The Effect P Additive on the CeZrAl Support Properties and the Activity of the Pd Catalysts in Propane Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CeZrPAl Support Materials
2.2.1. Synthesis of CeZrPAl with Different Preparation Methods
2.2.2. Synthesis of CeZrPAl with Different Phosphorus Contents
2.2.3. Synthesis of Pd/CeZrPAl and Pd/CeZrAl Catalysts
2.3. Characterizations of CeZrPAl Support Materials
2.4. Evaluation of C3H8 Oxidation Activity
3. Results and Discussion
3.1. Properties of CeZrPAl Support Materials
3.1.1. The Composition and Structure of CeZrPAl Supports
3.1.2. Texture Properties of CeZrPAl Supports
3.1.3. Oxygen Storage Capacity (OSC) of CeZrPAl Supports
3.2. Effect of P Additive Amount on Supports’ Properties
3.2.1. Texture Properties of CeZrPAl Supports
3.2.2. Textural Properties of CeZrPAl Supports with Different P Contents
3.2.3. Oxygen Storage Capacity (OSC) of CeZrPAl Supports with Different P Contents
3.2.4. Activity of C3H8 Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Kim, Y.; Wiebenga, M.H.; Oh, S.H.; Kim, D.H. Oxidation of C3H8, iso-C5H12 and C3H6 under near-stoichiometric and Fuel-lean conditions over aged Pt-Pd/Al2O3 catalysts with different Pt:Pd ratios. Appl. Catal. B 2019, 251, 283–294. [Google Scholar] [CrossRef]
- Abild-Pedersen, F.; Cargnello, M. Insights and comparison of structure-property Khudorozhkov, A.K.; Chetyrin, I.A.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Bukhtiyarov, V.I. Propane oxidation over Pd/Al2O3: Kinetic and in situ XPS study. Top. Catal. 2017, 60, 190–197. [Google Scholar]
- Noronha, F.B.; Aranda, D.A.G.; Ordine, A.P.; Schmal, M. The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation. Catal. Today 2000, 57, 275–282. [Google Scholar] [CrossRef]
- Peela, N.R.; Zheng, W.Q.; Lee, I.C.; Karim, A.M.; Vlachos, D.G. Core-shell nanocatalyst design by combining high-throughput experiments and first-principles simulations. Chemcatchem 2013, 5, 3712–3718. [Google Scholar] [CrossRef]
- Baldovino-Medrano, V.G.; Farin, B.; Gaigneaux, E.M. Effect of secondary additives on the properties of vanadium-aluminum mixed oxide tableted catalysts used in the oxidation of propane. Powder Technol. 2021, 387, 181–196. [Google Scholar] [CrossRef]
- Ho, P.H.; Woo, J.W.; Ilmasani, R.F.; Han, J.; Olsson, L. The role of Pd-Pt interactions in the oxidation and sulfur resistance of bimetallic Pd-Pt/γ-Al2O3 diesel oxidation catalysts. Ind. Eng. Chem. Res. 2021, 60, 6596–6612. [Google Scholar] [CrossRef]
- Petit, S.; Thomas, C.; Millot, Y.; Krafft, J.M.; Laberty-Robert, C.; Costentin, G. Activation of C-H bond of propane by strong basic sites generated by bulk proton conduction on V-modified hydroxyapatites for the formation of propene. Chemcatchem 2020, 12, 2506–2521. [Google Scholar] [CrossRef]
- Narasimharao, K.; Al-Sultan, F.S. Y2O3 modified Au-La2O3 nanorod catalysts for oxidative cracking of n-propane. Fuel 2020, 280, 118599. [Google Scholar] [CrossRef]
- Gabrienko, A.A.; Arzumanov, S.S.; Toktarev, A.V.; Prosvirin, I.P.; Freude, D.; Haase, J.; Stepanov, A.G. Propane transformation on in-modified zeolite BEA. J. Phys. Chem. C 2022, 126, 16204–16214. [Google Scholar] [CrossRef]
- Larese, C.; Granados, M.L.; Mariscal, R.; Fierro, J.L.G.; Lambrou, P.S.; Efstathiou, A.M. The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ce-Zr-O metal oxides modified by phosphorus incorporation. Appl. Catal. B 2005, 59, 13–25. [Google Scholar] [CrossRef]
- Tounsi, H.; Djemal, S.; Petitto, C.; Delahay, G. Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B 2011, 107, 158–163. [Google Scholar] [CrossRef]
- Oh, S.C.; Xu, J.Y.; Tran, D.T.; Liu, B.; Liu, D.X. Effects of controlled crystalline surface of hydroxyapatite on methane oxidation reactions. ACS Catal. 2018, 8, 4493–4507. [Google Scholar] [CrossRef]
- Kärkkäinen, M.; Kolli, T.; Honkanen, M.; Heikkinen, O.; Väliheikki, A.; Huuhtanen, M.; Kallinen, K.; Lahtinen, J.; Vippola, M.; Keiski, R.L. The influence of phosphorus exposure on a natural-gas-oxidation catalyst. Top. Catal. 2016, 59, 1044–1048. [Google Scholar] [CrossRef]
- Ballauri, S.; Sartoretti, E.; Castellino, M.; Armandi, M.; Piumetti, M.; Fino, D.; Russo, N.; Bensaid, S. Mesoporous ceria and ceria-praseodymia as high surface area supports for Pd-based catalysts with enhanced methane oxidation activity. Chemcatchem 2024, e202301359. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Yin, X.Y.; Wang, L.M.; Li, S.S.; Wang, J.L.; Chen, Y.Q. Engineering excellent Pd/CeO2-ZrO2-Al2O3 catalyst with abundant oxygen vacancies by Pr surface modification for eliminating NO and C3H8. J. Alloys Compd. 2023, 938, 168585. [Google Scholar] [CrossRef]
- Majumdar, S.S.; Moses-DeBusk, M.; Deka, D.J.; Kidder, M.K.; Thomas, C.R.; Pihl, J.A. Impact of Mg on Pd-based methane oxidation catalysts for lean-burn natural gas emissions control. Appl. Catal. B 2024, 341, 123253. [Google Scholar] [CrossRef]
- Stasinska, B.; Gac, W.; Ioannides, T.; Machocki, A. Complete oxidation of methane over palladium supported on alumina modified with calcium, lanthanum, and cerium ions. J. Nat. Gas Chem. 2007, 16, 342–348. [Google Scholar] [CrossRef]
- Friberg, I.; Sadokhina, N.; Olsson, L. Complete methane oxidation over Ba modified Pd/Al2O3: The effect of water vapor. Appl. Catal. B 2018, 231, 242–250. [Google Scholar] [CrossRef]
- Park, J.H.; Yeo, S.; Kang, T.J.; Heo, I.; Lee, K.Y.; Chang, T.S. Enhanced stability of Co catalysts supported on phosphorus-modified Al2O3 for dry reforming of CH4. Fuel 2018, 212, 77–87. [Google Scholar] [CrossRef]
- Anguita, P.; García-Vargas, J.M.; Gaillard, F.; Iojoiu, E.; Gil, S.; Giroir-Fendler, A. Effect of Na, K, Ca and P-impurities on diesel oxidation catalysts (DOCs). Chem. Eng. J. 2018, 352, 333–342. [Google Scholar] [CrossRef]
- Matam, S.K.; Otal, E.H.; Aguirre, M.H.; Winkler, A.; Ulrich, A.; Rentsch, D.; Weidenkaff, A.; Ferri, D. Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catal. Today 2012, 184, 237–244. [Google Scholar] [CrossRef]
- Ho, P.H.; Shao, J.L.; Yao, D.W.; Di, W.; Creaser, D.; Olsson, L. Role of the supports during phosphorus poisoning of diesel oxidation catalysts. Chem. Eng. J. 2023, 468, 143548. [Google Scholar] [CrossRef]
- Vikár, A.; Solt, H.E.; Novodárszki, G.; Mihályi, M.R.; Barthos, R.; Domján, A.; Hancsók, J.; Valyon, J.; Lónyi, F. A study of the mechanism of triglyceride hydrodeoxygenation over alumina-supported and phosphatized-alumina-supported Pd catalysts. J. Catal. 2021, 404, 67–79. [Google Scholar] [CrossRef]
- Murata, K.; Ohyama, J.; Yamamoto, Y.; Arai, S.; Satsuma, A. Methane combustion over Pd/Al2O3 Catalysts in the presence of water: Effects of Pd particle size and alumina crystalline phase. ACS Catal. 2020, 10, 8149–8156. [Google Scholar] [CrossRef]
- Du, J.C.; Zhao, D.P.; Wang, C.X.; Zhao, Y.K.; Li, H.; Luo, Y.M. Size effects of Pd nanoparticles supported over CeZrPAl for methane oxidation. Catal. Sci. Technol. 2020, 10, 7875–7882. [Google Scholar] [CrossRef]
- Yashima, M.; Arashi, H.; Kakihana, M.; Yoshimura, M. Raman-scattering study of cubic-tetragonal phase-transition in Zr1−xCexO2 solid-solution. J. Am. Ceram. Soc. 1994, 77, 1067–1071. [Google Scholar] [CrossRef]
- Ledwa, K.A.; Kepinski, L.; Ptak, M.; Szukiewicz, R. Ru0.05Ce0.95O2−y deposited on functionalized alumina as a smart catalyst for propane oxidation. Appl. Catal. B 2020, 274, 119090. [Google Scholar] [CrossRef]
- Bensaid, S.; Piumetti, M.; Novara, C.; Giorgis, F.; Chiodoni, A.; Russo, N.; Fino, D. Catalytic oxidation of CO and soot over Ce-Zr-Pr mixed oxides synthesized in a multi-inlet vortex reactor: Effect of structural defects on the catalytic activity. Nanoscale Res. Lett. 2016, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Partridge, W.P.; Lance, M.J.; Walker, L.R.; Pihl, J.A.; Toops, T.J.; Finney, C.E.A.; Daw, C.S. Nature and spatial distribution of sulfur species in a sulfated barium-based commercial lean NOx trap catalyst. Catal. Today 2010, 151, 354–361. [Google Scholar] [CrossRef]
- Vu, B.K.; Shin, E.W.; Ha, J.M.; Kim, S.K.; Suh, D.J.; Kim, W.I.; Koh, H.L.; Choi, Y.G.; Lee, S.B. The roles of CeyZr1−yO2 in propane dehydrogenation: Enhancing catalytic stability and decreasing coke combustion temperature. Appl. Catal. A 2012, 443, 59–66. [Google Scholar] [CrossRef]
- Granados, M.L.; Galisteo, F.C.; Lambrou, P.S.; Manscal, R.; Sanz, J.; Sobrados, I.; Fierro, J.L.G.; Efstathiou, A.M. Role of P-containing species in phosphated CeO2 in the deterioration of its oxygen storage and release properties. J. Catal. 2006, 239, 410–421. [Google Scholar]
- Larese, C.; Galisteo, F.C.; Granados, M.L.; Mariscal, R.; Fierro, J.L.G.; Lambrou, P.S.; Efstathiou, A.M. Effects of the CePO4 on the oxygen storage and release properties of CeO2 and Ce0.8Zr0.2O2 solid solution. J. Catal. 2004, 226, 443–456. [Google Scholar] [CrossRef]
- Bezkrovnyi, O.; Vorokhta, M.; Pawlyta, M.; Ptak, M.; Piliai, L.; Xie, X.X.; Dinhova, T.N.; Khalakhan, I.; Matolínova, I.; Kepinski, L. In situ observation of highly oxidized Ru species in Ru/CeO2 catalyst under propane oxidation. J. Mater. Chem. A 2022, 10, 16675–16684. [Google Scholar] [CrossRef]
- Larachi, F.; Pierre, J.; Adnot, A.; Bernis, A. Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl. Surf. Sci. 2002, 195, 236–250. [Google Scholar] [CrossRef]
- Liotta, L.F.; Di Carlo, G.; Longo, A.; Pantaleo, G.; Venezia, A.M. Support effect on the catalytic performance of Au/Co3O4-CeO2 catalysts for CO and CH4 oxidation. Catal. Today 2008, 139, 174–179. [Google Scholar] [CrossRef]
- Majjane, A.; Chahine, A.; Et-tabirou, M.; Echchahed, B.; Do, T.O.; Mc Breen, P. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Mater. Chem. Phys. 2014, 143, 779–787. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Melchionna, M.; Duchon, T.; Kús, P.; Tsud, N.; Prince, K.C.; Matolin, V.; Gorte, R.J.; Fornasiero, P. Phosphorus poisoning during wet oxidation of methane over Pd@CeO2/graphite model catalysts. Appl. Catal. B 2016, 197, 271–279. [Google Scholar] [CrossRef]
- Gervasini, A.; Campisi, S.; Carniti, P.; Fantauzzi, M.; Imparato, C.; Clayden, N.J.; Aronne, A.; Rossi, A. Influence of the Nb/P ratio of acidic Nb-P-Si oxides on surface and catalytic properties. Appl. Catal. A 2019, 579, 9–17. [Google Scholar] [CrossRef]
- Matras, D.; Vamvakeros, A.; Jacques, S.D.M.; di Michiel, M.; Middelkoop, V.; Ismagilov, I.Z.; Matus, E.V.; Kuznetsov, V.V.; Cernik, R.J.; Beale, A.M. Multi-length scale 5D diffraction imaging of Ni-Pd/CeO2-ZrO2/Al2O3 catalyst during partial oxidation of methane. J. Mater. Chem. A 2021, 9, 11331–11346. [Google Scholar] [CrossRef]
- Nagasawa, T.; Kobayashi, A.; Sato, S.; Kosaka, H.; Kim, K.; You, H.M.; Hanamura, K.; Terada, A.; Mishima, T. Visualization of oxygen storage process in Pd/CeO2-ZrO2 three-way catalyst based on isotope quenching technique. Chem. Eng. J. 2023, 453, 139937. [Google Scholar] [CrossRef]
- Fujiwara, A.; Tsurunari, Y.; Iwashita, S.; Yoshida, H.; Ohyama, J.; Machida, M. Surface state changes of Pd three-way catalysts under dynamic lean/rich perturbation compared with static condition. J. Phys. Chem. C 2023, 127, 279–288. [Google Scholar] [CrossRef]
- Christou, S.Y.; García-Rodríguez, S.; Fierro, J.L.G.; Efstathiou, A.M. Deactivation of Pd/Ce0.5Zr0.5O2 model three-way catalyst by P, Ca and Zn deposition. Appl. Catal. B 2012, 111, 233–245. [Google Scholar] [CrossRef]
- Sepehri, S.; Rezaei, M. Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline gamma-Al2O3 for Methane Autothermal Reforming. Chem. Eng. Technol. 2015, 38, 1637–1645. [Google Scholar] [CrossRef]
- Daroughegi, R.; Meshkani, F.; Rezaei, M. Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni-Al2O3 catalysts prepared by ultrasound-assisted co-precipitation method. Int. J. Hydrogen Energy 2017, 42, 15115–15125. [Google Scholar] [CrossRef]
- Melnikov, P.; dos Santos, H.W.L.; Gonçalves, R.V. Thermal behavior of the mixed composition xSb2O3-(1-x)Bi2O3-6(NH4)2HPO4. J. Therm. Anal. Calorim. 2010, 101, 907–911. [Google Scholar] [CrossRef]
- Liang, P.Y.; Wang, L.A.; Wang, Q.; Zhao, B.G.; Li, Y.H.; Ma, Y.M.; Wei, Y.; Sun, T.J. Improved catalytic oxidation of propane over phosphate-modified Pd/Al2O3-TiO2 catalyst. J. Environ. Chem. Eng. 2023, 11, 109569. [Google Scholar] [CrossRef]
- Aneggi, E.; Boaro, M.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Insights into the redox properties of ceria-based oxides and their implications in catalysis. J. Alloys Compd. 2006, 408, 1096–1102. [Google Scholar] [CrossRef]
- Ozawa, M.; Matuda, K.; Suzuki, S. Microstructure and oxygen release properties of catalytic alumina-supported CeO2-ZrO2 powders. J. Alloys Compd. 2000, 303, 56–59. [Google Scholar] [CrossRef]
- Baneshi, J.; Haghighi, M.; Jodeiri, N.; Abdollahifar, M.; Ajamein, H. Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications. Energy Convers. Manag. 2014, 87, 928–937. [Google Scholar] [CrossRef]
- Gregora, I.; Magneron, N.; Simon, P.; Luspin, Y.; Raimboux, N.; Philippot, E. Raman study of AlPO4 (berlinite) at the α-β transition. J. Phys. 2003, 15, 4487–4501. [Google Scholar]
- Nie, L.; Mei, D.H.; Xiong, H.F.; Peng, B.; Ren, Z.B.; Hernandez, X.I.P.; DeLariva, A.; Wang, M.; Engelhard, M.H.; Kovarik, L.; et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423. [Google Scholar] [CrossRef]
- Kröger, V.; Hietikko, M.; Lassi, U.; Ahola, J.; Kallinen, K.; Laitinen, R.; Keiski, R.L. Characterization of the effects of phosphorus and calcium on the activity of Rh-containing catalyst powders. Top. Catal. 2004, 30-1, 469–473. [Google Scholar] [CrossRef]
- Du, J.C.; Li, H.; Wang, C.X.; Zhang, A.M.; Zhao, Y.K.; Luo, Y.M. Improved catalytic activity over P-doped ceria-zirconia-alumina supported palladium catalysts for methane oxidation. Catal. Commun. 2020, 141, 106012. [Google Scholar] [CrossRef]
- Garcia, T.; Weng, W.H.; Solsona, B.; Carter, E.; Carley, A.F.; Kiely, C.J.; Taylor, S.H. The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. Catal. Sci. Technol. 2011, 1, 1367–1375. [Google Scholar] [CrossRef]
- Anguita, P.; Gaillard, F.; Iojoiu, E.; Gil, S.; Giroir-Fendler, A. Study of hydrothermal aging impact on Na- and P-modified diesel oxidation catalyst (DOC). J. Catal. 2019, 375, 329–338. [Google Scholar] [CrossRef]
- Bouzeggane, A.; Bargiela, P.P.; Aouine, M.; Checa, R.; Popescu, I.; Marcu, I.C.; Peruch, O.; Belliere-Baca, V.; Millet, J.M.M. Dissecting the role of Bi and Ba in the catalytic efficiency of VSbBiBa/Al2O3 catalysts in oxidative dehydrogenation and oxidation of propane. Catal. Sci. Technol. 2023, 13, 3867–3883. [Google Scholar] [CrossRef]
- O’Brien, C.P.; Lee, I.C. Kinetic modeling of spillover and temperature-programmed oxidation of oxy-carbon surface species on Pt/Al2O3. J. Phys. Chem. C 2017, 121, 12329–12336. [Google Scholar] [CrossRef]
Samples | Ce3+/(Ce3+ + Ce4+) | Oads/(Olatt + Oads + OOH) |
---|---|---|
(%) | (%) | |
CeZrPAl-G-A | 36.7 | 54.4 |
CeZrPAl-I-A | 41.4 | 52.0 |
CeZrPAl-M-A | 30.3 | 49.6 |
Samples | Specific Surface Area | Total Pore Volume | Pore Size |
---|---|---|---|
(m2·g−1) | (cm3·g−1) | (nm) | |
CeZrPAl-G-F | 323 | 0.41 | 0–17 |
CeZrPAl-I-F | 217 | 0.29 | 0–16 |
CeZrPAl-M-F | 255 | 0.35 | 0–16 |
CeZrPAl-G-A | 88 | 0.29 | 0–98 |
CeZrPAl-I-A | 69 | 0.23 | 0–100 |
CeZrPAl-M-A | 95 | 0.27 | 0–100 |
Samples | OSC (μmol/g) | |
---|---|---|
F | A | |
CeZrPAl-G | 294 | 56 |
CeZrPAl-I | 306 | 50 |
CeZrPAl-M | 212 | 37 |
Samples | Ce3+/(Ce3+ + Ce4+) | Oads/(Olatt + Oads + OOH) |
---|---|---|
(%) | (%) | |
CeZrAl | 27 | 58.1 |
2CeZrPAl | 27.1 | 56.2 |
6CeZrPAl | 36.7 | 54.4 |
10CeZrPAl | 38.8 | 53.8 |
Samples | State | Specific Surface Area | Total Pore Volume |
---|---|---|---|
(m2·g−1) | (cm3·g−1) | ||
CeZrAl | F | 209 | 0.32 |
2CeZrPAl | 239 | 0.35 | |
6CeZrPAl | 329 | 0.41 | |
10CeZrPAl | 341 | 0.47 | |
CeZrAl | A | 87 | 0.26 |
2CeZrPAl | 75 | 0.31 | |
6CeZrPAl | 89 | 0.29 | |
10CeZrPAl | 80 | 0.24 |
Samples | OSC (μmol/g) | |
---|---|---|
F | A | |
CeZrAl | 313 | 125 |
2CeZrPAl | 306 | 81 |
6CeZrPAl | 294 | 56 |
10CeZrPAl | 231 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, F.; Li, H.; Yang, X.; Wang, C.; Zhao, Y.; Wang, H.; Du, J. The Effect P Additive on the CeZrAl Support Properties and the Activity of the Pd Catalysts in Propane Oxidation. Materials 2024, 17, 1003. https://doi.org/10.3390/ma17051003
Feng F, Li H, Yang X, Wang C, Zhao Y, Wang H, Du J. The Effect P Additive on the CeZrAl Support Properties and the Activity of the Pd Catalysts in Propane Oxidation. Materials. 2024; 17(5):1003. https://doi.org/10.3390/ma17051003
Chicago/Turabian StyleFeng, Feng, Hong Li, Xingxia Yang, Chengxiong Wang, Yunkun Zhao, Hua Wang, and Junchen Du. 2024. "The Effect P Additive on the CeZrAl Support Properties and the Activity of the Pd Catalysts in Propane Oxidation" Materials 17, no. 5: 1003. https://doi.org/10.3390/ma17051003