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Abstract: Knowledge about the thermodynamic equilibria of the P2O5-Na2O and P2O5-MgO sys-
tems is very important for controlling the phosphorus content of steel materials in the process of
steelmaking dephosphorization. The phase equilibrium and thermodynamic data of the P2O5-Na2O
and P2O5-MgO systems were critically evaluated and re-assessed by the CALPHAD (CAlculation
of PHAse Diagram) approach. The liquid phase was described by the ionic two-sublattice model
for the first time with the formulas (Na+1)P(O−2, PO3

−1, PO4
−3, PO5/2)Q and (Mg+2)P(O−2, PO3

−1,
PO4

−3, PO5/2)Q, respectively, and the selection of the species constituting the liquid phase was based
on the structure of the phosphate melts. A new and improved self-consistent set of thermodynamic
parameters for the P2O5-Na2O and P2O5-MgO systems was finally obtained, and the calculated
phase diagram and thermodynamic properties exhibited excellent agreement with the experimental
data. The difference in the phase composition of invariant reactions from the experimentally deter-
mined values reported in the literature is less than 0.9 mol.%. The present thermodynamic modeling
contributes to constructing a multicomponent oxide thermodynamic database in the process of
steelmaking dephosphorization.

Keywords: P2O5-Na2O system; P2O5-MgO system; CALPHAD; thermodynamic optimization;
phase diagram

1. Introduction

As society progresses, industries advance to higher developmental stages, leading
to more demanding usage of steel materials and increased quality requirements for steel
materials across various sectors. Phosphorus, as one of the detrimental elements in steel,
serves as a critical indicator of steel quality. Therefore, the control of phosphorus content
in steel remains a crucial target for enterprise development. In the steelmaking process,
the inclusion of alkaline earth metal oxide fluxes such as MgO can effectively diminish
phosphorus in liquid steel, while alkali metal oxide fluxes like Na2O also exhibit a strong
dephosphorization effect [1]. The phase diagrams and thermodynamic properties of the
P2O5-Na2O and P2O5-MgO systems are essential to effectively control the dephosphoriza-
tion effect of slags and to understand the phosphorus distribution ratio between liquid
iron and oxide slags such as Na2O and MgO. Furthermore, good thermodynamic descrip-
tions provide phase diagrams and thermodynamic data that can also effectively provide a
theoretical basis for material design [2–6].

Xie et al. [7] utilized the modified quasi-chemical model to describe the liquid phase
and firstly optimized the thermodynamic parameters of the P2O5-Na2O system based
on the reliable experimental phase diagram and thermodynamic properties, and their
calculations were in good agreement with the experimental data, while the description of
the enthalpy of formation of Na5P3O10 was inaccurate. In 2015, Ding et al. [8] evaluated
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a P2O5-MgO system by using the modified quasi-chemical model to describe the liquid
phase, and PO4

3− was considered the basic unit of P2O5 in the liquid phase, but the
calculations showed significant discrepancies with the experimental data. Furthermore, a
set of thermodynamic data describing the liquid phase with the modified quasi-chemical
model does not simultaneously describe both the oxide and metal liquid phases, which
limits the study of the phosphorus distribution ratio between liquid iron and oxide slags.
Therefore, it is meaningful to construct a set of multicomponent thermodynamic databases
that can describe both oxide and metal liquids using appropriate thermodynamic models to
guide the addition of oxide fluxes in the steelmaking dephosphorization process. The ionic
two-sublattice model allowing one set of the thermodynamic parameters to simultaneously
describe both the oxide and metallic liquid [9] was used to describe the liquid phase
for the first time in the current work. Additionally, the ionic two-sublattice model can
not only rationally describe the phosphate melt structure but also adequately reproduce
the thermodynamic properties of complex liquids such as slag [10,11]. This is highly
beneficial to the construction of a slag system multivariate database to guide steelmaking
dephosphorization.

This work aimed to conduct a phase diagram thermodynamic optimization of the
P2O5-Na2O and P2O5-MgO systems using the CALPHAD (CAlculation of PHAse Diagram)
approach through establishing suitable thermodynamic models. The crystal structure, lim-
ited measured phase diagram and thermodynamic properties were optimized to construct
a Gibbs energy expression for each phase in the systems to obtain a set of thermodynamic
parameters reasonably describing the phase diagrams, covering the whole composition
range using Thermo-Calc software.

2. Review of Literature Data

The experimental phase diagram information and thermodynamic property data of
the P2O5-Na2O and P2O5-MgO systems are systematically evaluated. The crystal structures
of the solid phases in the systems are listed in Table 1.

Table 1. Crystal structures of all solid phases in the P2O5-Na2O and P2O5-MgO systems.

System Compound Crystal System Space Group Reference

P2O5-Na2O γ-NaPO3 Orthorhombic P21P21P21 [12]
Orthorhombic Pnma [13]

β-NaPO3 Triclinic P21/n [14]
α-NaPO3 Monoclinic P21/c [15]

β-Na5P3O10 Monoclinic C2/c [16]
α-Na5P3O10 Monoclinic C2/c [17]
α-Na4P2O7 Orthorhombic P21P21P21 [18]
β-Na3PO4 Tetragonal P421c [19]
α-Na3PO4 Cubic Fm3m [20]

Orthorhombic Pnma [21]
P2O5-MgO Mg3P2O8 Monoclinic P21/b [22]

Monoclinic P21/n [23]
Monoclinic P21/n [24]
Monoclinic P21/n [25]

Triclinic P1 [26]
β-Mg2P2O7 Monoclinic P21/c [27]
α-Mg2P2O7 Monoclinic C2/m [28]

MgP2O6 Monoclinic C2/c [29]
Monoclinic C2/c [30]

MgP4O11 Monoclinic P21/c [31]
Monoclinic P21/c [32]

Orthorhombic Pmc21 [33]

α/β/γ: the polymorph from high temperature to low temperature.
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2.1. P2O5-Na2O System

A phase diagram of the P2O5-Na2O system has been reported by several
researchers [34–39]. Partridge et al. [34], using thermal, microscopic and X-ray diffrac-
tion (XRD) analysis, determined the liquidus of the NaPO3-Na4P2O7 system and confirmed
the presence of the Na5P3O10 compound. Two invariant reactions of L = β − NaPO3 + α −
Na5P3O10 and L + α− Na4P2O7 = α− Na5P3O10 were reported to occur at 824 K and 893 K,
respectively. And the melting points of NaPO3, Na5P3O10 and Na4P2O7 were 898 K, 788 K
and 1258 K, respectively. In their work [34], the Na4P2O7 and NaPO3 phases exhibited a lot
of phase transitions from room temperature to melting point. The transition temperatures
of Na4P2O7 were found to be 673 K, 783 K, 793 K and 818 K by differential thermal analysis
(DTA). Two phase transitions of NaPO3 at 677 K and 783 K were detected. Subsequently,
Morey and Ingerson [35] also studied the phase equilibria of the NaPO3-Na4P2O7 sys-
tem in good agreement with the work of Partridge et al. [34]. Two invariant reactions
L = β − NaPO3 + α − Na5P3O10 and L + α − Na4P2O7 = α − Na5P3O10 were measured
to have reaction temperatures of 825 K and 895 K, and the melting points of NaPO3 and
Na4P2O7 were observed to be 901 K and 1262 K, respectively, but the third structure of
NaPO3 was not found. Turkdogan et al. [36], using the thermal, microscopic, and DTA
methods, determined the phase diagram of the NaPO3-Na3PO4 system and did not report
the presence of Na5P3O10. Three invariant reaction temperatures of L = β − NaPO3 + α −
Na5P3O10, L + α − Na4P2O7 = α − Na5P3O10 and L = α − Na4P2O7 + β − Na3PO4 in the
NaPO3-Na3PO4 system were suggested to be 763 K, 893 K and 1218 K by Markina et al. [37],
respectively. In 1970, Osterheld et al. [38] determined the phase transition temperature
of the Na4P2O7-Na3PO4 system below 1573 K by thermal analysis and high-temperature
microscopy. They reported that the eutectic reaction L = α − Na4P2O7 + β − Na3PO4
occurred at 1225 K, and two compounds (Na4P2O7 and Na3PO4) melted congruently at
1271 K and 1785 K, respectively. In 1972, Berak et al. [39] observed three invariant reactions
in the liquidus study of the Na2O-P2O5 system. The liquidus data obtained from these
works for the P2O5-Na2O system were in reasonable agreement and were used in the opti-
mization process of the current work. The four compounds NaPO3, Na5P3O10, Na4P2O7
and Na3PO4 have polymorphic phase transitions, and the thermodynamic description of
the phase transition of the compounds in the P2O5-Na2O system by Xie et al. [7] based
on the reliable literature is more complete, which was considered in the thermodynamic
assessment of the present work with refinement and improvement. It is worth noting
that there is less information about the experimental phase relation of the P2O5-rich and
Na2O-rich regions in the P2O5-Na2O system, which still needs to be further determined
experimentally.

In 1909, Mixter [40] determined the enthalpy of formation of NaPO3 from its elements
using solution calorimetry (SCA). In 1967, Irving et al. [41] also utilized SCA to measure
the enthalpy of formation of Na3PO4 from its elements at 298 K. Subsequently, in 1968,
Irving et al., [42,43] Krivtsov et al., [44] and Zhuang et al. [45] determined the enthalpies of
formation of Na4P2O7, Na5P3O10 and NaPO3 from their elements using the SCA method.
In 2011, Khaled et al. [46] measured the standard enthalpy of formation of Na4P2O7 from
its elements using the SCA method. These experimental results were incorporated into the
present study with consideration for possible error margins. Andon et al. [47] determined
the heat capacities of NaPO3, Na5P3O10, Na4P2O7 and Na3PO4 using adiabatic calorimetry
within the temperature range of 10 to 320 K. Ashcroft et al. [48] measured the heat capacities
of Na4P2O7 and NaPO3 from 298 to 620 K and determined the low-temperature transition
enthalpy of Na4P2O7. Lazarev et al. [49] used DSC to measure the heat capacity of Na4P2O7
in the temperature range from 300 to 1000 K and measured the low-temperature enthalpy
of transition of the Na4P2O7. Grantscharova et al. [50] used DSC to determine the heat
capacity of NaPO3 between 468 and 675 K, but their measurements were much higher
than those reported by Ashcroft et al. [48]. Considering the above-reported heat capacity
data, the data reported by Andon et al. [47], Ashcroft et al. [48] and Lazarev et al. [49] were
considered in the present work to optimize the heat capacities of Na4P2O7 and NaPO3.
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2.2. P2O5-MgO System

The phase diagram of the P2O5-MgO system in the composition ranges from 0 to
50 mol.% P2O5 was investigated by Berak [51] using thermal, microscopy and XRD analyses.
In this concentration range, three intermediate compounds were observed: Mg3P2O8,
Mg2P2O7 and MgP2O6 with melting points at 1630 K, 1655 K and 1438 K, respectively.
These phases were considered as line compounds. The temperature of three eutectic
reactions L = MgO + Mg3P2O8, L = Mg3P2O8 + α − Mg2P2O7 and L = α − Mg2P2O7 +
MgP2O6 were found to be 1598 K, 1555 K and 1423 K, respectively. Additionally, Mg3P2O8
with two polymorphic forms was confirmed, and its transition temperature was 1328 K.
Subsequently, Bobrownicki and Slawski [52] also measured the melting temperature of
Mg3P2O8 to be 1628 K and the structural transition temperature to be 1323 K. However,
these two studies did not give data such as the lattice parameter and the structural transition
of Mg3P2O8, which have not been reported in subsequent studies [53,54]. Therefore, the
optimization process of the present work did not consider the phase transformation of
Mg3P2O8. Bookey [55], using thermal analysis, investigated the eutectic reaction L = MgO
+ Mg3P2O8 by means of cooling curves, which yielded a reaction temperature of 1603 K.
The results were consistent with the data reported by Berak [51]. The melting points of
Mg3P2O8 and Mg2P2O7 were investigated, and the presence of the phase transition in the
Mg2P2O7 was determined by Czupinska et al. [53] and Oetting et al. [54] using thermal
analysis. Combined with the data obtained by Roy et al. [56] and Calvo et al. [57], only the
structural transformation of the Mg2P2O7 in the low-temperature region was considered in
the present work. MgP4O11 was reported to melt congruently at 1183 K by Meyer et al. [32]
using DTA. Rakotomahanina-Rolaisoa et al. [58] investigated the melting point of MgP2O6
by DTA.

In 1897, Berthelot [59] determined the enthalpy of formation of Mg3P2O8 from ele-
ments using SCA. In 1952, Bookey et al. [55] investigated the enthalpy of formation of
Mg3P2O8. In 1954, the enthalpy of formation of Mg3P2O8 from elements was measured by
Stevens and Turkdogan [60] using SCA. In 1986, Lopatin et al. [61] studied the standard en-
thalpies of formation of Mg2P2O7 and MgP2O6 from elements using the Knudsen cell mass
spectrometry (KCMS) approach. In 1989, Lopatin et al. [62] used the KCMS method to deter-
mine the enthalpy of formation of Mg3P2O8 from elements. In 1999, Abdelkader et al. [63]
measured the standard enthalpy of formation of Mg3P2O8 from elements using the SCA
approach. These experimental data on the enthalpies of formation of the compounds in
the P2O5-MgO system described above were accepted for the present work. Oetting and
Mcdonald [54] measured the heat capacities of Mg3P2O8 and Mg2P2O7 using an adiabatic
calorimeter and determined the heat contents of Mg3P2O8 and Mg2P2O7 in the temperature
range from 0 to 1700 K. Furthermore, the energy change in the low-temperature phase
transition of Mg2P2O7 was determined. Iwase et al. [64] investigated the activity of P2O5 in
liquid P2O5-MgO mixtures using solid oxide galvanic cell techniques at 1673 K. Given that
the reported data were obtained from indirect calculations, the data on the activity were
not used in the current work.

3. Thermodynamic Modeling

The CALPHAD method is used to formulate a comprehensive thermodynamic model
to describe each phase in a system, drawing upon experimental data encompassing phase
diagrams, thermodynamic properties and crystal structures. This method rationally selects
undetermined parameters to represent each phase of the system as a Gibbs free energy
function of variables such as temperature, pressure and composition. Ultimately, the
phase diagrams and thermodynamic properties are derived through the utilization of a
thermodynamic database containing these Gibbs free energy expressions. In the present
study, the thermodynamic assessment of the P2O5-Na2O and P2O5-MgO systems will be
conducted using Thermo-Calc software. Employing the least-squares method, Thermo-
Calc software endeavors to align the calculated values with the observed data, seeking
optimized variable values that minimize the sum of squared differences between calculated
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and experimental data. Hence, the formulation of an appropriate thermodynamic model
lays the groundwork for an excellent thermodynamic database.

The following thermodynamic models were used to model the P2O5-Na2O and P2O5-
MgO systems in the present work. The constructed thermodynamic models used for two
binary systems are listed in Table 2 and will be described below in more detail.

Table 2. The obtained thermodynamic parameters of the P2O5-Na2O and P2O5-MgO systems in the
present work.

System Phase Formula Thermodynamic Parameter/J·mol−1

P2O5-Na2O Liquid
(Na+1)p(O−2, PO3

−1,
PO4

−3, PO5/2)q
0GLiquid

Na+1:O−2 = +0GLiquid
Na2O

0GLiquid
PO5/2

= +0GLiquid
P2O5

0GLiquid
Na+1:PO−1

3
= +0.50GLiquid

Na2O + 0.50GLiquid
P2O5

− 223581.5 − 46.8T

0GLiquid
Na+1:PO−3

4
= +1.50GLiquid

Na2O + 0.50GLiquid
P2O5

− 597241 + 62T

0LLiquid
Na+1:PO−1

3 ,PO−3
4

= −127756 + 18T

1LLiquid
Na+1:PO−1

3 ,PO−3
4

= −63351

0LLiquid
Na+1:O−2,PO−3

4
= +7424

0LLiquid
Na+1:PO−1

3 ,PO5/2
= −48065

1LLiquid
Na+1:PO−1

3 ,PO5/2
= −37884

Na3PO4_β (Na+1)3(P+5)1(O−2)4
0GNa3PO4_α

Na+1:P+5:O−2 = +0GSolid
Na3PO4

Na3PO4_α (Na+1)3(P+5)1(O−2)4 0GNa3PO4_β

Na+1:P+5:O−2 = +0GSolid
Na3PO4

+ 472 − 0.27T

Na4P2O7_ζ (Na+1)4(P+5)2(O−2)7
0GNa4P2O7_α

Na+1:P+5:O−2 = +0GSolid
Na4P2O7

Na4P2O7_ε (Na+1)4(P+5)2(O−2)7 0GNa4P2O7_β

Na+1:P+5:O−2 = +0GSolid
Na4P2O7

+ 10040 − 14.65693431T

Na4P2O7_δ (Na+1)4(P+5)2(O−2)7 0GNa4P2O7_γ

Na+1:P+5:O−2 = +0GSolid
Na4P2O7

+ 13806 − 19.38215388T

Na4P2O7_γ (Na+1)4(P+5)2(O−2)7
0GNa4P2O7_δ

Na+1:P+5:O−2 = +0GSolid
Na4P2O7

+ 15061 − 20.94504305T

Na4P2O7_β (Na+1)4(P+5)2(O−2)7
0GNa4P2O7_ε

Na+1:P+5:O−2 = +0GSolid
Na4P2O7

+ 17153 − 23.47773070T

Na4P2O7_α (Na+1)4(P+5)2(O−2)7 0GNa4P2O7_ζ

Na+1:P+5:O−2 = +0GSolid
Na4P2O7

+ 20082 − 26.98551513T

Na5P3O10_β (Na+1)5(P+5)3(O−2)10
0GNa5P3O10_α

Na+1:P+5:O−2 = +0GSolid
Na5P3O10

Na5P3O10_α (Na+1)5(P+5)3(O−2)10 0GNa5P3O10_β

Na+1:P+5:O−2 = +0GSolid
Na5P3O10

+ 10878 − 13.769620T

NaPO3_γ (Na+1)1(P+5)1(O−2)3
0GNaPO4_α

Na+1:P+5:O−2 = +0GSolid
NaPO3

NaPO3_β (Na+1)1(P+5)1(O−2)3 0GNaPO4_β

Na+1:P+5:O−2 = +0GSolid
NaPO3

+ 628 − 0.78795483T

NaPO3_α (Na+1)1(P+5)1(O−2)3 0GNaPO4_γ

Na+1:P+5:O−2 = +0GSolid
NaPO3

+ 4226 − 5.010959525T

P2O5-MgO Liquid
(Mg+2)p(O−2, PO3

−1,
PO4

−3, PO5/2)q
0GLiquid

Mg+2:O−2 = +20GLiquid
MgO

0GLiquid
PO5/2

= +0GLiquid
P2O5

0GLiquid
Mg+2:PO−1

3
= +0GLiquid

MgO + 0GLiquid
P2O5

− 238484 − 10T

0GLiquid
Mg+2:PO−3

4
= +30GLiquid

MgO + 0GLiquid
P2O5

− 709347 + 185T

0LLiquid
Mg+2:PO−1

3 ,PO−3
4

= −128900 + 45T

1LLiquid
Mg+2:PO−1

3 ,PO−3
4

= +13365

2LLiquid
Mg+2:PO−1

3 ,PO−3
4

= −16547

3LLiquid
Mg+2:PO−1

3 ,PO−3
4

= +40441

0LLiquid
Mg+2:O−2,PO−3

4
= −57701
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Table 2. Cont.

System Phase Formula Thermodynamic Parameter/J·mol−1

1LLiquid
Mg+2:O−2,PO−3

4
= +6541

2LLiquid
Mg+2:O−2,PO−3

4
= −8954

0LLiquid
Mg+2:PO−1

3 ,PO5/2
= −92054 + 60T

1LLiquid
Mg+2:PO−1

3 ,PO5/2
= −25546

2LLiquid
Mg+2:PO−1

3 ,PO5/2
= −35451

0LLiquid
Mg+2:O−2,PO−1

3
= −66748 + 51T

Mg3P2O8 (Mg+2)3(P+5)2(O−2)8 0GMg3P2O8

Mg+2:P+5:O−2 = +0GSolid
Mg3P2O8

Mg2P2O7_β (Mg+2)2(P+5)2(O−2)7 0GMg2P2O7_α

Mg+2:P+5:O−2 = +0GSolid
Mg2P2O7

Mg2P2O7_α (Mg+2)2(P+5)2(O−2)7 0GMg2P2O7_β

Mg+2:P+5:O−2 = +0GSolid
Mg2P2O7

+ 680 − 2.0T

MgP2O6 (Mg+2)1(P+5)2(O−2)6 0GMgP2O6

Mg+2:P+5:O−2 = +0GSolid
MgP2O6

MgP4O11 (Mg+2)1(P+5)4(O−2)11 0GMgP4O11

Mg+2:P+5:O−2 = +0GSolid
MgP4O11

Function Temperature range/K

0GLiquid
P2O5

(298.15–1000) −1639225.067 − 230.7480381T + 21.643407TlnT − 0.1681142T2 +
1.87715×10−5T3 + 1758186.5T−1 + 22900.402lnT

(1000–6000) −1579441.75 + 1382.959261T − 225TlnT

0GP2O5_OO
P2O5

(298.15–1000) −1665880.067 − 199.4980381T + 21.643407TlnT − 0.1681142T2 +
1.87715×10−5T3 + 1758186.5T−1 + 22900.402lnT

(1000–6000) −1606096.75 + 1414.209261T − 225TlnT

0GP2O5_O
P2O5

(298.15–1000) −1666269.067 − 198.3480381T + 21.643407TlnT − 0.1681142T2 +
1.87715×10−5T3 + 1758186.5T−1 + 22900.402lnT

(1000–6000) −1606485.75 + 1415.359261T − 225TlnT

0GP2O5_H
P2O5

(298.15–1000) −1631835.067 − 221.1390381T + 21.643407TlnT − 0.1681142T2 +
1.87715×10−5T3 + 1758186.5T−1 + 22900.402lnT

(1000–6000) −1572051.75 + 1392.568261T − 225TlnT

0GLiquid
Na2O

(298.15–1405) −380898.2803 + 340.194781T − 66.216001TlnT − 0.021932551T2

+ 2.34792×10−6T3 + 406685.01T−1

(1405–1500) −387789.21 + 580.2481164T − 104.6TlnT

0GNa2O_α
Na2O (298.15–1405) −428595.8803 + 374.143281T − 66.216001TlnT − 0.021932551T2

+ 2.34792×10−6T3 + 406685.01T−1

(1405–1500) −435486.81 + 614.1966164T − 104.6TlnT

0GNa2O_β
Na2O (298.15–1405) −440520.2803 + 383.736481T − 66.216001TlnT − 0.021932551T2

+ 2.34792×10−6T3 + 406685.01T−1

(1405–1500) −447411.21 + 623.7898164T − 104.6TlnT

0GNa2O_γ
Na2O (298.15–1405) −442277.5603 + 385.454281T − 66.216001TlnT − 0.021932551T2

+ 2.34792×10−6T3 + 406685.01T−1

(1405–1500) −449168.49 + 625.5076164T − 104.6TlnT
0GSolid

Na3PO4
(298.15–6000) +0GNa2O_γ

Na2O + 0.50GP2O5_H
P2O5

− 520688.946 − 4.353T

0GSolid
Na4P2O7

(298.15–967) −3282062.70195 + 815.816308T − 145.08494TlnT − 0.215875T2 +
3.77148×10−5T3 + 542554.7741T−1

(967–1273) −3322276.2378 + 2062.32142T − 349.82659TlnT
0GSolid

Na5P3O10
(298.15–6000) +2.50GNa2O_γ

Na2O + 1.50GP2O5_H
P2O5

− 1144087.404 − 20.487T

0GSolid
NaPO3

(298.15–703) −1243133.8886 + 264.3713457T − 46.08288TlnT − 0.09082T2 +
1.80447×10−5T3 + 188542.1015T−1

(703–973) −1256643.34549 + 704.6628499T − 119.50568TlnT

0GLiquid
MgO

(298.15–1700) −549098.33 + 275.724634T − 47.4817TlnT − 0.00232681T2

+4.5043×10−8T3 + 516900T−1

(1700–2450) −585159.646 + 506.06825T − 78.3772TlnT + 0.0097344T2

−8.60338×10−7T3 + 8591550T−1
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Table 2. Cont.

System Phase Formula Thermodynamic Parameter/J·mol−1

(2450–3100) +9110429.75−42013.7634T + 5298.548TlnT − 1.30122485T2 +
5.8262601×10−5T3 − 3.24037416×109T−1

(3100–5100) −632664.468 + 589.239555T − 84TlnT
0GSolid

MgO (298.15–1700) −619428.502 + 298.253571T − 47.4817TlnT − 0.00232681T2

+4.5043×10−8T3 + 516900T−1

(1700–3100) −655489.818 + 528.597187T − 78.3772TlnT + 0.0097344T2

−8.60338×10−7T3 + 8591550T−1

(3100–5000) −171490.159–1409.43369T + 163.674142TlnT − 0.044009535T2 +
1.374896×10−6T3−1.72665403×108T−1

(5000–5100) −722412.718 + 617.657452T−84TlnT
0GSolid

Mg3P2O8
(298.15–1800) −3863914.664 + 1191.277265T − 195.04422TlnT−0.098665T2 +

9.22527×10−6T3 + 1562390.321T−1

0GSolid
Mg2P2O7

(298.15–1800) −3217696.802 + 1003.594497T − 165.99611TlnT − 0.07885T2 +
7.96388×10−6T3 + 1371185.587T−1

0GSolid
MgP2O6

(298.15–6000) +0GSolid
MgO + 0GP2O5_H

P2O5
− 240840 + 2.95T

0GSolid
MgP4O11

(298.15–6000) +0GSolid
MgO + 0GP2O5_H

P2O5
– 269030 − 4.29T

3.1. Pure Unary Component

The Gibbs energy Gi(T) of pure unary component i can be expressed as follows:

Gi(T)− HSER
i = a + bT + cTlnT + dT2 + eT−2 + f T3 + gT7 + hT−9 (1)

where Hi
SER is the standard molar enthalpy of pure unary component i at 298.15 K and

101,325 Pa, J·mol−1; a~h are the parameters to be optimized; T is the thermodynamic
temperature, K.

3.2. Liquid Phase

In the current assessment, the ionic two-sublattice model is used to describe the liquid
phase of the P2O5-Na2O and P2O5-MgO systems. The ionic two-sublattice model assumes
that cations only mix with each other, and anions only mix with each other. This model
comprises two sublattices: one for cations and the other for anions, neutrals, and vacancies.

In the liquid phase of the P2O5-Na2O and P2O5-MgO systems, the content of anions
such as PO3

−1, P2O7
−4, PO4

−3 varies with the composition of the system oxides [8]. To
simplify the thermodynamic model by reducing the thermodynamic parameters, only
the two anions (PO3

−1 and PO4
−3) are considered in the optimized modeling process.

Therefore, the thermodynamic models of the liquid phase of the P2O5-Na2O and P2O5-
MgO systems are (Na+1)P(O−2, PO3

−1, PO4
−3, PO5/2)Q and (Mg+2)P(O−2, PO3

−1, PO4
−3,

PO5/2)Q, where P and Q denote the total valence of the anion sublattice and the total
valence of the cation sublattice, respectively. To maintain the electroneutrality of the liquid
phase of the systems, the stoichiometric factors P and Q are allowed to change with the
composition of the system oxides. Taking the P2O5-Na2O system as an example, the Gibbs
energy of the liquid phase is expressed as follows:

GLiquid
m − HSER

i = yNa+1 yO−2 GLiquid
Na+1:O−2 + yNa+1 yPO−1

3
GLiquid

Na+1:PO−1
3

+ yNa+1 yPO−3
4

GLiquid
Na+1:PO−3

4
+ Q

(
yPO5/2 ln yPO5/2

)
+PRT

(
yNa+1 ln yNa+1

)
+ QRT

(
yO−2 ln yO−2 + yPO−1

3
ln yPO−1

3
+ yPO−3

4
ln yPO−3

4
+ yPO5/2 ln yPO5/2

)
+EGLiquid

m

(2)

where Hi
SER is the molar enthalpy of the pure unary component in the reference state of the

standard element at 298.15 K and 101,325 Pa, J·mol−1; y is the site fraction of each species
in the liquid phase in their respective sublattices; G is the Gibbs energy for the formation
of the end-member, J·mol−1; R is the gas constant (R = 8.314 J·(mol·K)−1); EGLiquid

m is the
excess Gibbs energy, J·mol−1, which is denoted as follows:
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EGLiquid
m = yNa+1 yO−2 yPO−1

3

0LLiquid
Na+1:O−2,PO−1

3
+ yNa+1 yO−2 yPO−3

4
(0LLiquid

Na+1:O−2,PO−3
4

+ 1LLiquid
Na+1:O−2,PO−3

4
(yO−2 − yPO−3

4
)

+2LLiquid
Na+1:O−2,PO−3

4

(
yO−2 − yPO−3

4

)2
) + yNa+1 yO−2 yPO5/2

0LLiquid
Na+1:O−2,PO5/2

+yNa+1 yPO−1
3

yPO−3
4
(0LLiquid

Na+1:PO−1
3 ,PO−3

4
+ 1LLiquid

Na+1:PO−1
3 ,PO−3

4
(yPO−1

3
− yPO−3

4
)

+2LLiquid
Na+1:PO−1

3 ,PO−3
4

(
yPO−1

3
− yPO−3

4

)2
+ 3LLiquid

Na+1:PO−1
3 ,PO−3

4

(
yPO−1

3
− yPO−3

4

)3
)

+yNa+1 yPO−1
3

yPO5/2

(
0LLiquid

Na+1:PO−1
3 ,PO5/2

+ 1LLiquid
Na+1:PO−1

3 ,PO5/2

(
yPO−1

3
− yPO5/2

)
+2LLiquid

Na+1:PO−1
3 ,PO5/2

(
yPO−1

3
− yPO5/2

)2
)
+ yNa+1 yPO−3

4
yPO5/2

0LLiquid
Na+1:PO−3

4 ,PO5/2

(3)

where iLLiquid(i = 0, 1, 2, 3) represents the interaction of the species in each sublattice and is
the interaction parameter to be optimized.

3.3. Intermediate Compounds

In this work, all solid phases Na3PO4, Na4P2O7, Mg3P2O8, Mg2P2O7, etc., are de-
scribed as stoichiometric compounds. For the solid phase with heat capacity data, the
Gibbs free energy Gm is expressed as follows:

Gm − HSER = a + bT + cTlnT + dT2 + eT−1 (4)

where HSER is the molar enthalpy of the pure elements (Na, Mg, P and O) in the reference
state of the standard element at 298.15 K and 101,325 Pa, J·mol−1; a~e are the parameters
which will be optimized; T is the thermodynamic temperature, K.

For the solid phase lacking heat capacity data, taking the P2O5-Na2O system as an
example, the Gibbs energy 0Gm of the solid is expressed as follows:

0Gm − HSER = x0GNa2O_γ
Na2O + y0GP2O5_H

P2O5
+ A + BT (5)

where x and y are the ratios of Na2O and P2O5 in the solid phase; 0GNa2O_γ
Na2O and 0GP2O5_H

P2O5

are the Gibbs energy of the solid phase of Na2O and P2O5, respectively, J·mol−1; A and B
are the parameters which will be evaluated.

4. Results and Discussion

The thermodynamic optimization of the P2O5-Na2O and P2O5-MgO binary systems
was carried out based on the critical evaluation of phase equilibrium and thermodynamic
property data using Thermo-Calc software in the current study. During the optimization
process, certain emphasis was given to each dataset of phase equilibrium and thermody-
namic property data, taking into account their reliability. By adjusting the thermodynamic
parameters for each phase within the systems, the calculated results could reasonably
describe the experimental data within the acceptable error range.

Initially, the solid-phase parameters were optimized using experimental data, encom-
passing the heat capacity and formation enthalpy of the intermediate phases. Subsequently,
liquid-phase parameters were incorporated to replicate the liquidus and invariant reactions
of the systems. Finally, all parameters were simultaneously optimized by considering all re-
liable experimental data to obtain a set of thermodynamic parameters capable of effectively
describing the P2O5-Na2O and P2O5-MgO binary systems, as presented in Table 2.

4.1. P2O5-Na2O System

The Gibbs energy functions for the components P2O5 and Na2O were sourced from
the works of Jung et al. [65] and Wu et al. [66], respectively. Initially, the heat capacities
of polymorphic forms of Na4P2O7 and NaPO3 were determined by fitting experimental
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data from Andon et al. [47], Ashcroft et al. [48] and Lazarev et al. [49], which were treated
as identical within this study. Subsequently, the formation enthalpies of the four inter-
mediate phases were optimized using experimental data on formation enthalpies from
elements [40–46]. Then, the liquid parameters such as 0LLiquid

Na+1:PO−1
3 ,PO−3

4
, 1LLiquid

Na+1:PO−1
3 ,PO−3

4
,

etc., were adjusted to replicate the liquidus and invariant reactions of the P2O5-Na2O binary
system. Finally, all parameters were optimized simultaneously by considering all available
experimental data.

Figure 1 presents the optimized phase diagram of the P2O5-Na2O binary system in
comparison with experimental data [34–39]. The eutectic reactions L = β − NaPO3 + α −
Na5P3O10 and L = α − Na4P2O7 + β − Na3PO4 are calculated to occur at temperatures
of 820 K and 1212 K, respectively, while the peritectic reaction L + α − Na4P2O7 = α

− Na5P3O10 takes place at 895 K. The difference in the calculated X(Na2O) from the
experimentally determined values reported in the literature is less than 0.9 mol.%, marking
a substantial improvement over the calculation of Xie et al. [7] and aligning more closely
with the experimental data. Due to the limited availability of liquidus data for the P2O5-
Na2O system, the predicted temperatures for the L = γ − NaPO3 + O’ − P2O5 and L = β −
Na3PO4 + β − Na2O reactions calculated in this study are 560 K and 1220 K, respectively,
which warrant validation through further experiments. The calculated liquidus points
generally correspond well with the experimental data in the literature. Table 3 provides a
comparison of the calculated invariant reactions involving the liquid phase in the P2O5-
Na2O binary system with experimental data. It is evident that the calculated results of this
study can effectively describe most of the available experimental information.
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Table 3. Calculated invariant reactions involving the liquid phase in the P2O5-Na2O binary system.

Reaction Type Liquid Composition/Mole
Fraction Na2O Temperature/K Reference

L = γ − NaPO3 + O’ − P2O5 Eutectic 0.276 560 This work
L = β − NaPO3 + α − Na5P3O10 Eutectic 0.559 824 [34]

0.556 825 [35]
0.57 819 [36]

0.543 763 [37]
0.56 819 [39]
0.56 833 [7]

0.563 820 This work
L + α − Na4P2O7 = α − Na5P3O10 Peritectic 0.587 893 [34]

0.588 895 [35]
0.585 893 [37]
0.589 893 [39]
0.575 898 [7]
0.576 895 This work

L = α − Na4P2O7 + β − Na3PO4 Eutectic 0.684 1218 [37]
0.694 1225 [38]
0.6975 1217 [39]
0.691 1209 [7]
0.6999 1212 This work

L = β − Na3PO4 + β − Na2O Eutectic 0.814 1220 This work

Utilizing the optimized thermodynamic parameters, the thermodynamic properties of
the P2O5-Na2O system are computed. Figure 2a and b show the calculated heat capacities
of Na4P2O7 and NaPO3, respectively, obtained in this study, juxtaposed with experimental
data measured by Andon et al. [47], Ashcroft et al. [48] and Lazarev et al. [49]. The
calculated results exhibit satisfactory agreement with the measured values. For Na5P3O10
and Na3PO4, the Neumann–Kopp equation was employed to describe their heat capacities
due to the limited experimental data available. The standard enthalpies of formation of the
intermediate compounds from elements (BCC_A2 for sodium and white phosphorus) at
298 K are also calculated in this work, as depicted in Figure 3. The graph illustrates that our
calculated results are generally consistent with the experimental values from Refs. [40–46].
Considering experimental uncertainties, the calculations are deemed acceptable.
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Figure 3. Calculated enthalpies of formation for the intermediate compounds of the P2O5-Na2O
binary system at 298.15 K from elements compared with the experimental data [40–46].

4.2. P2O5-MgO System

The Gibbs energy functions for the components P2O5 and MgO utilized in this study
were sourced from Jung et al. [65] and Mao et al. [67], respectively. The heat capacities
of Na4P2O7 and NaPO3 were modeled using experimental data from Oetting et al. [54].
In the present research, it is assumed that the heat capacities of both allotropic forms of
Mg2P2O7 were equal. The optimized phase diagram of the P2O5-MgO system, presented in
Figure 4, is compared with experimental data [32,51,53–58]. Additionally, the temperature
and phase composition details of invariant reactions are juxtaposed with the experimental
data reported in the literature, as shown in Table 4. It is evident that the calculated phase
boundaries align well with the experimental information found in the literature. The
present study provides a better and more reasonable description of the experimental data
for the P2O5-MgO system compared to the results of Ding et al. [8].
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Table 4. Calculated invariant reactions involving the liquid phase in the P2O5-MgO binary system.

Reaction Type Liquid Composition/Mole
Fraction P2O5

Temperature/K Reference

L = MgO + Mg3P2O8 Eutectic 0.23 1598 [51]
- 1603 [55]

0.23 1596 [8]
0.23 1602 This work

L = Mg3P2O8 + α − Mg2P2O7 Eutectic 0.276 1555 [51]
0.277 1563 [8]
0.276 1558 This work

L = α − Mg2P2O7 + MgP2O6 Eutectic 0.468 1423 [51]
0.469 1410 [8]
0.469 1421 This work

L = MgP2O6 + MgP4O11 Eutectic 0.62 1149 This work
L = MgP4O11 + O’ − P2O5 Eutectic 0.91 773 This work

The phase relationship in the composition range above 50 mol.% P2O5 remains to
be definitively determined experimentally, owing to the limited available experimental
data. In the optimization process, two eutectic reactions were predicted in this portion
of the phase diagram. The calculated reaction temperatures are 1149 K for the reaction
L = MgP2O6 + MgP4O11 and 773 K for the reaction L = MgP4O11 + O’ − P2O5. Correspond-
ingly, the calculated X(P2O5) values are 62 mol.% and 91 mol.%, respectively.

The heat capacities of Mg3P2O8 and Mg2P2O7 obtained by optimization in this work
are illustrated in Figure 5a,b. Reasonable agreement is obtained between our calculated
results and the heat capacities of Mg3P2O8 and Mg2P2O7 in the temperature range from
298.15 K to 1800 K determined by Oetting et al. [54]. To describe the heat capacities of
MgP2O6 and MgP4O11, the Neumann–Kopp equation was employed during the optimiza-
tion process to sum the heat capacities of Na2O_γ and P2O5_H. Figure 6a,b present the
calculated heat contents of Mg3P2O8 and Mg2P2O7 based on the obtained thermodynamic
parameters, compared with the experimental data [54]. The results indicate a close align-
ment with the experimental values, with acceptable deviations considering experimental
errors. The calculated melting enthalpy of Mg3P2O8(∆Hmelt = 97.449 kJ·mol−1) is slightly
lower than the experimental value reported by Oetting et al. [54], while the calculated melt-
ing enthalpy of Mg2P2O7(∆Hmelt = 160.03 kJ·mol−1) is slightly higher than the experimental
value. This brings the calculated values much closer to the experimental results compared
to the study by Ding et al. [8]. Additionally, the calculated enthalpy of transition from
Mg2P2O7_β to Mg2P2O7_α at 340 K is determined to be 0.68 kJ·mol−1. Figure 7 shows the
calculated standard enthalpies of formation for the intermediate compounds from elements
at 298 K compared with the experimental data [55,59–63] and calculated results from the
literature [8]; the reference states are the Mg of HCP_A3 and white phosphorus, which
reproduce the standard enthalpy of formation for the compounds from elements very well.
As can be seen, a precise description of the experimental thermodynamic properties of the
system can be provided by utilizing the calculated thermodynamic parameters within the
acceptable margin of error.
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5. Conclusions

The CALPHAD method was utilized to critically evaluate and assess the P2O5-Na2O
and P2O5-MgO binary systems. The main conclusions are summarized below:

1. A set of self-consistent thermodynamic parameters is derived for the P2O5-Na2O
and P2O5-MgO binary systems based on a critical evaluation of the available phase
diagram and thermodynamic property data. The calculated phase diagrams and
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thermodynamic properties employing the obtained thermodynamic parameters well
reproduce the data reported in the literature.

2. In comparison with the previous assessments using the modified quasi-chemical
model for the liquid phase, the present study using the ionic two-sublattice model
to express the liquid phase for the first time can describe the experimental data of
the P2O5-Na2O and P2O5-MgO binary systems in a better and more reasonable way,
particularly the invariant reactions involving the liquid phase. The difference in the
phase composition and temperature of invariant reactions from the experimentally
determined values reported in the literature is less than 0.9 mol.% and 5K, respectively.

3. Four eutectic reactions (L = γ − NaPO3 + O’-P2O5, L = β − Na3PO4 + β − Na2O,
L = MgP2O6+ MgP4O11 and L = MgP4O11 + O’ − P2O5) are predicted in the P2O5-
Na2O and P2O5-MgO binary systems. The predicted temperatures of these eutectic
reactions are 560 K, 1220 K, 1149 K and 773 K, with the corresponding phase composi-
tions X(P2O5) being 82.4 mol%, 18.6 mol%, 62 mol% and 91 mol%, respectively. These
predictions await further experimental validation.
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