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Abstract: Efficient energy use is crucial for achieving carbon neutrality and reduction. As part of
these efforts, research is being carried out to apply a phase change material (PCM) to a concrete
structure together with an aggregate. In this study, an energy consumption simulation was performed
using data from concrete mock-up structures. To perform the simulation, the threshold investigation
was performed through the Bayesian approach. Furthermore, the spiking part of the spiking neural
network was modularized and integrated into a recurrent neural network (RNN) to find accurate
energy consumption. From the training-test results of the trained neural network, it was possible to
predict data with an R2 value of 0.95 or higher through data prediction with high accuracy for the
RNN. In addition, the spiked parts were obtained; it was found that PCM-containing concrete could
consume 32% less energy than normal concrete. This result suggests that the use of PCM can be a key
to reducing the energy consumption of concrete structures. Furthermore, the approach of this study
is considered to be easily applicable in energy-related institutions and the like for predicting energy
consumption during the summer.

Keywords: Bayesian; threshold; smRNN; concrete; power consumption

1. Introduction

Efficient energy consumption has become increasingly important due to environmen-
tal challenges in recent years. Carbon emissions make this planet hotter every year, and
this phenomenon is directly related to the use of energy. Hot weather makes people use air
conditioners to cool their rooms, which, in turn, heats the outside air. This vicious cycle has
repeated over the years, contributing to the current abnormal climate conditions. Climatol-
ogists have long warned of these climate changes and vicious cycles. The cement/concrete
industry, which accounts for a large portion of carbon emissions, is making various efforts
to take responsibility for the abnormal climate. For example, carbon generation can be
limited by reducing the amount of cement used. Chalee et al. [1] used high-volume fly ash
as a replacement material for cement and the replacement ratio was up to 60% of the cement
weight. Saeed et al. [2] replaced the cement with slag up to 45%. Kim et al. [3] replaced
the cement with biomass wood fly ash up to 30%. These studies demonstrated that, while
maintaining mechanical properties comparable to ordinary cement, durability generally
improved. In a similar but improved way, studies on cement-free geopolymers are be-
ing undertaken as well. Ates et al. [4] tried to improve the performance of fly ash-based
geopolymer by replacing biomass wood fly ash with up to 50% of fly ash in some parts.
Park et al. [5] investigated the volume expansion of a metakaolin-based geopolymer when
adding silica fume. Zhang et al. [6] studied the behavior changes of a fly ash-slag-based
geopolymer when adding silica fume. The key commonality of these by-product-based
geopolymer studies is that cement usage is 0%. In addition to the introduced cases, there
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are many other studies that have investigated reducing the use of cement or using geopoly-
mer [7,8]. Efforts to reduce cement use are considered an important method to decrease
carbon emissions.

Another strategy for addressing climate issues involves the use of non-natural aggre-
gates. Non-natural aggregates include recycled aggregates. Wang et al. [9] investigated the
effect of use of coarse/fine slag aggregate on the mechanical properties of concrete. The
results indicated that the mechanical properties were similar to those of ordinary concrete,
although workability was significantly reduced. Li [10] studied the mechanical properties
of concrete using limestone powder-treated recycled aggregate. Treating aggregate had
the effect of increasing the mechanical properties of the concrete. In addition, the study
of Li [10] estimated the value of using recycled material in the construction field. There
are many studies on the use of recycled materials [11–14] like the studies of Wang et al. [9]
and Li [10]. Some studies have also focused on the function of materials used in aggre-
gates. Studies examining thermal properties have addressed issues such as enhancing
thermal properties [15–17], improving insulation properties [18,19], improving electrical
resistivity [20], and so on.

From a functional perspective, aggregates can serve as carriers for various materials.
Some studies have investigated PCM impregnation. These studies usually aim to enhance
the energy efficiency of buildings and infrastructure through energy storage. Sani et al. [21]
developed and investigated the performance of PCM-impregnated lightweight aggregate.
The process was complex, involving impregnation under vacuum conditions, coating
with epoxy, and applying graphite on the surface of the coated aggregate. The developed
aggregate was not applied to concrete but its performance was assessed in the raw state.
Sani et al. [21] showed there was no leakage after thermal stress cycling and improved
thermal storage performance. Using a similar method, Yoo et al. [22] developed an energy
storage fine aggregate using zeolite. The production process used was the same as that
of Sani et al. [21]; however, the materials were different. Sani et al. [21] used the PCMs of
palm oil, coconut oil, and butter. The PCM used in the study of Yoo et al. [22] was paraffin
wax. Zeolite is a kind of lightweight aggregate. The zeolite matrix contains many pores, a
characteristic that facilitates PCM impregnation. With regard to the development of ESA, a
study is reported by Kim et al. [23]. Yoo et al. [22] developed a fine aggregate for energy
saving, while Kim et al. [23] developed an ESSBA. As is well known, aggregates occupy the
greatest volume of concrete. Therefore, the aggregate substitution ratio of ESA is increased,
and the energy storage performance is increased as well.

Most energy storage studies have focused on using PCMs, seeking to evaluate the
energy storage performance. In addition, Kim et al. [23] performed a mock-up test compar-
ing 100% ESSBA concrete compared to normal concrete. The results indicated a reduction
in room temperature by approximately 4.5 ◦C using 100% ESSBA concrete. In the studies
referred to energy storage performance was only demonstrated experimentally. There
are also numerical analysis studies on PCM-containing concrete. However, these nu-
merical studies have primarily simulated PCM behavior in concrete using predefined
numerical properties [24–26] or models fitted to experimental data [27]. In addition, most
PCM-based concrete studies roughly estimate economic benefits when using PCM-based
concrete. It is necessary to undertake more precise and quantitative exploration of the
economic/engineering benefits of PCM utilization, moving beyond approximate assess-
ments. In simulations using time series data, there are two kinds of simulations that can be
performed. The first is statistical simulation. An example of this approach is that of Woo
et al. [28] who performed a Bayesian statistical simulation to assess the corrosion state of
rebars. The Bayesian simulation indicated that the corrosion state could be indexed using
statistical values, and a probability-based prediction of corrosion level could be used. The
Bayesian indexing method produced quite accurate results, and Woo et al. [28] suggested
that this process can be applied to real-time monitoring systems. It is possible to simulate
time series data in a statistical manner and other Bayesian simulations can be found in
various studies [17,29,30]. The principles of Bayesian statistics underpin machine learning
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and neural network processes. In consequence, the accuracy of Bayesian simulation results
is quite high when the parameters are applied properly. However, a drawback of the
Bayesian approach is that determining the posterior and parameter updates is difficult. As
data size increases, the computation time also grows exponentially, impacting the efficiency
of Bayesian estimation. Additionally, the characteristics of real-time monitoring systems
result in a continuous accumulation of data. Consequently, there is a concern that the moni-
toring performance may also sharply decline. Furthermore, with the rapid proliferation
of artificial intelligence following AlphaGo, the application of AI has become increasingly
focused on time series data prediction in the construction industry. Examples of artificial
intelligence utilization in the construction industry can be readily found. Jiang et al. [31]
performed a prediction simulation on the thermal insulation temperature behavior of
concrete using a modified RNN. Their results showed that the modified RNN predicted
the thermal behavior of the concrete accurately, and the original RNN also predicted the
behavior well. In another case, Khan et al. [32] carried out a compressive analysis to predict
the strength of concrete considering various material parameters, such as the cement and
aggregates used, and the curing time, using an optimized artificial neural network. The
predicted compressive strength was almost the same as that observed experimentally and
the reported R2 value was higher than 0.95, indicating that the results of Khan et al. [32]
have high reliability. In addition to these cases, the use of artificial neural networks, such
as LSTM [33–35] and convolution neural networks [36–38], in concrete studies has already
demonstrated several times that the accuracy of prediction is high.

This study aimed to simulate and investigate energy consumption in concrete struc-
tures using mock-up test data. Therefore, it was necessary to add a function for retrieving
signals after prediction. Hence, this study focused on the function of an SNN. SNNs are
a kind of unsupervised learning and currently represent the next-generation of neural
networks compared to CNNs [39]. A remarkable feature is that an SNN can derive binary
signals based on a threshold. This makes SNNs light and fast in terms of computing [39].
However, there are distinct disadvantages as well. The accuracy of an SNN can be lower
than for conventional neural networks, such as RNNs and LSTM, and more importantly,
the inability to clearly define the backward process makes training the data challenging [39].
Thus, this study reports the design of an smRNN that is used in simulations that combines
the definitive performance of an RNN in terms of learning and accuracy with the spiking
mechanism of an SNN.

To simulate the power consumption between NC and EC100, data were used from
the study of Kim et al. [23]. Because Kim et al. [23] installed the mock-up test specimens
outside during the summer season in Korea and collected data for 1 month, specific periods
were chosen in this study. Based on the experimental data, a simulation of the power
consumption of the air conditioner was performed. This study offers insights into the
combined utilization of smRNN and Bayesian thresholding to predict air conditioner
operation times in concrete structures.

2. Materials and Methods

To perform the statistical simulation, a number of procedures were required. The
process was quite complex; therefore, the entire process is presented in Figure 1 for ease
of understanding.

This study adopted a more practical approach to power consumption than the studies
introduced previously; however, it could not account for all the influences. Thus, some
assumptions were established. The details are addressed in Section 2.4.
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2.1. Data Collection

The study undertaken by Kim et al. [23] was performed from 28 July 2018 to 31 August
2018 in Seoul, Korea. Over the period of one month, a massive amount of data were
collected, with readings taken every 10 min. Usually, Bayesian inference performs best
when using massive datasets [28,30]. In this study, data were collected from 28 July 2018
to 14 August 2018. This period was chosen because it was the hottest summer since 1973
and coincided with a heat dome issue in Korea [40]. Hence, it was thought that the chosen
period was suitable for analyzing/investigating the ESSBA concrete. The dimensions of
the specimens and the experimental details are presented in Figure 2, and the composition
of specimens is indicated in Table 1. The tested mixtures totaled 11 cases in the study
of Kim et al. [23], but only two cases were applied to the mock-up test: NC and 100%
substituted EC100.
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Table 1. Mix properties of the specimens [23].

W/C
(%)

S/a
(%)

Unit: Kg, Gmax = 25 mm Specimen
NameWater Cement Fine Aggregate Coarse Aggregate ESSBA WR

45 45.8 180 400 766
914 0

2.01
NC

0 914 EC100
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Additional information on ESSBA is provided to describe the production process
involved. First, a vacuum desiccator was prepared to impregnate the slag coarse aggregate
with paraffin, which has a melting point of 47 ◦C. Next, paraffin blocks were placed into
the desiccator, and the desiccator containing the paraffin blocks was placed in the heating
chamber to fully melt the paraffin. After melting the paraffin blocks, the slag aggregate was
placed into the paraffin liquid and the vacuum pump was operated to create an internal
desiccator vacuum. In this state, the paraffin liquid was forced to fill the pores of the slag
aggregate. This state was maintained for three days, and then the paraffin-soaked slag
aggregate was removed from the desiccator. Before the surface cooled down, SiC was
sprayed onto the surface of the aggregate. The process of making SiC-coated ESSBA was
then fully completed. The process of producing the SiC-coated ESSBA is presented in
Figure 3.
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2.2. Discomfort Index

To assess something, various kinds of inputs are helpful to ensure precise examination.
However, various types of inputs increase the columns of data structures, and it makes the
computing times longer. Thus, it is best to use a representative index that includes many
kinds of parameters because using this approach can reduce the columns of data structures.
The most representative composite index commonly used is the DI. In addition, the DI is
the most important indicator used as part of the statistical approach applied in this study.
The DI considers the ambient temperature and the relative humidity. It represents human
feelings of discomfort numerically. The DI is expressed according to Equation (1) [41].

DI = T − 0.55(1 − 0.01RH)(T − 14.5) (1)

The data used in this study comprised the indoor temperature of normal concrete
TNC, the indoor temperature of ESSBA concrete TESSBA, the RH, and the outside air
temperature, Ta. Data were collected every 10 min from 28 July 2018 at 12:10 to 14 August
2018 at 17:30. Based on the data obtained, each DI in NC (DINC), EC100 (DIESSBA), and the
air (DIa) were calculated using Equation (1). The study focused on the difference between
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each DI. The core DI was DIa and the supplementaries were DINC and DIESSBA. The details
of the DI differences are represented in Equations (2) and (3).

DIao = DIa − DINC (2)

DIae = DIa − DIESSBA (3)

DINC and DIESSBA tended to be smaller than DIa. Hence, the larger values from DIao
and DIae meant that the internal DI was getting smaller. This can be considered as a
positive signal. However, the DIao and DIae values were smaller than 0, which means
that the indoor DI was significantly higher than DIa. Based on DIao and DIae, a Bayesian
statistical simulation for estimating the power consumption by the air conditioner of a
specific space was performed. To perform the simulation effectively, specific assumptions
were needed. The assumptions are addressed in Section 2.4.

2.3. BT through the Baye’s Rule

It is good to use a representative index that includes many parameters in one output
to avoid a complex data structure. Thus, DIao and DIae were introduced in the previous
section. Using these indices, a BT could be calculated. Woo et al. [28] used only a voltage
signal but calculated a BT following Baye’s rule of Equation (4) [42].

p(α|β) = p(β|α)p(α)
p(β)

(4)

In this state, the most challenging problem is the size of the dataset. According to
Baye’s rules, the likelihood function p(β|α) = ∏n

i=1 p(βi|α), p(β|α) approaches zero when
the dataset becomes bigger. The dataset used in this study was large enough to cause
the p(β|α) value to approach 0; thus, the calculation of posterior values after finding
the posterior mean and variance would be advantageous for thresholding. Considering
the characteristics of likelihood derivation for the posterior function, this study focused
on using a normal distribution as in Equation (5). The reason for choosing a normal
distribution is discussed in Section 3.1.

f (x) =
exp
(
− 1

2

(
x−µ

σ

)2
)

√
2πσ2

(5)

In this state, let σ2 be known and µ be unknown, and let σ2
0 and µ0 represent the

variance and mean in the prior state. Then, the prior and the likelihood can be expressed as
in Equations (6) and (7) [42].

f (µ) =
exp
(
− (µ−µ0)

2

2σ2
0

)
(
2πσ2

0
)1/2 (6)

f (x|µ) =
n

∏
i=1

f (xi|µ) =
exp
(
−∑n

i=1(xi−µ)2

2σ2

)
(2πσ2)

n/2 (7)

According to Equation (4), the marginals are usually considered to be constant; there-
fore, it can be expressed as p(α|β) ∝ p(β|α)p(α). In this state, the overall process of finding
the posterior mean and the variance is as follows: With the proportional relationship before,
the roughly expressed formation is as in Equations (8) and (9) [42].
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f (x|µ) f (µ) =
exp
(
−∑n

i=1(xi−µ)2

2σ2

)
(2πσ2)

n/2

exp
(
− (µ−µ0)

2

2σ2
0

)
(
2πσ2

0
)1/2 (8)

f (x|µ) f (µ) =
1

(2πσ2)
n/2

1(
2πσ2

0
)1/2 exp

(
−1

2

(
∑n

i=1(xi − µ)2

σ2 +
(µ − µ0)

2

σ2
0

))
(9)

The terms outside of the exponential function are constants. Thus, arranging the
details can focus on the terms inside of the exponential function, and let the inside terms be
represented as a. Then, the arranging process can be simplified as Equation (10) and further
processes are as Equations (11)–(14) [42]. Here, the term ∑n

i=1(xi − µ)2 can be expressed

in more detail that ∑n
i=1(xi − x + x − µ)2 is the sample mean of x = ∑n

i=1 xi
n . In addition,

∑n
i=1(xi − x + x − µ)2 is able to be simplified to ∑n

i=1 (xi − x)2 + n(x − µ)2 [42].

a =
∑n

i=1(xi − µ)2

2σ2 +
(µ − µ0)

2

2σ2
0

(10)

a =
∑n

i=1(xi − x)2

2σ2 +
n(x − µ)2

2σ2 +
(µ − µ0)

2

2σ2
0

∝
n(x − µ)2

2σ2 +
(µ − µ0)

2

2σ2
0

(11)

∝
nx2 − 2nxµ + nµ2

2σ2 +
µ2 − 2µµ0 + µ2

0
2σ2

0
(12)

∝
µ2

2

(
n
σ2 +

1
σ2

0

)
− µ

(
nx
σ2 +

µ0

σ2
0

)
+ constant (13)

∝

(
n
σ2 +

1
σ2

0

)(
µ2

2

)
− µ

 nx
σ2 + µ0

σ2
0

n
σ2 +

1
σ2

0

 (14)

Let the posterior follow the state of N(µp, σ2
p), then the exponential term is exp

(
−(µ−µp)

2

2σ2
p

)
.

Therefore, µp =
nx
σ2 +

µ0
σ2

0
n

σ2 +
1

σ2
0

and σ2
p =

(
n
σ2 +

1
σ2

0

)−1
. Using this posterior, a BT in each case can

be calculated.

2.4. smRNN

The RNN has a simple hidden layer structure, but the prediction performance shows
quite high accuracy. With the RNN it is easy to train the data, and the data structure
of this study is quite simple. In addition, unlike LSTM which has a complex structure
of the hidden layer, the hidden layer of the RNN is not complex. Thus, adding some
functions is not difficult. In addition, an SNN is a very light neural network because an
SNN imitates the data transmission process of neurons [39] as previously mentioned and
shown in Figure 4.
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Since the SNN process is simple, this study considered the main process to be the
spiking part. Additionally, the spiking part was added in the hidden layer of the RNN
process; therefore, it is referred to as smRNN in this study. The difference between a
conventional RNN and smRNN is illustrated in Figure 5.
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In the conventional RNN shown in Figure 5a, the red box location is empty. In contrast,
the spiking part was added to the red box location as shown in Figure 5b. Hence, two kinds
of data could be obtained from the smRNN—predicted outputs and spiked outputs. With
the predicted outputs of TNC, TESSBA, DIae, and DIao, the simulation obtained the spiked
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signals and predicted the energy consumption times of the air conditioner. The operation
details of smRNN are listed in Tables 2 and 3.

Table 2. smRNN details.

Used data t (total 24,800 min), TNC, TESSBA, DIao, DIae

Trainings 90% of dataset

Tests Rest 10% of dataset

Thresholds TNC, TESSBA: 28 ◦C
DIao, DIae: Followed the results in Section 3.2

Optimizer Gradient descent

Table 3. Total simulation process with smRNN.

Air Conditioning Simulation Process

1 Load dataset
2 Divide the dataset

Training and Testing
3 Initialize the parameters and thresholds

Wxh, Whh, Why, bh, by
Learning rate = 0.001
Hidden size = length(training set)
Epochs = 50
thr ≥ 28 for temperature, ≤ 2 for DI
Activation function (Forward) = tanh(x)
Activation function (Backward) = dtanh(x)/dx

4 for i in 1:epochs ## Training the model
hih = 0 ## Initialize the hidden state
spike = 0 ## Initialize the spike state
for h in 1:hidden size

## Forward process
Calculate : h and ytrain_out with xtrain[h]

## Backpropagation
Calculate : dy, dby, dWhy, dh, dbh, dWxh, dWhh
-----------------------------------------------------------------------------------------------
## Get spikes

ytrain-out
thr→ get 1 or 0 (1 = firing, 0 = non)

-----------------------------------------------------------------------------------------------

## Get loss
MSE loss

## Update the weights and biases (Optimizing)
Wxh, Whh, Why, bh, by

end
end

5 Test the trained model
xtest

trained smRNN→ yprediction
6 Perform simulation if R2 value upper than 0.9 (Raw data vs. Predicted data)

In Table 3, there are the well-known RNN parameters; Sherstinsky (2020) [43] arranged
the process calculation of the traditional RNN system. The most important thing is the
module-added part. The newly added part is highlighted with a dot-dash line in Table 3.
The process is simple and not demanding; therefore, the training time did not increase.
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Thus, in this state, smooth data training could be performed. Additionally, the calculation
of MSE and R2 is as in Equations (15) and (16).

MSE =
∑(ŷ − y)2

n
(15)

R2 = 1 − ∑(y − ŷ)2

∑(y − y)2 (16)

where y are the observed data, ŷ is the estimated output, y is the target average, and n is
the amount of data. Considering the purpose of this study, since it is more meaningful to
perform the simulation using the predicted data, prediction data were used instead of raw
data. An example of future applications would be predicting the energy consumption for
the next year or month in weather service centers.

2.5. Assumptions

First, the study aimed to estimate house-scale power consumption. There was a
small space inside the specimens; therefore, the room temperature was quite high. Room
temperature is usually higher in small rooms but can decrease as the size of the space
increases. For example, consider two houses in the same climate without air conditioning
systems: one is a large house, and the other is a small house. Usually, a large house has more
shadow zones, which make the rooms cooler than those in a small house. Therefore, large
indoor spaces traditionally have lower temperatures than small spaces [44]. In addition,
small spaces can be highly affected by the radiation heat from the concrete walls. However,
large spaces are less affected by the radiation heat than small spaces, as shown in Figure 6.
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Figure 6. The effect of radiation heat from concrete walls on the indoor space.

According to Figure 6, the red box area of overlapped radiation heat clearly shows
higher temperatures than without a radiation heat space. However, assuming the space
increases like the blue box area of Figure 6, it can create areas unaffected by the radiation
heat from concrete walls. In this case, the room temperature would be lower than the red
box case of Figure 6. The experiment undertaken by Kim et al. [23] is like the red box case
of Figure 6; therefore, there is a need to correct the indoor temperatures. Including the
temperature correction, the assumptions of this study are as follows:



Materials 2024, 17, 2108 11 of 25

1. The indoor temperatures of the specimens should be subtracted from the original data
by 5 ◦C considering the space size effect [44].

2. The RH values are the same in air, indoor of NC, and EC100.
3. The air conditioner is turned on when the room temperature is higher than 28 ◦C

(temperature domination—red area).
4. The air conditioner is turned on when DIao or DIae are downward of the baseline

(index domination—condition—blue area).
5. The air conditioner is turned on when both conditions 2 and 3 are satisfied at the same

time (complex condition—green area).
6. The air conditioner is turned off when DIao or DIae are above the baseline and the

indoor temperature is below 28 ◦C (these two conditions should be satisfied at the
same time).

In the introduced assumptions, there is reference to the ‘baseline’. The meaning of
baseline is the connection line of BT and DI at the crossed point as shown in Figure 7.
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Figure 7. The concept of BT.

The detailed results are considered in the following section, with the value of the
baseline being twice the y-axis value. The reason that the crossed points were chosen was
that there were some patterns to judge the simulated effects of turning the air conditioner
on/off. The details are presented in Section 3. Based on the established assumptions, total
power consumption estimation calculations were performed.

3. Results and Discussion
3.1. BT of the DIs

In general, the normal distribution is frequently used because it is easy to apply to
simulations involving the use of trends and data [17]. However, there are many probability
density functions that fit well with particular measured/prepared data, such as the Cauchy
distribution and the gamma distribution. Therefore, it is essential to check what function
fits the data well.

Before checking the fittings, the calculated DIs should be discussed. Figure 8 indicates
the trends for DIa, DINC, and DIESSBA. As can be seen in Figure 8, DIa usually showed
higher values than DINC and DIESSBA. This is because the indoor temperatures of NC
and EC100 were subtracted by 5 ◦C and these subtracted temperatures largely affected
the results of DINC and DIESSBA. In addition, the trends for DIa and DINC were generally
observed in the DI values for both indoors and outdoors [45]. Thus, the observed trends
were found to be general.
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Figure 8. Calculated DIs of air, indoor of NC and ESSBA.

According to Figure 9, one thing becomes clear. The subtracted conditions of DIao
and DIae showing positive values indicate that indoor conditions are more pleasant than
outside. Furthermore, for the energy storage performance of ESSBA, it is observed in
Figure 9 that the blue line has a lower position than the DI of air and NC for all periods.
Therefore, it is worth considering the difference between DI values based on DIa; Figure 9
indicates the values of DIao and DIae.
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Figure 9. Calculated DIao and DIae.

In most of the periods, DIae was above 0; however, for around 25% of periods DIao
was below 0. In short, DIae showed that the indoor condition of EC100 was better than the
indoor condition of NC. From the results of Figure 9, roughly, it can be expected that EC100
would show less consumption of electrical power for cooling the indoor space than NC.

However, power consumption simulation could not be performed in this state; there-
fore, BT was needed for the simulation. Hence, finding the best-fitted probability function
was performed for DIao and DIae. To find the best probability function, histogram fitting,
PP fitting, and QQ fitting were performed. These three methods are usually applied to
obtain an appropriate probability function [30,46]. In the fitting work, normal, logistic, and
Cauchy distributions were investigated. Figure 10 presents the histogram fitting.
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Figure 10. Histogram fitting results, (a) Histogram fitting of DIao, (b) Histogram fitting of DIae.

These three cases of the distributions showed well-fitted conditions. Considering the
skewness and kurtosis, the Cauchy distribution may appear to be the best; however, the
rest of the distributions showed high-quality fitting as well. Thus, more data is required
in order to determine the best fit of the distributions in DIao and DIae. Hence, PP and QQ
fitting were performed and are shown in Figure 11.
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Figure 11a for DIae shows that all the distributions showed the same flow in PP
fitting, but the details are different. The Cauchy distribution, as shown in Figure 11a,
showed a greater distance from the ideal line than the normal and logistic distributions.
Furthermore, in the cases of the Cauchy and logistic distributions, these two distributions
exhibit thicknesses in their lines. In short, this may reflect a kind of noise when performing
the thresholding work [28]. It is better to choose smoother lines in PP plots. In addition,
the yellow area in the a-box of Figure 11a shows that a normal distribution was the best in
terms of following the trend with the ideal line. This same trend is found in Figure 11b. In
the QQ plots of Figure 11b, all the lines have the same width; however, it is clear that the
normal distribution shows the best fit in the QQ of DIae. In addition, a normal distribution
shows complete accordance with the ideal lines for short duration in box b of Figure 11b.
Thus, a normal distribution is appropriate for DIae indexing.

In the case of DIao, determining the distribution was relatively more difficult than for
DIae. According to Figure 11c, the Cauchy distribution shows the best fit in the ranges
of 0.4 to 0.6. However, in box c of Figure 11c, the normal distribution shows a better fit
than for the Cauchy distribution. Hence, a cross-check with Figure 11d was carried out
because Figure 11d shows a clear trend among the distributions. The left yellow box of
Figure 11d shows that the normal distribution tends to follow the ideal line closer than
the other distributions. On the other hand, the green box of Figure 11d shows the logistic
and normal distributions behave almost without any differences. In the right yellow box
in Figure 11d, the best-fitted distribution in DIao can be inferred by comparing with the
results of Figure 11b,c. Overall, the normal distribution was the best probability density
function in DIao as well. Based on the normal distribution, making the BT was performed.

3.2. BT Results

Based on the derived posterior distribution, the BT lines showed the same value in the
cases of DIao and DIae. In Figure 12, each threshold value can be observed.

The temperature threshold is already introduced according to assumption 3. However,
both NC and EC100 had the same threshold by the Bayes peak and the DI contrary to
expectations. Since the Bayes peak could not reflect all the requirements of the assumptions,
another criterion is essential to establish a basis [28]. For example, Woo et al. [28] used
the Bayes peaks as a basis for assessing the corrosion state of the rebars. The base was the
different peaks appearing along with the surface corrosion levels. Similarly, in this study,
the DI curves serve as another criterion, with the value being 2 in all cases.
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As can be seen in Figure 12, the Bayes peaks could not reflect all the assumptions
about duration of this study. Due to the determined DI threshold, the simulation spiking in
the smRNN was clearer than only with the Bayesian peaks. Therefore, all the conditions
for simulating the air conditioning in this study were prepared.

3.3. Training and Test Results

The training and testing results are presented in Figure 13. To ensure usability of the
fitted model, the accuracy of the test group must be high. In addition, the MSE loss during
the training process should be close to 0, and the loss should be sufficiently stable after a
certain number of epochs. This verification is discussed below.
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widely using in time series forecasting [47,48]. The smRNN training-testing performance 
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Figure 13. Train-test model test results, (a) TNC results, (b) TESSBA results, (c) DIao results, (d) DIae

results.

The results are shown for TNC, TESSBA, DIao, and DIae, respectively. The trained data
showed close fitting with the raw data in all cases. In addition, the test data also showed
close fitting. With simple structures of data, this can readily occur in RNN studies [47,48].
The close fitting and following exactly along with the raw data indicates why RNN is
widely using in time series forecasting [47,48]. The smRNN training-testing performance
confirms this in Figure 13 because the derived data show excellent fitting. However, it is
difficult to determine how well the data fit quantitatively in this state. Thus, a comparison
for the whole duration and raw data is given in Figure 14.
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As expected, the R2 values in all cases were above 0.95. Above an R2 value of 0.8,
it is considered that the predicted data fits well with the raw data and the prediction
performance is quite high [17]. Furthermore, the lowest R2 value was 0.9708 in DIao. Hence,
using predicted data in this simulation can be performed with high reliability. In addition,
in order to produce such a high R2 value, the MSE loss in the epoch process must be
sufficiently low [49]. This is shown in Figure 15.
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3.4. Air Conditioning Simulation Results

With the trained smRNN, the accurate predicted temperature and DI data are ade-
quately derived. However, one additional type of data still remains to be considered—the
spiked times. Since the duration is meaningful for the prediction part, it was derived
together from the simulation analysis, and the duration can be accurately derived from the
already trained smRNN. The results are presented in Figure 16.
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Unlike Figure 12, the presented data are the predicted data from smRNN and confirm
the other kinds of chart-like bars added in the graphs. The bar-shape charts are the
simulated air conditioning times from the spiking module of the smRNN with the predicted
temperature/DI data. The red spikes followed assumption 3. The spikes appeared when
the predicted temperature data were above the temperature threshold of 28. The blue spikes
followed assumption 4. The spikes appeared when the predicted DI values were lower than
the DI threshold of 2. The green spikes represent assumption 5 of the complex condition.

An SNN is a kind of unsupervised learning but is very light. However, learning is dif-
ficult, and the accuracy of the results can be less than for conventional neural networks [39].
To overcome these shortcomings, learning was conducted through an RNN, and the final
on/off simulation was derived through the spiking part of smRNN. Accurate results could
be obtained as in Figure 16. From the on/off simulation, it can be seen that the spiked
duration of NC and EC100 is clearly different. The NC simulation required that the air
conditioner had to be turned on for more than 90% of the data measurement period. In
contrast, in EC100, the operating period of the air conditioner was simulated to be signifi-
cantly reduced. These results are in line with the experimental results of Kim et al. [23]. In
addition, the difference in average indoor temperature of 3 ◦C in the simulation results is
very similar to the results obtained by Kim et al. [23]. As the phase of PCM changed, the
indoor temperature of the concrete structure was lowered in the process of absorbing and
storing heat [22,23,50]. This suggests that the operating time of the air conditioner can be
significantly reduced by a difference of 3 ◦C. The spiked duration details are presented in
Table 4.

Table 4. Spiked duration (operating time of the air conditioner).

Assumptions
Unit (hours)

NC EC100

Temperature domination 307.667 168.333

Index domination 271.833 185.167

Complex condition 189.5 86.5

Total (except for overlapping duration) 390 267
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The total measured duration was 413.33 h. In the NC case, the total operating time
was simulated by 390 h. It was 1.46 times more than for the EC100 case, and EC100
saved 32% of the operation time compared to NC. Thus, ESSBA achieved a reduction
in energy consumption. Calculated simply by time, 123 h of energy consumption was
saved, suggesting that this could lead to a positive chain effect on the burden of energy
consumption at home and further carbon dioxide reduction in energy production.

4. Conclusions

This study sought to simulate energy consumption using smRNN. Two cases of
concrete mock-up structures were introduced and data were obtained from a mock-up test.
The key conclusions from this study are as follows:

1. Through BT work, a clearer threshold could be derived. The probability peak com-
pared to the data obtained from the posterior probability distribution did not enable
the simulation required in this study. By providing a clear BT with DI, it was possible
to obtain accurate spiking timing of smRNN.

2. By implanting the spiking concept of SNN into RNN, predicted data and spiking
timing could be obtained at the same time. During the training process, all losses
were shown to be below 0.1, and the simulated data also showed an R2 value greater
than 0.95. The meaning of smRNN made it possible to avoid secondary work on the
prediction of the energy consumption duration. Faster and more accurate simulations
were possible by obtaining results from the simulations at the same time.

3. The use of PCM in the concrete showed remarkable energy consumption savings.
According to the simulation undertaken in the study, the air conditioner operation
time was reduced by 32% compared to the NC case. This implies that the utilization
of PCM could be a key material to achieve energy consumption savings.

4. The simulation process and methodology of this study can be used not only to predict
energy efficiency but also by energy-related institutions to predict national-scale
energy consumption during the summer.
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Abbreviations

a Air (ex: Ta)
BT Bayesian thresholding
CNN Convolution neural network
DI Discomfort index
EC100 ESSBA concrete
ESA Energy storage aggregate
ESSBA A coarse aggregate using a slag by-product for energy saving
LSTM Long short-term memory
NC Normal concrete
PCM Phase change material
PP Calculated probability-empirical probability
QQ Calculated quantile-empirical quantile
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RNN Recurrent neural network
SiC Silicon carbide
smRNN Spike module added RNN
SNN Spiking neural network
Symbols
RH Relative humidity (%)
T Temperature (◦C)
p(β|α) Likelihood probability
p(α) Prior probability
p(β) Marginal probability
p(α|β) Posterior probability
σ2 Variance of data
µ Data average
x Dataset like x = (x1, x2, · · · , xn)T

N(µ, σ2) Normal distribution following µ and σ2

t Measures time (minutes)
Wxh RNN weight (input to hidden)
Whh RNN weight (hidden to hidden)
Why RNN weight (hidden to output)
bh Bias parameter of hidden layer
by Bias parameter of output
thr Thresholds in the hidden layer of smRNN
MSE Mean square error
R2 Determination coefficient
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