixtures of sphalerite, 003-Ag met [19].

In classifying the phase constituents of the Zn-Pb pyrometallurgical slags, the fol-
lowing constituents were distinguished: those originating from the technological process
(silicates: carnegieite, chalcocite, olivine, and kirschsteinite; sulphate: anglesite; oxides:
wüstite, ZnO, PbO; hydroxide: alamosite), those crystallising under hypergenic conditions
in landfill (sulphates and hydrated sulphates: ktenasite, namuvite, and posnjakite; oxides
and hydroxides: tochilinite, goethite, and gerhardtite; carbonates: cerussite, calcite), and
those with the nature of feedstock minerals (mainly the sulphides ZnS and PbS) [19].

4. Processes for the Recovery of Metals from Zn-Pb Metallurgical Slags

Metallurgical slags that contain metals at concentrations of several per cent can serve as
a source of metals. The mineral and chemical composition of metallurgical slags determines
their processing method. Due to the variety of forms of metal occurrence in slags, it is
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extremely difficult to identify the optimal technological process for their processing. Metals
from slags (so-called secondary metals) generated in the pyrometallurgical process to obtain
Zn-Pb are typically recovered using pyrometallurgical and hydrometallurgical methods.

4.1. Pyrometallurgical Methods

Pyrometallurgical processes, sometimes referred to as thermal metallurgy, are based
on the processing of slags at high temperatures in various furnace types, including shaft,
rotary, electric, and muffle furnaces [45–48].

4.1.1. Fuming Process

One widely used method of pyrometallurgical processing of metallurgical waste is
fuming, which involves recovering zinc and lead from liquid slag blown with air and coal
dust or natural gas to provide a reducing atmosphere. The metals contained in the slag are
reduced and evaporated and then re-oxidised (Table 3) [47–52].

Table 3. Parameters of the Zn-Pb slag fuming process [47].

Parameter Unit Value

The amount of slag processed Mg/h 10
The amount of air for spraying and feeding the oil Nm3/h 10
The amount of primary air for oil combustion Nm3/h 1.53
The amount of secondary air for oxidation of vapours and afterburning of gases Nm3/h 1.54
Slag temperature K 1520–1570

This process follows these summary chemical equations [47,48]:

(ZnO)slag + CO = Zn(g) + CO2 (4)

(Cd)slag + CO = Cd(g) + CO2 (5)

(PbO)slag + CO = Pb(g) + CO2 (6)

(Fe2O3)slag + CO = 2(FeO)slag + CO2 (7)

C + CO2 = 2CO (8)

These reactions take place at a temperature of around 1500 ◦C. Fuming is usually
carried out in cyclone furnaces or converters.

Spent gases containing a mixture of metal oxides are cooled, and the dust is retained
in bag filters. The resulting dust, with a content of 60–75% Zn and 15–25% Pb, is then
processed either pyrometallurgically (ISA furnaces) or hydrometallurgically (electrolysis).
The waste material of the process is slag with a Zn content of 1.5–2.5% and a Pb content of
~0.2%, which is then granulated or cast into slabs used for the manufacture of construction
aggregates [47,48] (Table 4).

Table 4. Chemical composition of slag and products of the fuming process [47].

Type of Material
Content (wt%)

Zn Pb Cu S FeO SiO2 CaO Ag (g/Mg)

Output slag 6.5 0.5 0.4 2.7 37 20 14 30
Dust 60 12 0.1 0.5 0.3 0.1 0.1 100
Waste slag 3.0 0.1 0.5 2.6 40 19 13 25



Materials 2023, 16, 7295 9 of 19

4.1.2. Isasmelt Process

The second most common pyrometallurgical method involves remelting lead met-
allurgical slags in Isasmelt and Kaldo furnaces. These furnaces are used to process both
primary and secondary raw materials, such as zinc electrolysis slurries, zinc-bearing slags,
EAF dust, and various metallurgical waste types (Table 5). Fuel and process gases are fed
into the furnace via a lance directly below the surface of the liquid slag, which provides
highly turbulent conditions favourable for the mass and heat transfer processes.

Table 5. Chemical composition of EAF dust (in wt%) [47].

Element Zn Pb Fe Cu S SiO2 CaO MgO MnO Al2O3

Content 21.6 1.3 29.5 0.1 0.5 5.6 9.3 2.7 2.2 0.7

The design of the Isasmelt furnace and the use of a steel lance allow the melting,
oxidation and reduction processes to be performed. The remelting process is carried out at
a temperature of 1150–1250 ◦C [47,48,53] (Figure 4).
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Figure 4. Scheme of Isasmelt technology [54].

To increase the efficiency, this operation is split between two furnaces. In the first
furnace, a continuous melting process is performed, with oxidation conducted by air
injected through a lance. The lead obtained in the process is tapped out of the furnace via a
siphon, while the lead-bearing slag is transferred intermittently to the second furnace, in
which the lead is reduced with coal, and, after the lead is drained, slag fuming is performed.
The end product of the process is dust containing 46–58% Zn, 18–30% Pb, and 0.1–2.7% Cd
in addition to waste slag [54–59].

4.1.3. Kaldo Process

Kaldo furnaces do not perform charge sintering as a separate step in the process.
Instead, the secondary materials together with lead sulphide concentrate (dried to a mois-
ture content of <1% and a particle size of <2 mm) are fed directly into the furnace and
then melted at 1400 ◦C and oxidised. The Kaldo furnace is a tilting rotary vertical con-
verter equipped with a system of three concentric lances: the inner lance is used to deliver
the charge, the middle lance delivers the fuel, and the outer lance delivers air and oxy-
gen [47,48,53].
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4.1.4. Electric Furnace Process

Another metal recovery approach, particularly to copper recovery from the slags of
nonferrous metallurgy, is the traditional method of reducing liquid slags in an electric
furnace using reducing and sulphurising agents such as coal, carbide, pyrite, and pyrrhotite
in addition to reducing gases. The recovery rates of copper and other metals using this
method are below 90%, and the disadvantages of this method include its significant energy
consumption, long process duration, and the need for reducing agents [60].

4.1.5. Thermal Electrolysis

Another method of copper recovery from Zn-Pb metallurgical slags involves subjecting
the molten slag to thermal electrolysis, which is carried out collectively (i.e., in the same
furnace) or selectively in several units, where metallic alloys of different compositions
are obtained by applying different current–voltage conditions [47,48,61]. Copper recovery
in this approach is carried out by fitting graphite electrodes that supply a direct current.
The flow of current through the liquid slag results in electrolytic separation of the metals
dissolved within it, in addition to the separation of metallic precipitates by electrocapillary
movement in the electric field. The physical and chemical properties of the slag are adjusted,
depending on its composition, by introducing suitable additives, such as calcium fluoride,
sodium chloride, or sodium carbonate [47,48,61]. This process yields Cu (>90%) and other
accompanying metals, e.g., Pb, Zn, and Ni, in the form of an alloy that can be further
processed [47,48,61].

4.1.6. Black Sea Copper Works Process

An innovative process for recovering copper from slag has been developed at the Black
Sea Copper Works (Turkey), in which the slag is cooled in air for 24 h and then crushed
and ground until 80% is a fraction finer than 0.1 mm; this fraction is subsequently floated
to produce a flotation concentrate for remelting.

Various other methods have been developed for metal recovery from slags; however,
most of them have only been tested on a laboratory scale. An example of an attempt to
recover metals from Zn-Pb metallurgical slags at a laboratory scale involves processing a
refining slag in a resistance pit furnace at 1250 ◦C (Figure 5) with a pre-oxidation roasting
step conducted by blowing 50 dm3/h of air through the slag at 800 ◦C to allow the following
reactions to proceed:

ZnS + 1.5O2 → ZnO + SO2 (9)

PbS + 1.5O2 → PbO + SO2 (10)

It is mainly these reactions that take place in the workspace of the furnace:

2ZnO + C→ Zng + CO2 (11)

ZnO + CO→ Zng + CO2 (12)

2PbO + C→ Pb + CO2 (13)

PbO + CO→ Pb + CO2 (14)

CaCO3 → CaO + CO2 (15)

2Zng + O2 → 2ZnO (16)
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In this process, the furnace charge consists of refining slags, coal (reducing agent),
and limestone CaCO3 (flux). During the processing of the slags, sample weight loss was
observed, which primarily occurred due to zinc evaporation caused by the reduction
process. This zinc then is oxidised and accumulates on the filter in the form of ZnO
(Figure 6a) [19]. In addition to the zinc oxidation reaction, the observed change in the
sample weight in this method may result from various other factors, including the reduction
of lead oxide, the combustion of coal and sulphur, or the addition of limestone or iron. The
lead yield in this process is higher than 75%. It is difficult to determine the efficiency of
zinc recovery from slags because during their processing, Zn is oxidised, and the resulting
ZnO accumulates not only on the filter but also in the furnace chamber (Figure 6b) [19].
This ZnO would require further leaching with a sulphuric (VI) acid solution to obtain Zn.
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4.2. Hydrometallurgical Methods
4.2.1. Chemical Leaching

Hydrometallurgical methods of metal recovery from waste include leaching, solution
purification, metal separation, and isolation of pure metals at temperatures below 100 ◦C.

The leaching process, which forms the basis of hydrometallurgical processes, can
be performed using acid solutions (such as sulphuric or hydrochloric acid), ammonia
solutions, or alkaline hydroxide solutions. The choice of the leaching medium depends on
the chemical form in which the metal is present in the waste [47,48,62–67]. Most studies
to date have investigated the leaching of Zn-Pb metallurgical waste using sulphuric (VI)
acid solutions, with the choice of leaching conditions dependent, among other factors,
on the mineral and chemical composition of the metallurgical waste, as the solubility of
its constituent phases in sulphuric (VI) acid solutions varies significantly [47,48,62–67].
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Depending on the form of zinc present, the zinc leaching process occurs according to the
equations exemplified below [47,48]:

ZnO + H2SO4 = ZnSO4 + H2O (17)

ZnFe2O4 + 4H2SO4 = ZnSO4 + Fe2(SO4)3 + 4H2O (18)

Fe3O4 + 4H2SO4 = FeSO4 + Fe2(SO4)3 + 4H2O (19)

Ca[Zn(OH)3]2 · H2O + 3H2SO4 = CaSO4 + 2ZnSO4 + 8H2O (20)

ZnSiO3 + H2SO4 = ZnSO4 + SiO2 + H2O (21)

The rates of the above reactions are determined by several factors, the most important
of which are the mineral composition, material grain size, and sulphuric (VI) acid concen-
tration. Zinc silicate (ZnSiO3) solubilises at a much lower rate than the oxide form (ZnO),
while the efficiency of the leaching process following Reactions (17) and (19) increases
significantly with increasing temperature. Other slag components, i.e., Cu, Ni, Cd, Pb, etc.,
react similarly to sulphuric (VI) acid.

Minor components present in the zinc-bearing material can be classified into two
groups [47,48]:

– Those passing into solution during the leaching process, including Cu, Cd, Fe, Mg,
and Ni;

– Those forming insoluble salts, including PbSO4, CaSO4·2H2O, BaSO4.

The next step in the zinc recovery process is the purification of the zinc sulphate (VI)
solution, which is then electrolysed. In practice, chemical purification of the electrolyte
may be carried out continuously or in several stages. The average composition of the crude
ZnSO4 solution is 135 mg/dm3 Zn, 470 mg/dm3 Cu, 168 mg/dm3 Cd, 18 mg/dm3 Fe,
0.9 mg/dm3 As, 0.11 mg/dm3 Sb, and 12.7 mg/dm3 Co [47].

Purification of the zinc sulphate solution is conducted using various methods, which
are selected according to the type of contaminant to be removed. Some impurities (As,
Sb, Fe) are removed during neutral leaching, as the salts of these elements hydrolyse
under these conditions and are adsorbed onto the Fe(OH)3 surface. Hydrolytic purification
involves selecting suitable process conditions (solution pH, temperature, etc.) to ensure
that the usually sparingly soluble hydroxides of metals that contaminate the solution
are formed.

Depending on the conditions of the hydrolytic electrolyte purification process, iron
precipitates from the solution in the form of goethite (FeOOH), hematite (Fe2O3), or jarosite
(MFe3(SO4)2(OH)6, where M = NH4+, K+, Na+, or 0.5Pb2+). The preferred precipitate type
in hydrometallurgical processing is jarosite. The obtained jarosite is characterised by highly
favourable filtration properties, which significantly reduce operating costs for the process.
In addition, during jarosite precipitation, it is also possible to remove other impurities from
the electrolyte, e.g., arsenic [47,48]. To remove copper, cadmium, nickel, and cobalt from
the zinc sulphate (VI) solution, the cementation method (internal electrolysis) is applied,
which involves precipitating the more noble metal from the electrolyte with zinc dust.

Ammonia solutions are another group of agents commonly used for metal leaching in
hydrometallurgical processes. A Spanish company, CENIM, and a Portuguese company,
LENTI, developed a CENIM–LENTI technology to process sulphide concentrates and
zinc-bearing waste using ammonium salts. The main waste-leaching reagent in this process
is ammonium chloride. Zinc in the leach residue is present as ZnO-Fe2O3, which is then
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extracted with a solution of di-2-ethylhexylphosphoric acid (D2EHPA) and isolated using
electrolysis [47,48,53,68,69].

PbCl2 (s) + 2Cl− (aq) → PbCl42−
(aq) (22)

A study using acetic acid as the leaching agent for Pb from slags was performed by
Forte et al. [70]. In their study, the leaching process involved dissolving metallic Pb in
concentrated acetic acid and then precipitating PbSO4 by adding H2SO4 to the solution.
However, the major disadvantage of this method is that only lead present in metallic form
is recovered.

Kim et al. [71] proposed two methods for the selective recovery of lead, copper, nickel,
and zinc from lead slag. The first metal recovery method was based on a two-stage leaching
process, in which the first stage involved leaching the metals with Fe(III) + HNO3, and the
second stage involved roasting the residue and leaching it with water (Figures 7 and 8).
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Attempts have also been made to process hydrometallurgical waste using sodium
hydroxide. The main problem with this method is the presence of sparingly soluble zinc
compounds in the waste, e.g., ferrites.

Leaching of zinc from metallurgical waste has been conducted using NaOH solution
under various conditions. This process was most commonly performed at temperatures
of 25 and 90 ◦C, using NaOH solutions of 2–6 mol/dm3 concentration for 4 h (tradi-
tional method). Pressure leaching in an autoclave using a 6 mol/dm3 NaOH solution at
120–200 ◦C for 4 h was also investigated, as was the leaching process after pretreating the
waste in a microwave oven (1 kW, 2.45 GHz). The best results were obtained with the
traditional method, in which the zinc recovery reached 74%. In addition to iron oxides, the
residual solid phase after leaching contained insoluble zinc ferrites [72–74].

4.2.2. Bioleaching

Another group of methods used to recover metals from metallurgical slags involves
bioleaching, a process in which microorganisms are used to convert solid, insoluble metals
and their compounds to water-soluble forms [75,76]. Most microorganisms capable of
biohydrometallurgical processes belong to the group of chemolithotrophs, which use carbon
dioxide as their source of cellular carbon. For their energy source, they can use reduced
sulphur and iron compounds or oxidation reactions of elemental sulphur, sulphides, or
thiosulphates.

The microorganisms involved in leaching include not only bacteria (genera: Acidithiobacil-
lus, Thiobacillus) but also fungi (including the genera Penicillium, Aspergillus, Fusarium,
Alternaria, and Candida). In practice, biohydrometallurgical processes are carried out using
mixtures of microbial populations that occur naturally in iron- and sulphur-rich environ-
ments; bacterial monocultures are not used. The bioleaching process follows two main
mechanisms: indirect and direct [77–80].

The indirect mechanism involves chemical and bacterial oxidation, with microbial
oxidation of Fe2+ ions derived from minerals used to form Fe3+ ions, which then participate
in the leaching process. Microorganisms are the source of the leaching agent, which
chemically oxidises the sulphide minerals. In this model, no physical contact occurs
between the bacterial cell and the mineral surface [77–80].

MeS + Fe2(SO4)3MeSO4 + FeSO4 + S (23)

S + 3O2 + 2H2O→ 2H2SO4 (24)

In the direct mechanism, the electrons obtained in the bacterial oxidation process are
sourced directly from the reduced minerals. In this model, there is physical contact between
the bacterial cell and the mineral surface. These reactions are most often associated with
the oxidation of pyrite.

4FeS2 + 15O2 + 2H2O→ 2Fe2(SO4)3 + 2H2SO4 (25)

MeS + 2O2 →MeSO4 (26)

Microorganism selection is a key factor when performing bioleaching of metallurgical
slags. The indigenous microorganisms present at the site where the slags are deposited
have the highest contaminant removal efficiency by adapting to conditions with higher
metal content. For this reason, Acidithiobacillus bacteria are the most commonly used in
studies of bioleaching of components from metallurgical slags because environmental
bacteria from these genera have been widely reported in slag deposition sites [77–80].

Laboratory-scale bioleaching experiments include batch leaching, semi-open flow-
through leaching, and continuously stirred tank reactors [79–84]. On a laboratory scale, a
method has been developed to process slags from zinc and lead production from former
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Yugoslavian plants by gravity enrichment of the slags, resulting in a concentrate with
a 94.5 wt% Pb content. Waste from the enrichment process containing 38.7 wt% Fe,
32.3 wt% SiO2, 5.8 wt% Zn, and 3.0 wt% Pb is subjected to bacterial leaching using au-
totrophic thionic bacteria to recover zinc [47,48,61].

Bioleaching can be used not only to extract valuable metals but also to remove toxic
elements by disrupting the amorphous structure of slags. The efficiency of bioleaching
depends on various factors, including the pH, leaching time and temperature, and slag
structure [82–84]. However, despite its high efficiency, bioleaching to date has only been
performed on a laboratory scale. Due to the long processing times, low yields, and problems
with separating metals from the solution associated with this approach, it has not yet been
applied at an industrial scale.

5. Discussion and Conclusions

This article presents a literature review on metallurgical slags from the zinc and lead
production process as a source material for metal extraction. The core conclusions of the
article are as follows.

– Metallurgical slags from zinc and lead production contain significant amounts of
metals and semi-metals, dominantly Si, Al, Ca, Ma, Zn, and Pb. Among the slags of
Zn-Pb metallurgy, refining slags are distinctive due to their much higher contents of
Zn, Pb, and Cu and significantly lower concentrations of Si, Al, Ca, and Mg.

– The mineral composition of Zn-Pb metallurgical slags is dominated by multiphase
crystalline conglomerates formed by high-temperature processes. These take the form
of intergrowths of fine, intercalated clusters of individual phases, among which one is
always dominant. Typical mineral constituents in these slags include Zn and Fe oxides,
Fe hydroxides, Zn, Pb, Fe and Cu sulphides, Pb sulphates, and hydrated Zn, Ca, Cu
sulphates, Zn silicates, olivine group silicates, melilites (Ca,Na)2(Al,Mg)[(Si,Al)2O7],
Pb and Zn carbonates, spinels, and multicomponent metal alloys of Pb, Zn, Cu, Fe,
As, and Sb. In addition, tochilinite [Fe0.9]6S6[Mg0.71Fe0.29(OH)2]5 is present in refining
slags [85,86], whereas this component has not been identified in shaft slags from Zn-Pb
metallurgy.

– The choice of slag processing technology is determined primarily by the mineral
composition of the slag, which in turn is determined by various factors, including
the diversity of the feedstock, the variability in the technological parameters, and the
rate of slag cooling (which determines the ratio of the amorphous to the crystalline
phase). Slag processing methods commonly applied on an industrial scale include
pyrometallurgical techniques, such as fuming, slag remelting in Isasmelt or Kaldo
furnaces, and thermal electrolysis, and hydrometallurgical leaching, which can be
performed using acid solutions (such as sulphuric or hydrochloric acid), ammonia
solutions, or alkaline hydroxide solutions. The choice of the leaching medium depends
on the chemical form in which the target metal is present in the waste. Various other
methods have also been developed to recover metals from slag; however, most of these
have only been tested on a laboratory scale. For example, the bioleaching method,
despite its high efficiency, has not been applied on an industrial scale due to its long
process duration, low yields, and problems with separating metals from the solution.

– The pyrometallurgical and hydrometallurgical methods described in detail in this arti-
cle are used on an industrial scale due to their high efficiency (amounting
to >80% average metal recovery) and effective waste neutralisation by obtaining
high-purity metallic products while minimising the formation of toxic secondary
waste. Other Zn-Pb slag processing methods described in the literature, i.e., the IBDR-
ZIPP pyrometallurgical process or hydrometallurgical processes (e.g., Española del
Zinc, Placid), represent technological concepts verified on a pilot scale.

– The presented technologies in this article represent a rational approach to using
secondary materials from Zn-Pb metallurgy and are consistent with current circular
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economy trends. These methods also consider complementary activities aimed at
the following:

• Improving the efficiency of using Zn-Pb slags as a secondary raw material;
• Comprehensive processing of Zn-Pb metallurgical waste;
• Reducing the amount of waste generated at individual stages of the technological

process.

– The processing of metallurgical slag is an extremely important topic as, in addition to
the economic benefits of the process, it significantly neutralises the potential of slag to
act as a source of environmental pollution.
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20. Adamczyk, Z.; Melaniuk-Wolny, E.; Nowińska, K. The Mineralogical and Chemical Study of Feedstock Mixtures and By-Products from
Pyrometallurgical Process of Zinc and Lead Production; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2010.
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33. Nowińska, K. Mineralogical and chemical characteristics of slags from the pyrometallurgical extraction of zinc and lead. Minerals
2020, 10, 371. [CrossRef]
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Śląskie area, Upper Silesia, Poland: A SEM—XRD overview. Mineral.-Spec. Pap. 2014, 42, 110.
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