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Abstract: For the complex structure of fibrous network materials, it is a challenge to analyze the
network strength and deformation mechanism. Here, we identify a failure mode transition within
the network material comprising brittle fibers and bonds, which is related to the strength ratio of the
bond to the fiber. A failure criterion for this type of fibrous network is proposed to quantitatively
characterize this transition between bond damage and fiber damage. Additionally, tensile experiments
on carbon and ceramic fibrous network materials were conducted, and the experimental results
show that the failure modes of these network materials satisfy the theoretical prediction. The
relationship between the failure mode, the relative density of network and strength of the components
is established based on finite element analysis of the 3D network model. The failure mode transforms
from bond damage to fiber damage as increasing of bond strength. According to the transition of
the failure modes in the brittle fibrous network, it is possible to tailor the mechanical properties of
fibrous network material by balancing the competition between bond and fiber properties, which is
significant for optimizing material design and engineering applications.

Keywords: fibrous network materials; damage evolution; failure modes transition; finite element
method (FEM); carbon; ceramics

1. Introduction

Fibrous network materials consist of stochastic and interconnected fibers, and are
widely found in both biological [1] and man-made materials [2]. Due to their stochastic
structure, fibrous networks are heterogeneous, and their deformation is non-affine, pos-
ing a significant challenge in characterizing their mechanical properties. Experimental
studies on fibrous networks, such as non-woven composites [3,4], paper [5], insulation
tiles [6–9], sintered metal fibers [10,11], and biological tissues [1,12], have qualitatively
established the relationship between density, network anisotropy, and network strength.
Several numerical models have been proposed to investigate the intrinsic deformation
mechanism of fibrous networks. In some network models obtained by computed to-
mography images, fibers were generally modeled using beam elements, truss elements,
or solid elements [13,14], while the bonds between fibers were assumed to be nonlinear
springs [15–17], rigid connections [18,19], trusses [20], beams [6,7,21–23], connector con-
straints [24,25], or “stick-slip” nonlinear contacts [26].

The mechanism of fibrous materials is distinctive from fiber-reinforced compos-
ite [27,28]. Based on the numerical simulations, the influence of the fibrous structure
and properties of fibers and bonds on the mechanical properties of the network was re-
vealed. Stergios et al. [20] investigated the mechanical properties of celluloses, and they
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found that bond density and bond strength enhance the elastic modulus and strength of
the fibrous network materials, yet have a minor effect on the failure strain. Borodulina
et al. [29] concluded that increasing the average number of bonds on a fiber could improve
the mechanical properties of the network. Negi et al. [30] studied the influence of inter-
fiber adhesion on the mechanical behavior of 2D fibrous networks, and showed that an
increase in the adhesion strength between fibers reduces the network’s elastic modulus.
A comparison between the random fibrous network and the cellular structure was also
discussed [31], which demonstrated that the network’s strength was independent of the
fiber tortuosity and fiber properties, while the network strength was related to the bond
strength and the length of fiber segments.

Generally, the network strength depends not only on network structure, such as bond
density (or average bond number per fiber) and the average length of fiber segments, but
also on the properties of network components, such as bond strength and fiber strength.
Deogekar and Picu [32] focused on the failure modes and the relationship between network
structural parameters and network strength, and they demonstrated that failure of the
fibrous network was related to the breakage of bonds. Malakhovesky et al. [33] found
that, for the network for which the main failure mode was fiber damage, enhancing the
variability of fiber strength could reduce the network strength. On the other hand, for
the failure of networks associated with bond failures, the strength distribution among the
bonds shows no significant influence on the elastic modulus and tensile strength of fibrous
network [29]. It was shown that failure modes such as fiber damage or bond damage in
the fibrous network are essential for enhancing the network strength. Additionally, Estelle
et al. [34] studied the influence of heterogeneities on the failure behavior of disordered 2D
lattices, and found that tuning the connectivity of the network could change the failure
mode of network from brittle failure to ductile failure. Luo et al. [35] built a 3D trans-
verse fiber network model, and studied the influence of the anisotropy on its mechanical
properties. The numerical results indicated a brittle-to-ductile transition in the fibrous
network with the anisotropy of network increasing. Thus, whether there existed a failure
mode transition between fiber damage and bond damage in the fibrous network needs
quantitative description.

In this work, the transition of failure modes in fibrous network materials is analyzed
by considering the strength ratio of bond to fiber, and the failure mechanisms of these
materials are discussed in detail. The influence of the network’s relative density and the
mechanical properties of fibers and bonds on network strength is studied numerically
using a 3D fibrous network model [6,7]. Through investigating damage evolution and
stress distribution in the network, a failure criterion is established to quantitatively identify
the failure modes of the fibrous network material. Additionally, uniaxial tensile tests on
carbon and ceramic fibrous network materials are conducted, and the experimental results
are in agreement with the theoretical predictions.

2. Material and Method
2.1. Experimental Section
2.1.1. Materials

Two types of fibrous network materials are selected to examine the failure modes,
including carbon fibrous network material and ceramic fibrous network material. The
carbon fibrous network materials consist of phenolic resin and chopped rayon-based carbon
fibers, with a relative density of 0.14. The ceramic fibrous materials contain silica fibers
and mullite fibers, with a relative density of 0.16. These fibers are bound by a sintering
additive (B4C powder and soluble starch) after undergoing the sintering process. The
manufacturing processes for the carbon and ceramic fibrous materials are illustrated in
Figure 1.
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Figure 1. Fabrication process of carbon fibrous network materials.

Chopped carbon fibers (30 wt.%) with an average length of 0.8 mm and an average
diameter of 9 µm are dispersed in water. A dispersant (1.5 wt.%), such as polyacrylamide,
is added to the solution to prevent fiber aggregation in the slurry. After sufficient high-
speed stirring, the chopped fiber slurry is formed. Subsequently, a phenolic resin solution
(60 wt.%) diluted with ethanol is added to the slurry. Following vigorous stirring for over
an hour, a thoroughly mixed slurry is obtained.

Then, the slurry described above was poured into a mold. At the bottom of the mold,
a plate with a uniform distribution of 1 mm diameter holes was covered with porous gauze
(200 meshes with a mesh size of 76 µm). The excess solution was extruded from the holes
under vacuum pressure (approximately 0.1 MPa). After sufficient drying, the carbon fibrous
preform was sintered in a furnace and heated to 1200 ◦C in an argon atmosphere at a rate of
5 ◦C/min. During the sintering process, the chopped carbon fibers were bonded together
by the carbonization of the phenolic resin. After cooling down to room temperature within
the furnace, the carbon fibrous network materials were completed.

The fabrication process of the ceramic fibrous network is similar to that of the carbon
fibrous network. Silica fibers and mullite fibers are used in the ceramic fibrous network
materials. These two types of fibers, comprising about 70% silica fibers and 30% mullite
fibers by weight, are first cut into short fibers with an average length of 0.8 mm and an
average diameter of 10 µm. Then, these short fibers are mixed into the slurry along with
the sintering additive (B4C powder and soluble starch). The sintering temperature is set at
1200 ◦C in an air atmosphere. During the sintering process, the B4C powder is oxidized at
high temperatures, and the random fibers are bonded together by the B2O3 bond materials,
resulting in the formation of the ceramic fibrous network materials.

2.1.2. Quasi-Static Tensile Tests

Fibrous network material is a novel lightweight porous material, and there is currently
no universal testing standard. For reference, we have reviewed some of the relevant
research works [34–49]. Highly porous materials are sensitive to their microstructure;
therefore, we believe that using appropriately large specimen dimensions can help reduce
the dispersion of experimental data. The experimental specimens are designed with
a dumbbell shape and a square cross-section measuring 75 mm × 15 mm × 15 mm,
as illustrated in Figure 2a. The quasi-static uniaxial tensile tests on the specimens are
performed using an in situ biaxial mechanical testing machine, IPFB-2000, at a loading rate
of 0.2 mm/s. An electron scanning microscope (SEM, Model S-570, Hitachi, Tokyo, Japan)
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is used to observe the fracture surface after the tensile test to identify the typical failure
modes of the fibrous network material.
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Figure 2. (a) Shape of fibrous network materials and (b) uniaxial tensile testing equipment.

2.2. Numerical Simulations
2.2.1. Fibrous Network Model

The 3D fibrous network models are established based on the experimental observation
of network materials. A random fiber in a 3D domain can be characterized by the coordi-
nates of its mass point, Mi, and two Euler angles, α and β, as shown in Figure 3d. Based on
the porosity and domain size, fibers are generated randomly in the domain, and any two
fibers are connected with each other through the bond when their least distance is within
the bonding distance, as shown in Figure 3c. In this model, these fibers across boundary
of the domain are cut into two pieces, and the portion outside the boundary is shifted
to the opposite boundary. Therefore, periodic boundary condition could be applied to
this 3D geometrical model of fibrous network. Finally, the representative volume element
(RVE) of the random fibrous network model can be established (Figure 3b). The detailed
establishment of the 3D fibrous network model can be found in previous studies [6,7].

Materials 2024, 17, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. (a) Shape of fibrous network materials and (b) uniaxial tensile testing equipment. 

2.2. Numerical Simulations 
2.2.1. Fibrous Network Model 

The 3D fibrous network models are established based on the experimental observation 
of network materials. A random fiber in a 3D domain can be characterized by the coordinates 
of its mass point, Mi, and two Euler angles, α and β, as shown in Figure 3d. Based on the po-
rosity and domain size, fibers are generated randomly in the domain, and any two fibers are 
connected with each other through the bond when their least distance is within the bonding 
distance, as shown in Figure 3c. In this model, these fibers across boundary of the domain are 
cut into two pieces, and the portion outside the boundary is shifted to the opposite boundary. 
Therefore, periodic boundary condition could be applied to this 3D geometrical model of fi-
brous network. Finally, the representative volume element (RVE) of the random fibrous net-
work model can be established (Figure 3b). The detailed establishment of the 3D fibrous 
network model can be found in previous studies [6,7]. 

 
Figure 3. Numerical model of the fibrous network: (a) uniaxial tension of the RVE of 3D network 
model with size of W × H × T; (b) a close view of the fibrous network structure (c) with fibers colored 
in cyan and the bonds in purple; (d) a random fiber in the 3D space. 

2.2.2. Finite Element Analysis 
The quasi-static tensile test is simulated using ABAQUS 2016/Explicit software. Consid-

ering the aspect ratio of fiber is below 10, a Timoshenko beam is used to simulate the fibers in 
the complex network, for computational efficiency. The B31 element type of the Timoshenko 
beam in ABAQUS 2016 is taken in the following FEM simulations. There are many mechanical 

Figure 3. Numerical model of the fibrous network: (a) uniaxial tension of the RVE of 3D network
model with size of W × H × T; (b) a close view of the fibrous network structure (c) with fibers colored
in cyan and the bonds in purple; (d) a random fiber in the 3D space.

2.2.2. Finite Element Analysis

The quasi-static tensile test is simulated using ABAQUS 2016/Explicit software. Con-
sidering the aspect ratio of fiber is below 10, a Timoshenko beam is used to simulate the
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fibers in the complex network, for computational efficiency. The B31 element type of the
Timoshenko beam in ABAQUS 2016 is taken in the following FEM simulations. There are
many mechanical models proposed for the simulation of bonding material, whose function
is to constrain deformation of fibers and transmit the load between fibers. Based on the
previous numerical investigation on ceramic fibrous network [6–9,21,23], the bond material
transmits the moments and forces before its breakage and can be reasonably modeled as
Timoshenko beam element with a circular cross-section. In order to reflect the interaction in
the fibrous network, fiber-to-fiber contact is incorporated into the simulation and defined
as the general contact interactions containing hard contact in the normal direction and
sliding friction in the tangential direction. The constitutive relationships of fiber and bond
are both elastic until their failure, which is reasonable for the fibrous network fabricated
by brittle fibers, such as carbon fibers and ceramic fibers. The maximum principal stress
criterion is adopted via the subroutine of user define material (VUMAT) in ABAQUS 2020
software. The 3D numerical model is subjected to the uniaxial loading along the z-axis, as
shown in Figure 3a.

3. Results
3.1. Experimental Results

The tensile stress–strain curves for the carbon fibrous network and the ceramic fibrous
network are illustrated in Figure 4. For both networks, the stress–strain curves are similar to
those of typically brittle materials. The stress–strain curve of the ceramic network material
is linear up to a strain of 0.5%. Then, the stress increases nonlinearly with the strain, and
there is a sudden drop in stress at a strain of 0.7% due to progressive damage in the fibrous
network. For the carbon network material, the slope of the linear portion of the curve is
steeper than that of the ceramic network materials, indicating a higher elastic modulus,
with the fracture strain measured at 0.14%. This suggests that the elastic modulus of the
carbon network material is larger than that of the ceramic network material. However, the
tensile strength of the carbon network is lower than that of the ceramic network material.
After the tensile tests, the fracture surfaces of the ceramic and carbon networks were
observed with SEM. In Figure 4b, the bonds appear nearly intact, while most fibers are
broken near the bonds, indicating that fiber damage is the predominant failure mode for
the ceramic network material. In contrast, Figure 4c shows that for the carbon fibrous
network, the fibers remain mostly intact, and the bonds exhibit breakage, attributable to the
weak mechanical properties of the pyrolytic carbon bonds. This reveals that the primary
failure mode for the carbon network material is bond damage.
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3.2. Numerical Results

Both the carbon fibrous network and the ceramic fibrous network are composed of
brittle fibers and brittle bonds, but the relative strength of fibers to bonds differs significantly.
Based on the experimental results, the failure mode of fibrous network materials is clearly
distinct, attributable to the different mechanical properties of the fibers and bonds. We
have established 3D numerical models that replicate the geometric parameters and material
properties (listed in Table 1) of these fibrous network materials. To elucidate the failure
mechanism and understand the failure modes within the fibrous network, a failure criterion
for network materials with brittle fibers and bonds is proposed as follows:

R =
Sb/σb
Sf/σf

{
R < 1, fiber damage
R > 1, bond damage

(1)

where σb and σf represent the strength of the bond and the fiber, respectively; Sb and Sf are
the current principal stress in the bonds and fibers, respectively. R = 1 corresponds to the
critical failure transition of the fibrous network. The failure mode tends to be characterized
as fiber damage dominated for R < 1, and tends to be bond damage dominated for R > 1.

Table 1. Material properties of the carbon fibrous network and ceramic fibrous network.

Silica Fiber Mullite Fiber Carbon Fiber B2O3 Bond Pyrolytic
Carbon Bond

Elastic
modulus 78 GPa 193 GPa 230 GPa 27 GPa 4.65 GPa

Strength 1.7 GPa 2.0 GPa 3.5 GPa 2.0 GPa 0.2 GPa

Quasi-static tensile simulations were performed with finite element software
ABAQUS/Explicit software 2016. The 3D fibrous network model was simulated by Timo-
shenko beam elements (B31 in ABAQUS 2016). A fiber was meshed into 60~80 B31 elements
according to the length of the fiber. The number of elements is based on the relative density
of the fibrous network model. For instance, models with a relative density of 0.08 have an
average of 12,552 elements, including 4616 elements for bonds and 7936 elements for fibers.
Conversely, models with a relative density of 0.45 contain an average of 172,340 elements,
including 101,203 for bonds and 71,137 for fibers. The boundary conditions were periodic
boundary conditions, chosen to closely match those of the uniaxial tensile experiments.
The calculation error of numerical results due to the analysis method is controlled by the
stability limit ∆t = (Le)min/f c, where (Le)min is the minimum axial length among all the
beam elements in the network, and c =

√
E/ρ is the wave speed of the materials, which

depends on the elastic modulus E and the density ρ. The mass scaling parameter f is used
to improve computational efficiency. In this section, we discuss the friction coefficient,
mass scale, and loading strain ratio in order to obtain stable parameters based on the nu-
merical model with porosity = 94% (comprising 9170 beam elements). Figure 5 shows the
out-of-plane compressive stress–strain curves at different mass scales (Figure 5a), friction
coefficients (Figure 5b), loading strain ratios (Figure 5c). Here, friction coefficients of 0,
0.25, 0.5, and 1.0 were used to simulate fiber-fiber sliding behavior, which has also been
employed in other simulation studies related to the sliding behavior of fiber networks [16]
and foam-like monolithic carbon materials [50].

As shown in Figure 5a, the mass scale can enhance the computation and also increase
the inertia effect, which reflects on the increasing the fluctuation of stress–strain curves,
especially for the pseudo-elasticity part. Then, we discussed the friction coefficient at mass
scale f = 4900. Friction can increase the loading transfer between fibers. If we focus on
a fiber of the fiber network, and the others can be treated as matrix, then increasing the
friction will be equivalent to enhancing the interfacial strength between fiber and matrix.
With friction coefficient increasing, the stress–strain curves tend to be stable after friction
coefficient = 0.5. Finally, we determine a set of parameters: Mass scale is 900, friction
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coefficient is 0.5, and loading strain ratio is 1.0 s−1, in order to obtain the balance between
the computational efficiency and the stable numerical results.
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stress–strain curve of 3D numerical model with 94% porosity in Explicit/CAE.

In the numerical simulations, the principal stress S11 is obtained at the centroid
integration point in the B31 element when a uniaxial strain of 0.1% is applied to the network
model. Sb and Sf are the average of principal axial stress S11 in the bond elements and the
fiber elements throughout the entire network model, as shown in Figure 6a,b. This failure
criterion is verified through tensile experiments on two types of fibrous network materials.
Based on SEM observations of the specimens, the predominant failure modes for the carbon
fibrous network and the ceramic fibrous network are bond damage and fiber damage,
respectively, as illustrated in Figure 4b,c. According to the failure criterion, the value of
R for these two fibrous network materials is 5.26 and 1.01, respectively. The experimental
results are in good agreement with the predictions made by the failure criterion.
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4. Discussion

In order to study the effects of the mechanical properties of component materials on
the failure mode of fibrous network materials, we define a ratio of bond strength σb to fiber
strength σf as K = σb/σf. The following simulations are not limited to one specific material
system. The detailed geometric parameters and material properties for the numerical
model are listed in Table 2. In these simulations, the strength of the fiber is held constant at
1.0 GPa, while the bond strength varies from 0.1 GPa to 10 GPa.
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Table 2. Geometric parameters and material properties of the fibrous network.

Geometrical Parameters Mechanical Properties

Relative density (ρ) 0.08~0.45 The elastic modulus of the fibers (Ef) 100 GPa
Fiber diameter (D) 9.0 µm The elastic modulus of the bonds (Eb) 100 GPa
Bond diameter 9.0 µm The strength of the fibers (σf) 1.0 GPa
Fiber length (L) 800 µm The strength of the bonds (σb) 0.1~10 GPa
Bond length 0~9.0 µm Poisson ratio of the fibers and the bonds 0.26
W × T × H 1.5 L × 1.0 L × 1.5 L The density of the fibers and the bonds 100 g/cm3

Figure 7a illustrates the tensile stress–strain curves of the network models with K
ranging from 0.1 to 10. In the elastic regime, the slopes of all the stress–strain curves are
almost the same. The maximum tensile stress in the stress–strain curves is defined as the
tensile strength of fibrous network σt, with the K increasing from 0.1 to 4.0, σt increases
from 0.07 MPa into 1.6 MPa. When K > 4.0, it is obvious that σt almost maintains 1.6 MPa
with the increasing of K. After the maximum tensile stress is reached, the overall stress
begins to decrease with the strain due to the accumulation of damage in the network. The
strain corresponding to the tensile strength of the network is defined as failure strain εf.
Then, the statistics of damaged bonds and damaged fibers in the networks can be obtained
at the failure strains in all the cases. As shown in Figure 7b, the difference between the
damage evolution of bonds and fibers are distinct. With the continuous increase in K, the
percentage of damaged fibers increases. After K reaches to 4.0, the percentage of damaged
fibers no longer rises, and remains an almost constant value of 1.5%. On the other hand,
the percentage of the damaged bonds increases linearly and reaches the maximum at
K = 1.0 with the increase in K. Then, with the continuous increase in K, the percentage of
damaged bonds decreases. When K is larger than 4.0, the percentage of damaged bonds
no longer increases and remains stable (below 0.2%). In other works by Stergios [20] and
Borodulina [29], it is shown that the mechanical properties of the fibrous network increase
with the increasing of bond strength. In their network model, the corresponding values of
K increased from 0.01 to 0.1, which agrees with our simulation results. In addition, based
on the damage evolution in the network, the percentage of damaged fibers and bonds no
longer changed after K increases to 4.0, which further causes the tensile strength and failure
strain of the network also remain constant. It is found that the influence of bond strength
for increasing the network strength has an upper bound.

According to the numerical results, the distribution of the damage in fibers and bonds
in the network is plotted in Figure 8. The value R of each case with different K is also
calculated and marked near the double arrow. It is demonstrated that the R of case with
K = 2 is 1.05 which is close to the critical failure transition. With increasing of K, the value
of R decreases and the failure mode tend to be the bond damage dominated.

In the case of K = 0.5, plenty of bond damage is distributed randomly in the network
at the strain of 0.01, and only a few fibers damage near the loaded end, which may be
attributed to the constrain at the boundary. With the increasing of loading, the amount of
damaged bonds increases rapidly. In the case with K = 1, the amount of damaged bonds at
the strain of 0.01 is obviously less than that in the case with K = 0.5. With the increase in the
bond strength, the amount of damaged bonds declines, while nearly no damaged bonds
can be observed in the fibrous network at the strain of 0.01 with K = 5 or K = 10. Therefore,
it is obvious that a failure mode transition between the fiber damage and the bond exists in
the networks with the value of K ranging from 0.1 to 10. The numerical results also satisfied
the prediction of the failure criterion.
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In addition, the influence of relative density on the failure mechanism is also discussed.
The numerical models of the fibrous network with the relative density ranging from 0.08
to 0.45 are generated. In these models, the ratio of bond strength and fiber strength, K,
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ranges from 0.1 to 10. The relationship among the variable R, the relative density and
variable K is depicted by a curved surface, R-surface in Figure 9. The R-surface intersects
with the surface of R = 1, the critical failure surface. The region of the R-surface colored
with red above the critical failure surface means that the failure mode of network tends
to be the bond damage. As the value of R increases, the bond damage tends to be more
obvious. The region of R-surface colored with blue below the critical failure surface means
the failure mode of network tends to be the fiber damage. As the value of R decreases, the
fiber damage tends to be more obvious.
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In most non-woven network materials, the bond damage is a dominated damage
mechanism in the fibrous networks [49–52]. Based on the mechanical properties of non-
woven materials determined by Chen [53], the relative density of non-woven SF20 and the
value of K are about 0.2 and 0.4, respectively. According to the deformation mechanism of
the network, the load in fiber can be released by rotation or bending of the fibers. While
the deformation of the bond is restrained by the connected fibers, which leads to the stress
in bond being higher than that in fiber in the network with small deformation, indicating
Sb:Sf > 1. Thus, the value of R for SF20 is at least 2.5. The failure mode of the non-woven
network is characterized as bond damage, which agrees well with our prediction by the
proposed failure criterion.

Furthermore, the other simulations of paper network [24] show that the network
strength is mainly controlled by the inter-fiber bonds. In these works, the relative density of
the paper network is 0.6~0.8, and the variable K is 0.01. Based on our failure criterion, the
value of R ranges from 5 to 10 in the network model with K = 0.1. For the paper network
with K = 0.01, we believe the value of R will be higher than 1, even if the relative density is
0.6~0.8. The failure mode of paper network is the bond damage domain, which is because
the strength of paper network highly depends on the bond strength.

5. Conclusions

In this paper, the typical failure modes of the fibrous network materials are analyzed
by combing the numerical simulations and experiments. A failure criterion is proposed
especially for the network materials with brittle fibers and bonds, to quantitatively char-
acterize the failure mode transition between bond damage and fiber damage, which is
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then verified by the tensile experimental results of two kinds of fibrous network materials.
The failure mode of other network materials, such as paper and non-woven materials, is
also coincidentally well within the theoretical prediction. The detailed conclusions are
as follows:

1. Based on the numerical results of 3D network models, it was found that the failure
mode transition of network is from the bond damage domain to the fiber
damage domain.

2. For the variable R in the failure criterion, R > 1 means the failure mode of network
tends to be bond damage; R < 1 indicates the failure mode of network tends to be
fiber damage. This formula is verified by our experimental results, and is to be further
confirmed by other network materials, such as paper and non-woven network.

3. The failure mode of network depends on the network structure and mechanical
properties of fibers and bonds. The value of variable R decreases with the increase
in relative density, and increases with the increase of the ratio of bond strength to
fiber strength.
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