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Abstract: Membrane emulsification technology has garnered increasing interest in emulsion prepara-
tion due to controllable droplet size, narrower droplet size distribution, low energy consumption,
simple process design and excellent reproducibility. Nevertheless, the pore structure and surface
engineering in membrane materials design play a crucial role in achieving high-quality emulsions
with high throughput simultaneously. In this work, an oriented interpenetrating capillary network
composed of highly aligned and interconnected wood cell lumens has been utilized to fabricate
an emulsion membrane. A novel honeycomb porous ZnO layer obtained by a seed prefabrication–
hydrothermal growth method was designed to reconstruct wood channel surfaces for enhanced
microfluid mixing. The results show that through the unique capillary mesh microstructure of
wood, the emulsion droplets were smaller in size, had narrower pore-size distribution, and were
easy to obtain under high throughput conditions. Meanwhile, a well-designed ZnO layer could
further improve the emulsion quality of a wood membrane, while the emulsifying throughput is
still maintained at a higher level. This demonstrates that the convection process of the microfluid
in these wood capillary channels was intensified markedly. This study not only develops advanced
membrane materials in emulsion preparation, but also introduces a brand-new field for functional
applications of wood.

Keywords: membrane emulsification; wood; emulsion; ZnO nanoparticles; microfluid

1. Introduction

Emulsification technology plays a crucial role in various industries and fields, such as
food and beverages, pharmaceuticals, cosmetics, and petroleum [1–5]. It involves the pro-
cess of mixing two immiscible liquids, such as oil and water, to form a stable emulsion. The
ability to efficiently create and stabilize emulsions is essential for the production of countless
products and has a significant impact on their quality and functionality [6,7]. Researchers
have developed innovative emulsification techniques, such as ultrasonic emulsification,
high-pressure homogenization, and microfluidics, which have improved the efficiency and
stability of emulsion formations [8–10]. Membrane emulsification is a versatile technique
and has been widely used for producing emulsions due to its irreplaceable advantages
in tunable emulsion size distribution and low energy consumption compared to conven-
tional emulsification methods [11–15]. It also offers better control over the emulsification
process, allowing for the production of stable emulsions with enhanced properties [16,17].
Moreover, membrane emulsification has also been demonstrated to be effective in prepar-
ing uniform micro-/nanoparticles with narrow size distributions and more complicated
nanostructures [18–21]. It is a versatile and promising technique for the preparation of
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monodispersed particles with tailored properties for various applications in fields such as
drug delivery, catalysis, and materials science.

To realize its ultimate commercial application, membranes for emulsification should
have narrow pore-size distribution, low resistance to flow, excellent mechanical and chemi-
cal durability, high thermal resistance, wettability that can easily be modified, and should
be biocompatible, sterilisable and cheap [22–25]. Most importantly, a high-quality emulsion
with high throughput is an intractable issue for membrane emulsification due to a trade-off
effect which is ubiquitous in other membrane technologies [23,26,27]. The trade-off in
membrane emulsification lies in finding the balance between the desired droplet size and
production rate. Smaller droplets offer increased stability and a larger interfacial area,
which is desirable for certain applications such as drug delivery systems and food products.
However, the production rate decreases as the droplet size decreases. This trade-off can
be optimized by pore structure design and surface engineering of membrane materials to
achieve the desired emulsion characteristics [28–30]. While the sinuous pore structure of
most membrane materials promotes fluid mixing, it also comes with drawbacks such as
higher pressure drops and decreasing flux [31,32]. Hence, suitable pore structure should be
considered when selecting a membrane material for emulsification application, weighing
the benefits of fluid mixing against the trade-offs in performance.

As a kind of renewable and green biomass material, wood has been widely used for
centuries in construction, furniture making, and energy production [33–35]. It is primarily
composed of cellulose, hemicellulose, and lignin. Among these three components, cellulose
serves as the basic unit of wood cell walls, accounting for 40–50% of wood’s composition,
while lignin comprises 20–30%, and hemicellulose contains 15–30% [35]. Recently, wood
is frequently used to design monolithic functional materials on account of its unique
porous structure, decent mechanical and chemical durability, good modifiability, low cost,
excellent hydrophilicity, and ease of processing, making it attractive for a wide range
of applications in energy, environment, catalysis, and other fields [36–40]. Notably, the
porous structure of wood consists of numerous well-aligned long lumens interconnected
by pits and ray cells, forming an oriented interpenetrating capillary network [41]. In this
way, nutrients for tree growth can be rapidly transported in the direction of growth, thus
facilitating effective mass transfer. Many studies have demonstrated that utilizing the
pore structure of wood along its growth direction enables a highly efficient mass transfer
in water treatment [42–45]. In Hu’s research [46], a basswood matrix decorated with Pd
nanoparticles was used to degrade methylene blue (MB), taking full advantage of the
basswood structure along its growth direction. Owing to the developed mass transfer
system, the water treatment rate of the wood membrane can reach up to 1 × 105 L·m−2·h−1

with a high MB removal efficiency (>99.8%) concurrently, displaying high water treatment
efficiency. In view of the above analysis, wood is an ideal emulgator to produce high-quality
emulsions with high throughput. But so far there has been no literature reported on the
application of wood in membrane emulsification. On the other hand, ZnO and its related
compounds, which are hydrophilic and rich in hydroxyl groups, have been widely used to
construct micro/nano roughnesses for designing composites due to their low cost, ease of
generation, and environmental friendliness [47–49].

In this work, wood with unique hierarchical porosity was utilized to fabricate emulsion
membranes. A novel honeycomb porous ZnO layer was designed to further modify
the wood channel surface by a seed prefabrication–hydrothermal growth method. An
oriented interpenetrating capillary network composed of highly aligned and interconnected
wood cell lumens was utilized as a microfluid transfer system. Highly aligned wood cell
lumens provide high throughput, and interconnected channels between adjacent cell
lumens strengthen mixed convection processes of microfluids. A well-designed ZnO layer
with improved lipophobicity and a convex groove structure on a wood channel surface
could further promote mixed convection to form high-quality oil-to-water emulsions.
As a proof of concept, the emulsification properties of these prepared membranes were
studied, and the convection processes of the microfluid in these wood capillary channels
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were also discussed. This study not only contributes to the development of advanced
membrane materials for emulsion preparation, but also pioneers a brand-new field for
wood applications. It showcases the transformative potential of these innovative materials
in improving industrial processes and expanding the scope of wood utilization.

2. Materials and Methods
2.1. Materials

Poplar and fir wood came from a forest in China and was cut into slices with a
diameter of 25 mm and the different thicknesses required for the experiment. Soybean
oil was provided by the Jiusan Grain and Oil Industry Group Co., Ltd. (Harbin, China);
anhydrous zinc acetate, sodium hydroxide and sodium sulfite by the Shanghai Titan
Technology Co., Ltd. (Shanghai, China); urea and Tween 80 by the Sinopsin Chemical
Reagent Co., Ltd. (Shanghai, China); and deionized water by the laboratory.

2.2. Preparation of ZnO-Wood Membrane

Poplar wood slices were put into a mixed solution of 0.2 mol/L sodium sulfite and
sodium hydroxide (molar ratio of 1:1) and washed several times with deionized water to
remove impurities and some of the lignin to obtain a smooth pore structure. Then, they
were soaked in ethanol to replace the solvents and subsequently immersed in a 1 mol/L
zinc acetate/ethanol solution, where it was stirred for two days. The zinc acetate solution
was then heated at 60 ◦C with dropwise addition of 1 mol/L NaOH (in ethanol). When
the solution began to turn from transparent to translucent, the addition of NaOH was
stopped and the solution was heated for another 10 min to make a ZnO nanosol. It was
then immersed in the zinc oxide nanosol for 24 h before removal. Subsequently, zinc acetate
and urea were dissolved in deionized water at a total concentration of 0.02 mol/L (1:2 molar
ratio of zinc acetate to urea). The treated wood slice was transferred into a hydrothermal
reactor with a zinc acetate and urea solution and heated at 90 ◦C for a certain time (2 h, 6 h,
10 h). Finally, the sample was removed from the growth solution, rinsed multiple times
with ethanol and deionized water, and dried at 60 ◦C for 12 h. The obtained sample was
denoted as ZnO-wood.

2.3. Characterization

A scanning electron microscope (Sigma 300, Carl Zeiss AG, Oberkochen, Germany)
was used to observe the morphology of wood membrane samples, and the element distribu-
tions of the samples were analyzed by SEM-EDS. An optical contact angle tester (JGW-360B,
ZDYQ, Chengde, China) was used to verify the hydrophilicity of the samples. At room
temperature, droplets (0.3 µL) were dropped on the surface of the membrane for a few
seconds. Then, the value of the contact angle was recorded by the algorithm program. Each
sample was measured five times at different points and averaged. When testing the oil
contact angle in water by using a contact-angle measuring instrument (LSA-100, LAUDA
Scientific GmbH, Königshofen, Germany), the sample is first wetted with deionized water
and drops of oil (0.3 µL) inside the deionized water on the membrane surface for a few
seconds. Similarly, the value of the contact angle is recorded by the algorithm program. A
synchronous thermal analyzer (STA 6000, PerkinElmer, Hopkinton, MA, USA) was used
to test the thermal stability of the sample in an argon atmosphere at a heating rate of
5 ◦C·min−1, with a temperature range of 30 to 800 ◦C. To obtain the mass content of ZnO,
the calcine atmosphere was changed into oxygen. An X-ray diffractometer (Smartlab SE,
Rigaku, Tokyo, Japan) was used to analyze the phase structure and crystallinity of the
sample. A Fourier infrared spectrometer (Nicolet iS5, Thermo Fisher Scientific, Waltham,
MA, USA) was used to test chemical bond changes in samples in the wave number range
of 400 to 4000 cm−1. Images of oil-in-water emulsions were obtained using an optical
microscope (H550S, Nikon, Tokyo, Japan) and the sizes of the dispersed-phase droplets in a
continuous phase were determined by statistical analysis. The statistical data of droplet size
were determined using the image processing software Nano Measure (version 1.2.0). For
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each experiment, at least 500 droplets were measured for representative dimensional counts.
Moreover, to further accurately assess the droplet size of the obtained oil-in-water emul-
sions and their distribution, a Malvern Zetasizer (Zetasizer Nano ZS, Malvern Instruments,
Almelo, UK) was also adopted.

2.4. Membrane Emulsification Experiment

In this experiment, a homemade device was used to produce emulsions, and a small
air compressor with a surge tank provided membrane pressure. Deionized water was used
as the continuous phase and soybean oil was used as the separate phase. The oil to water
ratio was 9:1, and T-80 was added into the mixture as emulsifier (the ratio of emulsifier to
the two phases is 1:50). Then, the wood membrane samples were fixed and encapsulated
in the homemade device by fastening a flange with a rubber seal ring. Next, the prepared
mixture was added to the chamber connected to the air pressure inlet, and it was forced to
pass through the membrane samples at a pressure of 0.1 bar to achieve an emulsion in the
other chamber. The flux was measured as follows:

J =
V
At

(1)

where J is the emulsion flux (L·m−2·h−1), V is the total amount of emulsion collected (L), A
is the effective membrane area (m2), and t is the total emulsion time (h).

3. Results and Discussion

The pore structure and surface wettability regulation of the membrane have a strong
impact on the emulsification performance of the membrane. A rough surface struc-
ture and reduction in membrane pore size is conducive to the convective mixing of
microfluid [23,24,50]. As for oil-in-water emulsions, the membrane needs to be highly
hydrophilic or lipophilic. In this way, the aqueous phase can easily wet the surface of the
membrane and form a continuous film, thus allowing the dispersed phase to pass through
the membrane drop by drop. Therefore, to obtain high-quality oil-in-water emulsions, ZnO
loading on a wood capillary channel surface was used to further adjust the pore structure
and surface hydrophilicity of wood. The strategy of constructing ZnO-wood and its mem-
brane emulsification process are shown in Figure 1. To overcome the growth resistance in
capillary space and obtained uniformly loading ZnO nanoparticles, seed prefabrication
combined with hydrothermal growth was used. Here, poplar as a kind of hard wood was
used as raw material to prepare ZnO-wood.
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Figure 2a shows XRD patterns of poplar and ZnO-wood. The XRD peaks at approxi-
mately 2θ = 15.8◦, 22◦, and 34.5◦ correspond to the crystal faces (101), (002), and (040) of
cellulose crystal from poplar, respectively [51]. For ZnO-wood, the hexagonal wurtzite
phase of ZnO (JCPDS: 99-0111) can be observed clearly, suggesting the successful loading of
ZnO nanoparticles. The FTIR spectra of poplar and ZnO-wood are displayed in Figure 2b.
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The primary absorption peak of poplar is located around 3340 cm−1, which corresponds to
the contraction vibration of the free hydroxyl group and intramolecular hydrogen bonds.
Another absorption peak is observed at 2900 cm−1, attributed to the contraction vibration
of the methyl group and methylene group. Additionally, there is an absorption peak at
1930 cm−1, which can be attributed to the vibration peak of the carbonyl stretching (C=O).
The vicinity of 1620 cm−1 corresponds to the skeletal vibration of the benzene ring in
lignin [46]. Another absorption peak at 1240 cm−1 is associated with the contraction vibra-
tion of the -CH stretching. Furthermore, the peaks observed near 1057 cm−1, 1039 cm−1,
and 1137 cm−1 correspond to the C-O-C stretching vibration, C-O stretching vibration, and
C-H vibration, respectively, associated with both cellulose and hemicellulose [52]. However,
these peaks significantly weaken for ZnO-wood, which may be due to the coverage of the
loaded ZnO layer. Moreover, a strong absorption peak corresponding to the contraction
vibration of the Zn-O bond could be observed at 413 cm−1 [53], indicating the successful
loading of zinc oxide onto the poplar. The thermal stability of the membrane ensures that
the emulsification process operates at higher temperatures. To investigate the thermal sta-
bility of the membrane samples, the TG curves of poplar wood and ZnO-wood in an argon
atmosphere are provided, as depicted in Figure 2c. This indicates that both poplar and
ZnO-wood show decent thermal stability under 250 ◦C, which is superior to most organic
membrane materials. However, there is a rapid pyrolysis process from 300–400 ◦C. During
the whole thermal decomposition process of poplar wood, the main components such as
cellulose, hemicellulose, and lignin begin to decompose when the temperature exceeds
250 ◦C, releasing water and volatile organic compounds. As the temperature rises further
to between 300 ◦C and 400 ◦C, the wood undergoes a more pronounced decomposition
process. Carbohydrates, cellulose, and hemicellulose decompose further, releasing a higher
amount of volatile organic compounds and smoke. When the temperature surpasses 400 ◦C,
the wood undergoes carbonization, where lignin and other organic matter are converted
into carbonaceous residues, while water and volatile organic compounds are completely
released [54]. On the other hand, in order to determine the average content of zinc oxide
nanoparticles in the ZnO-wood, thermogravimetric degradation in an oxygen atmosphere
was also conducted. The results in Figure S1a demonstrate that the mass content of zinc
oxide nanoparticles in the wood is 1.23%. Moreover, thermal treatment and organic sol-
vent resistance on the dimensional stability of ZnO-wood were also studied, as shown in
Figure S1b. The wood dimensions remained almost unchanged during heat treatment at
120 ◦C and N-Methylpyrrolidone soaking, suggesting a wider operating environment for
the membrane emulsification process.
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Surface wettability is a crucial factor in emulsification properties of the membrane [15].
Figure 3a illustrates the water contact angles of poplar and ZnO-wood. The result shows
the initial water-contact angle of poplar is around 65◦. After 10 s, water droplets gradually
infiltrate into the interior of the poplar, indicating that poplar exhibits good hydrophilicity.
It is due to the presence of hydroxyl (-OH) groups in the wood’s chemical structure, which
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can form hydrogen bonds with water molecules [55]. However, the water contact angle of
the ZnO-wood was about 130◦ higher than that of the virgin wood, which may be due to the
rough structure of the ZnO nanoparticles on the wood surface. To further test its real surface
wettability and to exclude the effect of the coarse structure of the ZnO, the oil contact angles
of poplar and ZnO-wood in water were also investigated. Figure 3b presents the oil contact
angles in water, and Figure 3c shows the contact angle of water in air and oil in water at
different times. The results show that ZnO-wood has excellent lipophobicity, superior to
poplar. This indicates that ZnO loading could enhance its lipophobicity or hydrophilicity,
which inhibits the formation of a continuous oil film and causes the dispersed phase to
generate an oil-in-water emulsion.
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The preparation process of ZnO-wood and its mechanism are illustrated in Figure 4.
First, the wood slice was treated by a mixed NaOH/Na2SO3 solution to remove impurities
and some lignin from the wood slices to obtain a permeable pore structure. Meanwhile, an
electronegative wood surface was obtained by alkali treatment. This surface can provide
abundant adsorption sites for Zn2+, to prepare ZnO seed crystal on the surface of wood
cell walls. During the hydrothermal process, these ZnO seed crystal could further induce
ZnO crystal growth, forming uniform ZnO nanoparticles with unique morphology in the
wood capillary network. The morphologies of growing ZnO nanoparticles from ZnO-
wood are shown in Figure 5a–h. From the SEM images of the ZnO-wood cross-section,
the novel honeycomb-like porous ZnO layer on the wood channel surface can be easily
observed. It consists of sinuate and connected ZnO nanosheets with a thickness of about
20 nm. The SEM images of dissected wood cell display a similar porous ZnO layer, but the
difference is that more corrugations appear in these ZnO nanosheets. Though wood cell
lumens are full of honeycomb porous ZnO layers, it can be noticed that the wood pores
remain unobstructed. In addition, the element mapping of ZnO-wood (Figure 5i) shows
C, O, and Zn elements are uniformly distributed on the surface of wood cell lumens. To
investigate the effect of hydrothermal time on the growth of ZnO layers, the morphologies
and structures of ZnO-wood with various hydrothermal times are observed in Figure S2.
This indicates there no ZnO nanosheets exist on the wood framework at 2 h hydrothermal
time. With the hydrothermal time increasing to 6 h, an obvious honeycomb porous ZnO
layer with ZnO nanosheets forms. Under the condition of 10 h hydrothermal time, the
structure of the ZnO layer is more regular and compact, and these ZnO nanosheets have
a better engagement. Additionally, with the increase in hydrothermal time, the results of
element mapping and the EDS spectrum demonstrated that the ZnO nanoparticles were
homogeneously distributed and the atomic percent of Zn element increased from 5.16%
to 22.50%.
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On the other hand, the digital photographs and SEM images of pristine poplar wood
are provided, as shown in Figure S3, and the morphology of fir wood as a kind of coniferous
wood was also observed for comparison to illustrate the difference in emulsification perfor-
mance. The result illustrates that both fir wood and poplar have interesting microstructures
consisting of numerous long and arrayed lumens interconnected by pits and ray cells
along the growth direction, forming oriented interpenetrating capillary networks. For
poplar wood, two kinds of cellular structure could be observed. Vessels have larger lumen
diameters of about 80–100 µm, while those of fibers are about 10–20 µm. Compared with
poplar, fir wood has a more uniform size of tracheid lumen, of about 30 µm. The light
microscope images from Figure S4 further confirm that the wood has highly aligned cell
lumens and interconnected pit/ray cell structures. Pits and wood rays play a crucial role
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in facilitating the horizontal transport of nutrients within trees, which could facilitate the
mixing process of microfluids along the growth direction during membrane emulsification.

To demonstrate the advantages of the ZnO-wood membrane, it was employed to pro-
duce an oil-in-water emulsification, and both pristine poplar and fir wood are also involved
for comparison (Figure 6). The membrane was settled in a homemade emulsification unit
with an air pressure of 0.1 bar for membrane emulsification. As mechanical agitation is a
common method to prepare oil-in-water emulsions, its emulsification performance was
also compared. It was found that the droplet size of emulsions treated with mechanical
agitation is heterogeneous and that many large-size droplets exist. However, there are
no large-size droplets in the emulsion prepared by the membrane emulsification process,
which displays a narrow size distribution. Moreover, the emulsion from the ZnO-wood
membrane exhibits smaller droplet sizes and a narrower size distribution than pristine
poplar and fir wood. The result also shows that, although poplar and fir wood have a
similar emulsion size, poplar (78,850 L·m−2·h−1·bar−1) has a much higher flux than fir
wood (31,240 L·m−2·h−1·bar−1). Hence, poplar is a suitable candidate for designing high-
throughput membrane emulsifications. It was also found that mechanical agitation time
affects the emulsion quality: the longer the time, the smaller the droplet size. Moreover, the
greater thickness of poplar decreased the size of the emulsion while sacrificing treatment
efficiency. In addition, the emulsifying property of the ZnO-wood membrane with various
hydrothermal time was studied. With increasing hydrothermal time, the droplet size of
ZnO-wood became smaller and had a lower standard deviation, which was further con-
firmed by the statistical result, as shown in Figure S5. However, the emulsion flux declined
gradually, which may be due to the raised content of ZnO nanoparticles shrinking the size
of the wood capillary channel. Even so, ZnO-wood prepared by 10 h of hydrothermal
time maintained an impressive emulsion flux of 34,680 L·m−2·h−1·bar−1. The droplet
size and distributions of oil-in-water emulsions were also accurately characterized by
the Malvern Zetasizer, as shown in Figure S6. The result shows that the sizes of droplet
characterized by the Malvern Zetasizer are much smaller than the results of the statistical
analysis of the optical microscope images. This further indicates that the droplets obtained
from the ZnO-wood membrane have a minimum size at the nanoscale (average droplet
size of about 400 nm). At the same time, they have much more uniform size distribution,
mainly concentrated around 10 nm, compared with the mechanical agitation and wood
membrane emulsification processes. Compared with other membrane materials in the
references [56–58], the ZnO-wood membrane in this work has smaller and narrower droplet
size with higher fluxes. Additionally, the membrane emulsification fluxes were recorded
for three consecutive membrane emulsification cycles, as shown in Figure S7. It was found
that the ZnO-wood membrane has a relatively stable flux, suggesting a decent stability
during continuous emulsification. These results indicate that the membranes have excellent
emulsification performance.

In addition, the stability of these emulsions made from the ZnO-wood membrane
are also illustrated by a standing test. Figure S5 shows that the oil-in-water emulsion by
ZnO-wood membrane emulsification remained stable after 3 days of deposition and that
the ZnO-wood membrane prepared by 10 h of hydrothermal time exhibits the best emulsion
stability. Comparing the emulsion stability of mechanical agitation and pristine wood,
Figure 7 shows that the ZnO-wood membrane displays incomparable emulsion stability.
The emulsion from mechanical agitation has the lowest concentration and poor stability.
This also indicates that both poplar and fir wood membranes can produce higher emulsion
concentrations than mechanical agitation, but their emulsion stability is inadequate.
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wood; (e) effect of treatment time on the droplet size; (f) effect of pristine poplar thickness on droplet
size and flux; (g) droplet size and flux of oil-in-water emulsion from ZnO-wood membrane prepared
by various hydrothermal times.

In order to further understand the mechanism of emulsification enhancement, the
influence of wood cellular structure and its surface engineering on microfluid transport
were investigated by ANSYS Fluent simulation version 2022 R1). The inlet pressure of
the microchannel was set at 0.1 bar plus one atmospheric pressure, simulating experimen-
tal conditions, while the outlet pressure was set at atmospheric pressure. As shown in
Figure 8a, the optical microscope image indicates that poplar wood consists of numerous
long and arrayed lumens that include larger-size vessels and smaller fiber cellular struc-
tures. Adjacent cell lumens are interconnected by pits and ray cells in transverse direction.
Perforated plates connect vessels along the growth direction. Based on the structural
features of wood, four separate geometries were established to demonstrate the effect of
the ZnO-wood structure on microfluidic mixing and mass transfer in the wood capillary
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channels, in which surface engineering by ZnO nanoparticles was also contained. The four
separate geometries are as follows: oriented capillary arrays without any connections and
perforated plates/fiber terminals (Figure 8b), oriented capillary arrays with connections
through pits in the wall (Figure 8c), oriented capillary arrays with connections and perfo-
rated plates/fiber terminals (Figure 8d), and oriented capillary arrays with connections
and perforated plates/fiber terminals as well as rough channel surfaces (Figure 8e). The
simulations were performed on wood channels with these four separate geometries, and
their velocity field distributions from the ANSYS Fluent simulation are also provided. The
results illustrate that there is hardly any mixed convection in straight capillary arrays
without any connections. The microfluids along the channels display typical characteristics
of a laminar flow regime [59]. In the context of a micrometer-scale channel, it leads to low
Reynolds numbers. At low Reynolds numbers, viscous forces dominate over inertial forces,
resulting in laminar flow. The flow is characterized by the absence of turbulence, vortices,
or irregular mixing. Each microfluid unit follows a well-defined path without crossing or
mixing with neighboring units, even though these channels are interconnected by wall
pits. Changing the geometric structure of the microchannel is an effective way to improve
the mixing efficiency for membrane emulsification [60]. As shown in Figure 8d, the mixed
convection is significantly enhanced in the presence of perforated plates/fiber terminals.
Adjacent microfluids are interpenetrated, forming mixed convection. The simulated result
from Figure 8e also indicates that the mixing efficiencies are further greatly improved by
designing convex grooves in these channels. It can be concluded that the rough channel
surface formed by the unique ZnO layer in the wood capillaries is able to further intensify
the microfluid mixing process.
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Figure 8. (a) Optical microscope image of poplar wood, showing four separate geometries and their
velocity field distribution from ANSYS Fluent simulation. (b) Oriented capillary array without any
connections and perforated plates/fiber terminals, (c) oriented capillary array with connection via
pits on wall, (d) oriented capillary array with connections and perforated plates/fiber terminals,
(e) oriented capillary array with connections and perforated plate/fiber terminals (rough surface
structure); (f) schematic of emulsion process analysis in oriented interpenetrating capillary network
of ZnO-wood membrane.

Hence, the mechanism of emulsification enhancement in an oriented interpenetrating
capillary network for a ZnO-wood membrane was proposed, and a schematic of emulsion
process analysis is shown in Figure 8f. The ZnO-wood membrane possesses an oriented
interpenetrating capillary network composed of highly aligned and interconnected wood
cell lumens. When water containing oil permeates into the ZnO-wood membrane, the wall
of the cell lumen is first wetted by water and restrains the formation of a continuous oil
film due to excellent lipophobicity and hydrophilicity. Large oil droplets in microchannels
are squeezed and broken down into smaller droplets continuously along long cell lumens
by convective mixing until they are extruded from the membrane. The well-designed
honeycomb porous ZnO layer boosts convective mixing through shrinking microchannel
size and increasing wall roughness. Meanwhile, oil droplets are squeezed repeatedly across
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pits and perforated plates, causing the dispersed phase to generate smaller-size oil droplets
with narrower size distribution. In addition, these oriented and straight capillary arrays
ensure high throughput for emulsion production. Therefore, high-quality emulsions with
high throughput can be achieved simultaneously by the designed ZnO-wood membrane.

4. Conclusions

In summary, wood with a novel honeycomb porous ZnO layer has been successfully
fabricated, and the hydrothermal growth time has a significant influence on the morphology
of the ZnO layer. This demonstrates that an oriented interpenetrating capillary network
from wood decorated with a unique ZnO layer can function as an excellent membrane
emulsion material. The designed membrane is capable of producing high-quality emulsions
with high throughput simultaneously, which is attributed to the synergistic effect of the
unique channel structure of the wood and evenly distributed ZnO layer particles. ZnO-
wood prepared by 10 h hydrothermal time maintains an impressive emulsion flux of 34,680
L·m−2·h−1·bar−1 with a mean droplet size of about 400 nm. ANSYS Fluent simulation
further proves the mechanism of enhanced emulsification; that is, the convection process of
the microfluid within the membrane is significantly enhanced. The proposed wood-based
emulsification membrane is cost-effective and high-performance, scalable, and enables
potential industrial-scale emulsion processes. In our follow-up work, the designed emulsi-
fying membrane will attempt to produce micro-/nanoparticles with tailored properties.
Such a productive capability could open up a whole new field for functional applications
of wood.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma17092113/s1, Figure S1: (a) The thermogravimetric
degradation of ZnO-wood in an oxygen atmosphere; (b) Digital photographs of ZnO-wood before
and after heat treatment and N-Methylpyrrolidone soaking, respectively; Figure S2: SEM images
of ZnO-wood with various hydrothermal time: (a,b) 2 h; (c,d) 6 h; (e,f) 10 h; the element mappings
and EDS spectrum images of ZnO-wood with (g) 2 h, (h) 6 h and (i) 10 h hydrothermal time; Figure
S3: Digital photographs and SEM images of (a1–a7) fir wood and (b1–b7) poplar; Figure S4: The
light microscope images of (a) fir and (b) poplar wood along the growth direction; Figure S5: The
droplet size distributions and digital images of oil-in-water emulsions from ZnO-wood membrane
prepared by different hydrothermal times: (a1–a7) 2 h; (b1–b7) 6 h; (c1–c7) 10 h; (1) digital pho-
tograph; (2) optical microscope image; (3) droplet size distribution; Figure S6: The droplet sizes
and their distributions characterized by the Malvern Zetasizer: (a1–a3) three parallel experiments
obtained by mechanical agitation; (b1–b3) three parallel experiments obtained from wood membrane;
(c1–c3) three parallel experiments obtained from ZnO-wood membrane; (d) their mean drop-size
analysis. Figure S7. The membrane emulsification fluxes during three consecutive membrane emulsi-
fication cycles.
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