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Abstract: Commercial oxygen-free copper sheets were cold-rolled with reduction rates ranging from
20% to 87% and annealed at 400, 500 and 600 ◦C. The microstructure and texture evolution during the
cold-rolling and annealing processes were studied using optical microscopy (OM), scanning electron
microscopy (SEM) and electron back-scattered diffraction (EBSD). The results show that the defor-
mation textures of {123}<634> (S), {112}<111> (Copper) and {110}<112> (Brass) were continuously
enhanced with the increase in cold-rolling reduction. The orientations along the α-oriented fiber
converged towards Brass, and the orientation density of β fiber obviously increased when the rolling
reduction exceeded 60%. The recrystallization texture was significantly affected by the cold-rolling
reduction. After 60% cold-rolling reduction, Copper and S texture components gradually decreased,
and the {011}<511> recrystallization texture component formed with the increase in annealing tem-
perature. After 87% cold-rolling reduction, a strong Cube texture formed, and other textures were
inhibited with the increase in annealing temperature. The strong Brass and S deformation texture
was conducive to the formation of a strong Cube annealing texture. The density of the annealing
twin boundary decreased with the increase in annealing temperature, and more annealing twin
boundaries formed in the oxygen-free copper sheets with the increase in cold-rolling reduction.

Keywords: microstructure; texture; copper sheet; rolling reduction; annealing twin

1. Introduction

The rapid advancement of new energy vehicles, aerospace, high-speed railways,
lead frames and home appliances has raised higher demands for the overall performance
of copper sheets and strips. They are required to possess not only high strength and
electrical and thermal conductivity but also excellent stamping, bending, drawing and other
forming capabilities [1–3]. The formability is generally influenced by the microstructure and
crystallographic texture. For instance, a strong {001}<100> (Cube) texture is unfavorable
for deep drawing due to significant r-value differences between the 0◦ and 45◦ directions,
whereas the coexistence of {123}<634> (S), {112}<111> (Copper) and {110}<112> (Brass) and
{110}<001> (Goss) texture components contributes to improving the average r-values for
deep drawability [4]. The texture control was found to be highly effective in achieving
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superior formability, with the fundamental principle being the mastery of the deformation
and recrystallization evolution law for copper sheets.

Previous research has demonstrated that the texture evolution of copper and copper
alloys was influenced by factors such as chemical composition, grain size, second-phase
precipitation, deformation amount, deformation mode, deformation and annealing tem-
peratures [5–7]. In high-stacking-fault-energy (SFE) metals like pure copper, the Copper
texture component became stronger after rolling, whereas in low-SFE alloys like brass,
the formation of the Brass texture was promoted due to twin rotation [8]. The addition
of alloy elements affected the change in SFE and the precipitation of the second phases,
thus impacting texture formation and development. Additionally, the initial grain size
also affected the type of deformation texture. For instance, after 97% rolling reduction, a
typical Copper texture was obtained in the sample with coarse grains (24 µm), while a
Brass texture was obtained for the sample with ultrafine grains (0.36 µm) [9]. Furthermore,
in diffusion-precipitated reinforced copper alloys, texture evolution was correlated with
the size, distribution and volume fraction of the second-phase particles [10,11]. With the
increase in aging temperature, the secondary phase precipitation of the Cu-Ni-Si alloy
after aging treatment gradually decreased the Copper and Goss texture components, while
the Cube texture component gradually increased [12]. The deformation mode was also
a key factor influencing the type and distribution of textures. Copper and Brass texture
components remained stable during deformation for face-centered cubic (FCC) metals with
the dislocation slip as the primary deformation mechanism. With an increase in twinning,
the Copper texture gradually weakened, while the Brass texture strengthened, and shear
deformation enhanced Brass texture. The rolling reduction rate was also a crucial process
parameter for controlling the deformation microstructure, with some deformation textures
being enhanced with increasing degrees of deformation. In the case of the Cu-Ni-Si alloy,
Cu-Cr-Zr alloy and α brass, as cold-rolling reduction rates increased, the Copper texture
gradually transitioned to Brass texture [13]. Different rolling methods also led to changes in
deformation textures, and asymmetric rolling caused the grain orientation to rotate around
the transverse direction of the sample [14].

Heat treatment following deformation can weaken the deformation texture and lead
to the formation of the recrystallization texture. The great influence on the grain orientation
is the grain boundary migration, and the difference and distribution of grain orientation
determine the formation and development of the recrystallization texture [15]. The S
deformation texture has been frequently associated with the Cube recrystallization texture
in FCC metals, exhibiting a ~40◦ <111> rotational relation. Some findings suggest that Cube
nuclei are more likely to grow into copper-oriented grains rather than S-oriented grains,
indicating that Copper deformation texture plays a greater role in Cube recrystallization
texture [16]. However, beyond Cube texture, the relationship between other types of
recrystallization textures and deformation textures remains unclear and requires further
investigation.

In this study, the microstructure and texture of oxygen-free copper sheets with different
cold-rolling reduction rates and annealing temperatures were analyzed to elucidate the
evolution of the microstructure and textures during rolling and annealing. The findings
can serve as valuable references for texture control and process optimization in production.

2. Experimental Section

The experimental materials were 2.3 mm thick hot-rolled oxygen-free copper sheets
(C10200, with a Cu content of 99.995 wt%). The chemical composition was determined by
an optical emission spectrometer and is presented in Table 1.

Table 1. The chemical composition of the copper sheets (wt%).

Cu Zn Ag Fe Sn Pb Bi As P S O

99.995 0.0005 0.0005 0.0002 0.0004 0.0004 0.0003 0.0006 0.0003 0.0006 0.0003
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The hot-rolled copper sheets were subjected to cold-rolling on a four-high rolling mill
with reduction rates of 20%, 40%, 60%, 80% and 87%, respectively. The work roll diameter
of the rolling mill was 90 mm, the support roll diameter was 280 mm and the roll body
length was 350 mm. Subsequently, the cold-rolled sheets were annealed at temperatures of
400, 500 and 600 ◦C for 5 min. Upon reaching the specified time, all specimens were rapidly
cooled in ambient air.

To observe the metallographic microstructure, each sample was ground, polished
and etched by an etchant solution composed of 3 g FeCl3, 2 mL HCl and 96 mL H2O. The
etched specimens were observed using a Motic BA310MET optical microscope (OM). The
crystallographic texture of the samples was analyzed using a Zeiss ΣIGMA scanning elec-
tron microscope (SEM) and an Oxford instruments HKL-Chanel 5 electron back-scattered
diffractometer (EBSD). Samples for EBSD testing were prepared by electropolishing at
room temperature, using an electrolyte solution consisting of 825 volume phosphoric acid
and 175 volume distilled water.

3. Results and Discussion
3.1. Microstructure and Texture of Rolled Copper Sheets

Figure 1 shows the metallographic microstructure of copper sheets with different
rolling reduction rates. Initially, the grains were equiaxial before cold-rolling. However, as
the cold-rolling reduction increased, the grains became elongated and flattened. When the
reduction rate reached 80%, a distinct fibrous microstructure emerged.
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Figure 1. Metallographic microstructure of copper sheets under different rolling reductions: (a) 0;
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Figure 2 illustrates the inverse pole figure (IPF) maps of copper sheets subjected to
varying cold-rolling reduction rates. As the reduction rate increased, dislocation slips
resulted in grain orientation rotation and the formation of deformation bands. This led to a
weakening and eventual disappearance of recrystallization textures, while simultaneously
strengthening deformation textures.
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Figure 2. IPF maps of copper sheets under different rolling reductions: (a) 0; (b) 20%; (c) 40%; (d) 60%;
(e) 80% and (f) 87%.

Figure 3 shows the orientation distribution function (ODF) maps of copper sheets
subjected to varying degrees of cold-rolling reduction. As the reduction rate increased, the
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Goss texture weakened, while the Copper, Brass and S textures consistently strengthened.
In particular, there was a more pronounced concentration of S orientation.
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Figure 4 illustrates the volume fractions of the main deformation texture components
and the variation curves of orientation densities along α-fiber and β-fiber under different
rolling reductions. As an FCC metal undergoing the rolling process, the grain orientation
constantly changed and gradually converged towards stable lines, namely the α and β

fibers. The predominant texture components on the α fiber included Goss and Brass,
while Copper and S texture components were present on the β fiber. The position of
Brass orientation in Euler space corresponds to the intersection of the α and β fibers [17].
As the cold-rolling reduction increased, the volume fractions of Copper, S and Brass
texture components increased, and the orientation density of both α and β fibers increased.
Beyond a 40% rolling reduction rate, there was a noticeable increase in {011}<211> texture
component density, while {011}<100> remained relatively unchanged. Upon exceeding
a 60% rolling reduction rate, there was a significant rise in the orientation density of
the β fiber. Finally, when surpassing an 80% rolling reduction rate, there was maximal
augmentation observed in {011}<211> texture component density.
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Figure 4. Volume fractions of main deformation texture components (a), variation curves of orienta-
tion densities along α-fiber (b) and β-fiber (c) under different rolling reductions.

3.2. Microstructure and Texture of Annealed Copper Sheets

Figure 5 shows the microstructure of copper sheets subjected to rolling reduction rates
of 60% and 87%, followed by annealing at temperatures of 400, 500 and 600 ◦C. At the same
annealing temperature, the average grain size of the sample with an 87% rolling reduction
was larger than that of the sample with a 60% rolling reduction. Additionally, abnormal
grain growth was observed in the sample with an 87% rolling reduction.
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Figure 5. Metallographic microstructure of copper sheets with different rolling reduction rates and
annealing temperatures: (a) 60%, 400 ◦C; (b) 87%, 400 ◦C; (c) 60%, 500 ◦C; (d) 87%, 500 ◦C; (e) 60%,
600 ◦C and (f) 87%, 600 ◦C.

Figure 6 shows the IPF maps of the annealed copper sheets with rolling reduction rates
of 60% and 87%. After annealing at temperatures of 400, 500 and 600 ◦C, EBSD statistical
analysis revealed that the average grain sizes for the sample with a 60% rolling reduction
were measured at 8.4 µm, 9.4 µm and 10.7 µm, respectively; while for the sample with an
87% rolling reduction, they were recorded as being 8.8 µm, 10.5 µm and 14 µm, respectively.
With increasing annealing temperature, {110} texture was observed to be enhanced in the
sample with a 60% rolling reduction, whereas {100} texture was significantly strengthened
in the sample with an 87% rolling reduction, and grains with the same orientation merged.
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Figure 6. IPF maps of copper sheets with different rolling reduction rates and annealing temperatures:
(a) 60%, 400 ◦C; (b) 87%, 400 ◦C; (c) 60%, 500 ◦C; (d) 87%, 500 ◦C; (e) 60%, 600 ◦C and (f) 87%, 600 ◦C.

Figure 7 shows the ODF maps of the annealed copper sheets with rolling reduction
rates of 60% and 87%. In the copper sheets with a 60% rolling reduction, an increase in
annealing temperature led to a gradual decrease in the deformation texture components
of {112}<111> and {123}<634>, while the {011}<511> recrystallization texture component
appeared and increased, which deviated 19◦ from Brass orientation. For copper sheets
with an 87% rolling reduction, increasing annealing temperature resulted in decreased
deformation texture components of {123}<634> and {011}<111>, while the recrystallization
texture component of {001}<100> was consistently enhanced. Ultimately, the Cube texture
emerged as the strongest and dominant one in the sample.
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For copper sheets subjected to a 60% rolling reduction, the sample exhibited lower
deformation energy storage, a lower recrystallization driving force and an extended incu-
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bation time before recrystallization compared to the sample with an 87% rolling reduction.
Consequently, the sample with 60% rolling reduction displays a higher proportion of an
unrecrystallized microstructure under the same annealing conditions. During the annealing
process, the grain size gradually increased due to low-angle grain boundary migration
and subgrain growth by rotation and coalescence. The orientation gradients as shown
in Figure 6 suggest the rotation of grain orientation, resulting in the weakening of the
{112}<111> and {123}<634> deformation textures and the strengthening of the {011}<511>
texture component.

Figure 8 shows the distribution of the main texture components in the annealed copper
sheets with rolling reduction rates of 60% and 87%. In the samples with a 60% rolling
reduction, S-, Goss-, Copper- and Brass-oriented grains were present, showing a relatively
uniform distribution. Cube-oriented grains were found to be the least abundant. Con-
versely, in the sample with an 87% rolling reduction, an increase in annealing temperature
resulted in significantly larger Cube-oriented grains compared to other oriented grains.
Additionally, there was a decrease in adjacent S-oriented grains which were predominant
before annealing.
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Figure 9 illustrates the volume fractions of the main texture components in annealed
copper sheets subjected to rolling reduction rates of 60% and 87%. For samples with a 60%
reduction, the volume fractions of the deformation texture components of S and Copper
gradually decreased with increasing annealing temperature. The volume fraction of Brass
texture components initially decreased and then increased, while Goss and Cube texture
components remained at lower levels. In samples with an 87% reduction, the volume
fractions of deformation texture components S, Brass and Copper significantly decreased
at 400 ◦C, while the volume fraction of the Cube recrystallization texture component
greatly increased with higher annealing temperatures. During the grain growth stage after
recrystallization, the growth rate of Cube-oriented grains was notably higher than that
of other oriented grains due to a selective growth advantage. Ultimately, Cube-oriented
grains swallowed other oriented grains of smaller sizes due to the size effects, establishing
the Cube texture as the predominant recrystallization texture.
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Figure 9. Volume fractions of main texture components in annealed copper sheets with different
rolling reduction rates: (a) 60% and (b) 87%.

Figure 10 shows the distribution and density of twins in copper sheets with rolling
reduction rates of 60% and 87%. The statistical results obtained from EBSD indicate that the
density of the 60◦ <111> (Σ3) twin was very low in both of the cold-rolled samples, with
most of the twins forming during annealing. It is well known that annealing twins were
prevalent in the recrystallized grains of pure copper with a high SFE [18,19]. Annealing
twins form as a result of growth accidents on differently inclined {111} facets present on a
migrating grain boundary, and growth twins also form due to growth accidents on the {111}
planes [20]. Following annealing at temperatures of 400, 500 and 600 ◦C, the proportions of
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twin boundaries in the sample with a rolling reduction rate of 60% were measured at 2.8%,
2.3% and 1.6%, respectively, whereas those in the sample with an 87% rolling reduction
rate were recorded at levels of 56%, 59% and 52%. These findings suggest that the density
of annealing twins decreases with increasing annealing temperature, and the annealing
twin boundaries increased by improving the cold-rolling reduction before recrystallization.
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Figure 10. Distribution and density of twins in copper sheets with different rolling reduction rates
and annealing temperatures: (a) 60%, As-rolled; (b) 87%, As-rolled; (c) 60%, 400 ◦C; (d) 87%, 400 ◦C;
(e) 60%, 500 ◦C; (f) 87%, 500 ◦C; (g) 60%, 600 ◦C and (h) 87%, 600 ◦C.



Materials 2024, 17, 2202 13 of 16

Figure 11 illustrates the area fractions for low-angle grain boundaries (LAGBs, with a
misorientation angle θ < 15◦), high-angle grain boundaries (HAGBs, with a misorientation
angle θ ≧ 15◦) and Σ3 twin boundaries in copper sheets subjected to rolling reductions of
60% and 87%. It is noteworthy that the presence of annealing twin boundaries significantly
increased at 400 ◦C in the samples with an 87% rolling reduction, exhibiting a similar trend
to HAGBs during the annealing process. In contrast, the area fraction of annealing twin
boundaries remained consistently low in the samples with a 60% rolling reduction.
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Figure 11. Grain boundary characteristics of copper sheets with different rolling reduction rates:
(a) 60% and (b) 87%.

Figure 12 shows a typical region with many annealing twins observed in the sample
annealed at 500 ◦C after rolling with a reduction rate of 87%. The crystallographic orienta-
tion of the annealing twins growing within the large Cube-oriented recrystallized grain
was identified as S, Copper and Brass, with confirmed misorientation angles along three
white lines in Figure 12a showing a 60◦ <111> relationship. As the annealing temperature
increased, the S-, Copper- and Brass-oriented grains were gradually engulfed by Cube-
oriented grains during grain growth, leading to a gradual decrease in twin boundaries
between them, as depicted in Figure 8. However, it was observed that the sample with
an 87% rolling reduction still exhibited a higher density of annealing twins compared to
the sample with a 60% rolling reduction at higher annealing temperatures. This suggests
that the density of annealing twins after recrystallization was correlated with prior de-
formation levels, and more annealing twin boundaries formed in the oxygen-free copper
sheets with the increase in cold-rolling reduction.
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Figure 12. Typical region with many annealing twins selected in Figure 8d: (a) main texture compo-
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4. Conclusions

1. The deformation textures of S, Copper and Brass were progressively enhanced with
the increase in cold-rolling reduction. When the rolling reduction exceeded 60%, the
orientations along the α-oriented fiber converged towards Brass, and the orientation
density of the β fiber obviously increased.

2. The recrystallization texture was significantly influenced by the cold-rolling reduction.
After a 60% cold-rolling reduction, Copper and S texture components gradually
decreased, while the {011}<511> recrystallization texture component formed with an
increase in annealing temperature. Following an 87% cold-rolling reduction, a strong
Cube texture formed, and other textures were suppressed as annealing temperature
increased. The strong Brass and S deformation texture favored the formation of a
strong Cube annealing texture.

3. The annealing twin density decreased with the increase in annealing temperature,
and more annealing twin boundaries formed in oxygen-free copper sheets with the
increase in cold-rolling reduction.
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