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Abstract: Semantic segmentation algorithms leveraging deep convolutional neural networks of-
ten encounter challenges due to their extensive parameters, high computational complexity, and
slow execution. To address these issues, we introduce a semantic segmentation network model
emphasizing the rapid generation of redundant features and multi-level spatial aggregation. This
model applies cost-efficient linear transformations instead of standard convolution operations during
feature map generation, effectively managing memory usage and reducing computational complex-
ity. To enhance the feature maps’ representation ability post-linear transformation, a specifically
designed dual-attention mechanism is implemented, enhancing the model’s capacity for semantic
understanding of both local and global image information. Moreover, the model integrates sparse
self-attention with multi-scale contextual strategies, effectively combining features across different
scales and spatial extents. This approach optimizes computational efficiency and retains crucial
information, enabling precise and quick image segmentation. To assess the model’s segmentation
performance, we conducted experiments in Changge City, Henan Province, using datasets such
as LoveDA, PASCAL VOC, LandCoverNet, and DroneDeploy. These experiments demonstrated
the model’s outstanding performance on public remote sensing datasets, significantly reducing the
parameter count and computational complexity while maintaining high accuracy in segmentation
tasks. This advancement offers substantial technical benefits for applications in agriculture and
forestry, including land cover classification and crop health monitoring, thereby underscoring the
model’s potential to support these critical sectors effectively.

Keywords: semantic segmentation; lightweight architecture; attention mechanism; linear transformation;
neighborhood feature optimization

1. Introduction

Semantic segmentation of RS images is a pivotal technology for the intelligent interpre-
tation of RS data. It facilitates the automatic detection and recognition of valuable targets
within the extensive datasets of visible light RS images, marking it a significant area of
research in the realm of RS image processing. This technology finds broad applications
in various agricultural domains, including monitoring agricultural practices, assessing
agricultural disasters, managing irrigation systems, and improving planting techniques [1].
The burgeoning interest in segmentation methods based on convolutional neural networks
(CNNs) in recent years can be attributed to the swift advancements in graphics processors’
capabilities and the rapid proliferation of high-resolution RS images.

Since the groundbreaking introduction of Fully Convolutional Networks (FCNs) [2],
there has been an extensive body of work focused on segmentation tasks leveraging deep
convolutional neural networks. The original FCN methodology encountered two primary
limitations: firstly, it reduced the resolution of features, leading to a loss of detailed spatial
information; secondly, it had a limited effective receptive field, failing to capture long-range
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dependencies. Most studies have predominantly utilized multi-scale contexts formed by
pixels that are spatially adjacent or sampled. For instance, the Pyramid Pooling Module
(PPM) in PSPNet [3] segregates all pixels into several regions, selecting all pixels within the
same region for context. In the architecture of DeepLabv3 [4], the Atrous Spatial Pyramid
Pooling (ASPP) module uses convolutional kernels of various sizes for image processing.
This approach enables the capture of both minute details and the overall structure within
images. In the Transformer [5] model, self-attention and multi-head attention mechanisms
aid the model in focusing on crucial areas of RS images, allowing it to concurrently pay
attention to several significant sections of the image and comprehend their interrelations.
Therefore, the pixels chosen by the PPM context, ASPP context, and the context from the
self-attention and multi-head attention mechanisms often constitute a mix of object pixels,
relevant background pixels, and irrelevant background pixels. Nonetheless, such models
typically exhibit high computational complexity and slow inference times, rendering them
challenging for deployment on various embedded platforms.

Currently, research in RS segmentation has evolved from focusing on accuracy im-
provements to optimizing for speed. MobileNetV2 [6] deconstructs standard convolutions
into group convolutions and pointwise convolutions. It groups different feature maps of the
input layer, then applies different convolution kernels to each group, thereby reducing the
computational load of the convolutions. Based on this, depthwise separable convolution
modules and inverted residual modules were developed, achieving significant compression
of the network parameters. Moreover, the parameters of MobileNetV3 [7] were obtained
through Network Architecture Search (NAS), and the Squeeze-and-Excitation (SE) chan-
nel attention mechanism was introduced [8], effectively enhancing network performance
further. However, the grouping operation in MobileNet, due to the lack of connections
between different groups, results in very limited learned features and can easily lead to the
loss of semantic information. Therefore, researchers proposed ShuffleNet [9]. Its core design
principle is to shuffle different channels to address the issue of homogeneity brought by
group convolution, using multiple convolutional layers to construct a more robust structure.
PeleeNet [10], inspired by MobileNetV1 [11], is a lightweight network architecture that
utilizes Two-Way Dense Layers to enhance the flow of features both forward and backward,
capturing a broader array of effective features. However, when these lightweight struc-
tures are applied to RS image segmentation, they often overlook the redundant features
in RS images, significantly reducing the precision of feature capture. Moreover, relying
solely on the semantic information of individual pixels is often insufficient for accurately
determining their category, leading to a noticeable decline in the model’s segmentation
performance. Specifically, we have the following: (1) The backbone of existing lightweight
network architectures, due to the use of grouped convolutions, which divide the feature
map into multiple groups, causes an insufficient exchange of feature information between
each group. This overlooks some useful redundant features, leading to a weakened ability
to represent features. (2) Existing lightweight networks often employ larger strides or larger
pooling windows to reduce the dimensions of the feature map, resulting in the loss of
spatial feature information. Due to the use of smaller receptive fields, the network struggles
to integrate enough neighboring pixels to enhance the classification ability of individual
pixels, thereby causing inefficiency in the network’s convolutional structure.

Through the analysis above, it is evident that previous designs of lightweight convolu-
tional structures struggle to balance maintaining lightness with enhancing segmentation
accuracy. Therefore, in this paper, we introduce RRMSA-Net, consisting of the Rapid
Redundant Feature-Generation (RRG) and multi-level spatial aggregation (MSAS) modules.
Specifically, we first prioritize spatial feature optimization as the network backbone, re-
placing standard convolution operations with a module that generates feature maps while
reducing computational burden. Secondly, to enhance the feature representation capability
of feature maps after linear transformations, we designed a set of dual-attention mecha-
nisms. By weighting the attention of these feature maps in both the spatial and channel
dimensions, we establish contextual dependencies across different dimensions on local
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features, improving the feature-extraction capability. Lastly, to fully utilize neighboring
pixels for accurate category discrimination, we designed a multi-scale context-aggregation
module aimed at enhancing the model’s understanding of context through effective aggre-
gation of neighboring spatial features, thereby achieving improvements in RS segmentation
accuracy. Our contributions are as follows:

(1) We conducted a systematic analysis of the contribution of redundant features to
segmentation and the impact of spatial contextual information on segmentation
performance.

(2) To address the issue of the loss of redundant features, we introduced the “Rapid
Redundant Feature-Generation” module. This module achieves higher segmenta-
tion accuracy with significantly fewer computational resources than conventional
backbone architectures, and notably enhances inference speed.

(3) To tackle the problem of missing semantic information in individual pixels, we pro-
pose the “multi-level spatial feature aggregation” module. This module effectively
aggregates neighboring spatial features to enhance the model’s understanding of
context, thereby improving segmentation accuracy.

2. Materials and Methods

Unlike previous studies, this paper conducts an in-depth and systematic analysis
of the inconsistency between classification and regression features in the field of remote
sensing image processing. To address these challenges, we introduce the Wide-Area Feature
Segmentation Network, RRMSA-Net. In Figure 1, This network architecture combines two
major modules: “Rapid Redundant Feature Generation (RRG)” and “multi-level spatial
aggregation (MSAS)”. The RRG module extracts foundational information from a set of
intrinsic feature maps through cost-effective linear transformations, reducing model com-
plexity while enriching feature representation. The MSAS module integrates hierarchical
adaptive attention and multi-scale contextual techniques, employing tiered associative
mapping to amalgamate features of various scales. This optimizes computational effi-
ciency and preserves essential information, enabling efficient and precise remote sensing
image segmentation.

Figure 1. The RRMSA-Net model consists of two phases: encoding and decoding. In the encoding
phase, RRG serves as the backbone network, rapidly generating features and expanding dimensions
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through the Efficient Squeeze-and-Excitation Feature Optimization (ESFO) strategy, while integrating
the Bilateral Dual-Attention Mechanism (BDAM) to enhance feature representation and improve
semantic segmentation accuracy. In the decoding phase, MSAS employs multi-scale pyramid pooling,
object context pooling, and sparse self-attention mechanisms to increase the channel dimensionality
and depth of expression in feature maps, thereby enhancing the semantic segmentation analysis
capability in complex scenarios.

2.1. Data Introduction

In this study, we selected the GF-6 [12] satellite for its representative GF-6 PMS data,
which is highly suitable for detailed land cover classification due to its superior spatial and
spectral resolution. To enhance data quality and ensure the accuracy of our analysis, we
applied the following preprocessing steps to the original remote sensing data: radiometric
correction, atmospheric correction, orthorectification, and image fusion. The processed
remote sensing images were preserved with four spectral bands: Band 1 (Red), Band 2
(Blue), Band 3 (Green), and Band 4 (Red Edge). We chose imagery from four critical
phenological stages of winter wheat: 1 November 2020; 2 December 2020; 4 February 2021;
and 6 April 2021.

ACGF Dataset: The ACGF dataset. Developed by processing GF-6 PMS data, we have
constructed the ACGF dataset for the classification of 129 land cover features. This dataset
comprises 8386 images showcasing various land cover types in remote sensing imagery.
The classification categories were determined based on the prominent land cover types evi-
dent in remote sensing imagery: (1) Winter Wheat, the primary agricultural crop; (2) Urban
Buildings, encompassing various urban constructions and infrastructure; (3) Water Bodies,
including rivers, lakes, etc.; (4) Uncultivated Farmland, denoting areas not effectively devel-
oped or utilized; (5) Roads, covering transportation networks; (6) Other Crops, including
agricultural crops other than winter wheat, noting the increased segmentation challenge
due to the fragmentation of winter wheat fields and the complexity of the surrounding
areas. The selection of these categories reflects the diversity of our study and underscores
the necessity for accurate land cover classification.

The LoveDA [13] dataset consists of 0.3 m high-resolution images from Google Earth
of three different cities, including land cover types such as buildings, roads, green spaces,
bare land, water bodies, cultivated land, and others.

The LandCoverNet [14] dataset is primarily made up of 10 m resolution images from
Sentinel-2, covering a wide range of geographic and ecological environments globally. It
includes land cover types such as buildings, forest land, grassland, bare land, shrubland,
water bodies, cultivated land, snow/ice, and submerged vegetation.

The DroneDeploy [15] dataset comprises 10cm high-resolution aerial images captured
by drones, including land cover types such as buildings, debris, vegetation, water bodies,
buildings, ground, and vehicles.

The PASCAL Visual Object Classes (VOC) [16] dataset is a significant dataset in the
field of computer vision research, utilized by the Pattern Analysis, Statistical Modeling, and
Computational Learning (PASCAL) network in the Visual Object Classes Challenge. This
dataset comprises a large number of images captured from various angles, covering a wide
range of object categories including people, animals, vehicles, and furniture. The diverse
backgrounds of these images increase the difficulty of recognition and segmentation tasks.
Each image is provided with detailed annotation information, including object bounding
boxes (for object detection tasks) and pixel-level object contours (for image segmentation
tasks). The PASCAL VOC has had a profound impact on the advancement of the computer
vision field, particularly in object recognition and image segmentation technologies.
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2.2. Evaluation Metrics

In semantic segmentation, different positions and targets may appear in each RS image,
necessitating a comprehensive evaluation of the model’s performance at each location and
for each target. Specifically, we used the Mean Intersection over Union (MIoU), F1-Score,
and loss function as evaluation metrics to assess, in a comprehensive and objective manner,
the performance of our improved lightweight structure’s DeepLabv3+ model in the task of
RS image semantic segmentation.

The Mean Intersection over Union (MIoU) [17] is a key performance metric for seg-
mentation. For multi-class tasks, the calculation of the intersection over union (IoU) for
each category is treated as a binary classification task: belonging to that category or not.
Subsequently, the average across multiple categories is taken, and the calculation method
based on the confusion matrix is shown as in the equation below. The formula for the MIoU
is as follows:

MIoU =
1
n

n

∑
i=1

aii

∑n
j=1 aij + ∑n

j=1 aji − aii
. (1)

By considering the segmentation accuracy for each category, a detailed assessment of
individual targets can be provided, emphasizing the model’s performance at the pixel level.
In RS images, different positions and targets may appear in each image, and introducing
the MIoU helps to evaluate the overall accuracy of the model, not just focusing on the
performance for a single target.

F1-Score [18]: By comprehensively considering precision and Recall, it is suitable for
situations with class imbalance and takes into account both misclassification and omission.
The F1-Score is calculated as the harmonic mean of precision and Recall. Precision and Recall
are defined as follows:

Precision = TP + FPTP (2)

Recall = TP + FNTP (3)

F1 = Precision + Recall2 · Precision · Recall. (4)

In the formula: True Positive TP refers to the number of samples predicted as positive,
i.e., the number of positives correctly detected by the model; False Positive FP indicates
the number of samples predicted as positive, which are actually negatives mistakenly
predicted as positives by the model; False Negative FN) represents the number of samples
predicted as negative, which are actually positives incorrectly predicted as negatives by
the model. In the context of the segmentation of RS images, due to the fact that RS
images typically contain multiple categories of targets with an uneven distribution, relying
solely on precision or recall may lead to performance bias. The F1-Score, by balancing
these two metrics, effectively addresses the issue of class imbalance, ensuring the model’s
comprehensive and accurate recognition of all categories, thereby enhancing the accuracy
and reliability of the overall segmentation effect.

2.3. Module One: Rapid Redundant Feature Generation (RRG)

In most frameworks for the segmentation of remote sensing images, leveraging ex-
isting convolutional architectures as feature extractors leads to the creation of numerous
redundant feature channels. Diminishing these channels could result in the loss of crucial
information, such as edges and textures, negatively impacting segmentation accuracy. On
the other hand, retaining these redundant features escalates computational complexity,
which could hinder the model’s efficient deployment on embedded or edge computing
platforms. To overcome these challenges, this paper introduces a module for Rapid Re-
dundant Feature Channel Generation, executed through RRG. This module is designed to
swiftly generate feature maps, aiming to preserve accuracy with minimal loss while sig-
nificantly increasing the generation speed of feature maps, thereby effectively minimizing
computational complexity.
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2.3.1. Efficient Spatial Feature Optimization Module (ESFO)

The output feature maps from convolutional layers often contain a significant amount
of redundancy, with some feature maps being similar to each other. The generation of
feature maps usually involves numerous convolution operations, leading to high computa-
tional complexity and an increase in memory usage and FLOPs. Therefore, it is unnecessary
to generate these redundant feature maps through a multitude of convolution operations
individually. In Figure 1, The ESFO strategy considers the output feature maps as “derived
feature maps” obtained through the linear transformation of intrinsic feature maps, with
the formula as follows:

yij = Φi,j(y0i), ∀i = 1, . . . , m, j = 1, . . . , s. (5)

In this context, y0i is the i-th intrinsic feature map within Y0, and Φi,j is the linear
operation used to generate the j-th derived feature map yij. These derived feature maps are
then concatenated with the intrinsic feature maps to form a complete convolution layer,
as follows:

Y = concatenate(Y0, Yij). (6)

In the formula, Y represents the final output feature map, Y0 denotes the original
intrinsic feature maps, and Yij signifies the derived feature maps, generated by applying
the linear transformation Φi,j to Y0. The concatenate operation, by merging the derived
feature maps with the intrinsic feature maps, effectively expands the dimension of the
feature representation without significantly increasing the computational burden. This con-
catenation strategy ensures that the network, while reducing the number of parameters and
computational costs, can still capture and retain the richness and diversity of the input data.
The application of linear transformations allows each derived feature map to be processed
independently and in parallel, thereby enhancing the overall computational efficiency.

2.3.2. Bilateral Dual-Attention Mechanism Module (BDAM)

To enhance the quality of redundant feature maps generated during the linear trans-
formation process, a Bilateral Dual-Attention Mechanism (BDAM), which combines spatial
and channel attention for feature enhancement, has been designed.

In Figure 2, The spatial attention mechanism begins with a given local feature A, with
dimensions RC×H×W , being input into a convolution layer. This step generates two new
feature maps B and C, each maintaining the same dimensions as A(RC×H×W). Next, these
feature maps are transformed into the form RC×N , where N is the total number of pixels,
that is N = H × W. Subsequently, a spatial attention map S, with dimensions RN×N , is
computed by performing matrix multiplication of the transpose of C and B, followed by
the application of a softmax layer. The formula for this is as follows:

sji =
exp(Bi · Cj)

∑N
i=1 exp(Bi · Cj)

. (7)

In the formula, sji measures the influence of the i-th position on the j-th position. In
this way, we can assess the interactions between different positions within the feature map.
The higher the similarity of the positional features, the stronger their associativity. The
original feature A is then input again into a convolution layer to generate a new feature
map D, with dimensions RC×H×W . This map is subsequently reshaped into RC×N . Next,
we compute the matrix multiplication between D and the transpose of S and reshape
the result back into the form of RC×H×W . In the final step, we multiply this result by a
scaling parameter α and add it elementwise to the original feature A to obtain the final
output E, which also has dimensions RC×H×W . This process can be represented by the
following formula:

Ej = α
N

∑
i=1

(sjiDi) + Aj (8)
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In the formula, α is initially set to 0 and is gradually adjusted to provide different
weights. From this formulation, we can see that the final feature E at each position is a
weighted sum of all position features and the original features. This mechanism enables
the model to understand the image from a global contextual perspective and selectively
integrate these contextual pieces of information based on the spatial attention map.

Figure 2. The details of Position Attention Module.

Secondly, in Figure 3, the channel attention mechanism, each channel map of high-
level features can be viewed as a response to a specific category. The different semantic
responses are interrelated. By leveraging the interdependencies between channel maps, we
can emphasize mutually dependent feature maps, thereby improving the feature expression
capability for specific semantics. Consequently, we have constructed a channel attention
module to explicitly model the interdependencies between channels.

Figure 3. The details of channel attention module.

Unlike the spatial attention module, we calculate the channel attention map X ∈ RC×C

directly from the original features A ∈ RC×H×W . Specifically, we reshape A into RC×N ,
then perform matrix multiplication between A and its transpose. Finally, we apply a
softmax layer to obtain the channel attention map X ∈ RC×C:

xji =
exp(Ai · Aj)

∑C
i=1 exp(Ai · Aj)

. (9)

In this context, xji measures the influence of the i-th channel on the j-th channel.
Moreover, we perform matrix multiplication between the transpose of X and A and reshape
the result into RC×H×W . Then, we multiply by a scaling parameter β and perform an
elementwise summation with A to obtain the final output E ∈ RC×H×W :

Ej = β
C

∑
i=1

(xji Ai) + Aj. (10)

In this context, β is learned gradually, initially set to zero. This mechanism ensures
that the final feature of each channel is a weighted sum of the features of all channels and
the original features, effectively capturing the long-distance semantic associations between
feature maps. This method not only improves the distinguishability of features, but also
enhances the model’s ability to process complex semantic information.

In summary, the BDAM attention mechanism module we designed analyzes local
details of the image, enhancing the model’s understanding of and response to various parts
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of the image, improving the model’s ability to recognize different semantic categories, and
strengthening the semantic expression of the overall features. The combination of these
two modules not only improves the quality of the feature maps, but also enhances the
model’s semantic understanding of both local and global information in images, thereby
significantly enhancing the accuracy and efficiency of RS semantic segmentation.

2.4. Module Two: Multi-Level Spatial Aggregation Strategy (MSAS)

In remote sensing image segmentation, relying solely on the semantics of a single
pixel is often insufficient to accurately determine the category information of that pixel.
It is necessary to fully utilize the neighboring pixels for joint determination. Therefore, a
multi-level spatial feature aggregation module has been proposed.

In Figure 4, Each branch divides the input into different pyramid scales, and the object
context pooling is shared within each branch, then we concatenate the four output feature
maps with a new feature map that is generated by increasing the channels of the input
feature map by 4 × (512 → 2048).

Figure 4. The original feature maps are dimensionally reduced through 1 × 1 convolution, and then
concatenated with the output feature maps of the encoding layer, forming the input for the multi-level
spatial feature aggregation module (MSAS). MSAS further reduces the dimensionality of feature
maps using 3 × 3 convolution and implements multi-scale pyramid pooling on this basis, capturing
cross-level spatial information through an object context pooling (OCP) strategy. Additionally, a
sparse self-attention mechanism is introduced to perform a weighted summation of the feature
maps, thereby enhancing the model’s focus on key features. The processed feature maps are then
concatenated with new feature maps whose number of channels has been increased (expanded from
512 channels to 2048 channels). This step not only significantly enhances the channel dimensionality
of the feature maps, but also enriches the depth and detail of feature representation, providing more
precise and detailed feature information for the model’s final output, thereby enhancing the model’s
analytical capability and depth of semantic understanding in complex scenarios.

Initially, this method compresses the channel dimension of the feature maps output by
the backbone network through 3 × 3 convolutions. The specific formula is as follows:

Freduced = Conv3×3(F) (11)

In the formula, F represents the input feature map, Freduced represents the feature
map after dimension reduction through a 3 × 3 convolution, and Conv3×3 represents the
3 × 3 convolution operation. This approach not only reduces the model’s computational
complexity and memory consumption, but also retains key information in the feature map
to avoid excessive information loss.

Secondly, to accurately capture contextual information across different spatial ranges,
we first divide the dimension-reduced feature map into regions of multiple scales. This
enables the model to capture feature information from local details to global structures,
which is helpful for understanding and segmenting targets of various sizes and shapes.
Then, within each region, we analyze information related to local features, such as color,
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shape, and texture in that area. On this basis, we use a self-attention mechanism to consider
the relationships between pixels within each region, rather than the global relationships of
the entire image. This approach processes spatial features at different scales and applies
object-based max pooling to enhance the model’s understanding of the interrelationships
between different objects within various regions. The formula for this is as follows:

Fk
splitk =Split(Freducedk) (12)

Fk
ocp =OCP(Fk

split). (13)

In the formula, Fsplitk represents the result of spatially partitioning the dimension-
reduced feature map according to the scale k × K; split represents the spatial partitioning
operation, which divides the dimension-reduced feature map into spatial units of scale K,
with the size of each region determined by k, such as 1, 2, 3, or 6, resulting in the feature map
being divided into multiple regions of corresponding scales. OCP selects the maximum
feature value within each region through max pooling, highlighting the salient features of
the target. It applies spatial attention weights to calculate the relationships between features
in different regions, further strengthening the connections between features, enabling the
model to more accurately capture and recognize important features; Fk

ocp represents the
feature map processed through object-based context pooling (OCP).

Finally, features from different spatial ranges are aggregated using a feature concate-
nation method. The formula for this is as follows:

Ff inal = Concat(F1
ocp, F2

ocp, F3
ocp, F6

ocp) (14)

In the formula, Ff inal represents the final comprehensive feature map and Concat
denotes the feature map concatenation operation. This multi-level feature processing
operation enables the model to better distinguish and recognize various targets, especially
in scenes with rich textures and complex backgrounds.

In summary, in RS image segmentation, the multi-scale context aggregation module we
designed, by integrating compact 3× 3 convolutions, sparse self-attention mechanisms, and
object-based context pooling, effectively integrates features of different scales and spatial
ranges. This approach optimizes computational efficiency and retains key information. This
method significantly enhances the model’s ability to segment RS data with rich textures
and complex backgrounds.

2.5. Loss Function

The cross-entropy loss function in RS semantic segmentation is a commonly used loss
function for multi-class classification problems. In the task of the semantic segmentation
of RS images, the goal is to classify each pixel in the image into different categories (for
example, different types of land cover). The cross-entropy loss function is very effective
in these types of problems because it measures the difference between the predicted
probability distribution and the true label distribution. The formula for this is as follows:

L = −
N

∑
i=1

C

∑
c=1

yiclog(ŷic) (15)

In the formula: N represents the total number of pixels in the image; C is the total
number of categories; yic is a binary indicator, where a value of 0 indicates that the pixel does
not belong to the target category (for example, ‘winter wheat’), and a value of 1 indicates
that the pixel belongs to the target category; ŷic is the probability predicted by the model
that pixel i belongs to category c.

The objective of the cross-entropy loss function is to minimize the difference between
the predicted probability distribution and the actual label distribution. During the training
process, by adjusting the model parameters to reduce this loss value, the accuracy of the
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model in segmenting RS images is improved. This function is particularly suitable for
handling situations where there is an imbalance in class categories.

3. Results and Discussion

In this section, comprehensive experimental evaluations were conducted using our
custom-developed RS dataset, ACGF, alongside the LoveDA, LandCoverNet, and PASCAL-
VOC datasets. Furthermore, the proposed methodology of this paper was juxtaposed against
a spectrum of contemporary RS semantic segmentation models. This comparative analysis
was undertaken to substantiate the efficacy of the RRMSA-Net framework.

3.1. Experimental Details

Parameter settings: We utilized RRG as the backbone network of RRMSA-Net, ap-
plying weights from the Pytorch pre-trained VOC model. MSAS was used for multi-scale
detection. Additionally, when the momentum was set to 0.9, the proposed RRMSA-Net was
optimized using the Adam optimizer. The initial learning rate was set to 0.005, with a decay
rate of 0.1 after 1000 iterations. All experiments were conducted on a server equipped
with an Nvidia 3070 (Nvidia Corporation, Santa Clara, CA, USA), based on the Pytorch
framework. ResNet was adopted as the baseline. The introduction of any module may
complicate the computation.

3.2. Ablation Study

(1) Evaluation on different components:

We conducted related ablation experiments on the ACGF dataset to validate the
performance of the different modules proposed. Table 1 lists the results obtained on ACGF.
The baseline model only achieved an average accuracy (MIoU) of 82.9%, due to the original
backbone network’s inability to effectively capture the redundant features and edge texture
characteristics of winter wheat in the dataset. After using RRG, the performance of the
segmenter improved by 2.5%, indicating that RRG can retain redundant feature maps
while reducing memory usage, thus optimizing the overall model performance without
sacrificing accuracy. With the addition of MSAS, it enables high-quality feature extraction
based on the corresponding target semantic information.

Table 1. Effects of each component of RRMSA-Net on ACGF dataset.

With RRG? With MSAS? MIoU

× × 82.9%
✓ × 85.4%
× ✓ 86.2%
✓ ✓ 91.3%

In Table 1, a check mark (✓) indicates the usage of our designed module, while a
cross mark (×) indicates otherwise. Our MSAS module has established a robust feature
representation capability, leading to a 0.8% performance improvement in our RRMSA-
Net. The addition of RRG resulted in a 1.5% increase in model accuracy, demonstrating
that proper lightweight model design and multi-level spatial feature aggregation can
further enhance segmentation precision. Similar experimental results were obtained on the
VOC dataset.

Compared to networks with a single module, those with a combination of different
modules achieved better performance. The integration of RRG and MSAS brought about
optimization in model computational efficiency and improvement in feature quality, thereby
achieving superior segmentation accuracy and classification results. Furthermore, the
experiments also showed that there were no conflicts between the proposed modules.
When employing the proposed approach, the model demonstrated an optimal performance
of 91.3% MIoU.
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(2) Evaluating the effectiveness of the Rapid Redundant Feature-Generation (RRG) module:

From Table 2, we observe the following results for RRG (×10−3) at different depths,
d = 1, d = 3, d = 5, and d = 7, with corresponding values in Figure 5 red, yellow, and green
categories as 4.0, 3.4, 3.3, 3.2; 25.0, 24.5, 24.2, 23.7; and 12.0, 11.1, 11.0, 10.9, respectively.
All the Mean-Squared Error (MSE) values are very small, indicating strong correlations
between feature maps in deep neural networks, and that these redundant feature maps can
be generated from a few intrinsic feature maps. Based on this correlation, excess feature
maps can be efficiently derived from core feature maps. Although convolution operations
were primarily used in our experiments, other low-cost linear operations could also be
considered for constructing this module. However, convolution, as an efficient operation,
is already well-supported by hardware devices and can implement a variety of common
linear operations such as smoothing, blurring, and motion processing. Theoretically, we
could adjust the size of each filter in the linear operations, but such irregular modules
might reduce the computational efficiency of processing units (like CPUs and GPUs).
Therefore, in our RRMSA-Net, using the RRG module is the optimal choice for achieving
the best performance.

Table 2. Comparison between MSE error and different kernel sizes.

MSE (10−3) d = 1 d = 3 d = 5 d = 7

Blue pair 5.0 4.2 4.3 4.5
Yellow pair 35.0 36.5 34.2 33.7
Green pair 22.0 21.1 21.0 20.9

Figure 5. Visualization of some feature maps generated by the first residual group in RRG, where three
similar feature map pair examples are annotated with boxes of the same color. One feature map in the
pair can be approximately obtained by transforming the other one through inexpensive operations.
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(3) Evaluating the effectiveness of the multi-level spatial aggregation strategy (MSAS):

We selected MSAS as the baseline and summarize all the relevant results in Table 3. We
observed that ASP-MSAS consistently improved performance in both the spatial attention
(SA) and Inter-scale Attention (ISA) schemes, while MSAS showed a slight performance
increase compared to the baseline object context (OC) mechanism. In Formula (3), we found
that our method consistently outperformed the baseline under different group settings,
and achieved the best results when the number of groups was set to eight. Therefore, in all
experiments, we defaulted the number of groups to eight, enabling the model to achieve
optimal performance.

Table 3. Influence of Ph and Pw, the order of global relation and local relation within the interlaced
sparse self-attention on LOveDA.

Method Ph Pw Pixel Acc (%) MIoU (%)

Dilated MSAS - - 96.08 75.30

+MSAS-OC

4 4 96.30 78.97
4 8 96.32 78.94
8 4 96.33 79.20
8 8 97.82 80.62
8 16 96.19 79.01

16 8 96.32 78.02
16 16 96.31 79.40

+MSAS-OC 8 8 96.26 79.10

3.3. Comparative Experiment

In our latest research, we integrated the Rapid Redundant Feature-Generation module
and the multi-level spatial aggregation strategy into the existing architecture of DeepLabv3+,
with the aim of creating a more compact and efficient model. Comprehensive experiments
were conducted on the LoveDA, LandCoverNet, and PASCAL-VOC datasets.

According to the data presented in Table 4, our RRMSA-Net model achieved approxi-
mately twice the computational acceleration and model compression while maintaining
the accuracy of the original DeepLabv3+ model architecture. Compared with the latest
advanced methods including Thinet [19], NISP [20], Versatile filters [21], and Sparse Struc-
ture Selection (SSS) [22], our method exhibited significantly superior performance under a
two-× acceleration condition. When we further increased the hyperparameter s to four,
the RRMSA-Net model experienced only a 0.3% minor drop in accuracy, while gaining
about a four-× increase in computational speed, demonstrating even higher performance
efficiency. This study not only validates the effectiveness of RRMSA-Net in constructing
efficient deep neural networks, but also proves its ability to maintain outstanding perfor-
mance in processing large-scale image-recognition tasks, even under resource-constrained
conditions.

To validate the RRMSA-Net model’s capabilities in domain adaptation and handling
complex backgrounds, we conducted comparative experiments on the LoveDA dataset
against the PSPNet, SeNet, and HRNet models, all of which utilize the lightweight Mo-
bileNetV2 as their backbone network. The results, presented in Table 5, indicate segmenta-
tion accuracy with the PSPNet model recording the lowest Mean Intersection over Union
(MIoU) value, followed by SeNet and HRNet [23]. This outcome suggests a shortfall in the
feature-extraction capabilities of PSPNet, SeNet, and HRNet, particularly in distinguishing
between urban and rural scene features within the LoveDA dataset. Rural scenes are
predominantly composed of a few man-made features, like buildings and roads, alongside
a vast number of natural objects, such as woodlands. Urban scenes, conversely, feature
a blend of buildings and roads, with fewer natural elements. This variance in sample
distribution and scale diversity poses challenges for the compared models in accurately
classifying land objects.
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Table 4. Comparison of state-of-the-art methods for compressing RRG on PASCAL VOC dataset.

Model Weights (m) FLOPs (b) MIoU (%) Acc (%)

ResNet-50 23.7 4.1 75.3 92.2
Thinet-ResNet-50 15.4 2.6 72.1 90.3
NISP-ResNet-50-B 14.2 2.2 - 90.8

Versatile-ResNet-50 11.1 3.1 74.5 91.7
SSS-ResNet-50 - 2.9 74.2 91.8

MSAS-ResNet-50 (s = 2) 12.9 2.4 75.0 92.3

Shift-ResNet-50 6.2 - 70.6 90.1
Taylor-FO-BN-ResNet-50 7.8 1.4 71.7 -

Slimmable-ResNet-50 0.5× 6.5 1.2 72.1 -
MetaPruning-ResNet-50 - 1.1 73.4 -
RRG-ResNet-50 (s = 4) 6.2 1.0 74.1 92.3

Table 5. Comparison with state-of-the-art methods on LoveDA.

Method Backbone MIoU (%)

PSPNet MobileNet 78.4
SeNet MobileNet 81.2
HRNet RRG 81.6

RRMSA-Net (w/MSAS) RRG 83.5

RRMSA-Net enhances feature representation through the RRG module, utilizing
the Expand Spatial Feature Overlay (ESFO) strategy and the Boundary Definition and
Management (BDAM) mechanism to highlight critical features. Concurrently, the Multi-
Scale Aggregation Scheme (MSAS) module improves the model’s grasp on contextual
semantics by aggregating neighboring pixels. This comprehensive approach propelled the
RRMSA-Net’s MIoU value to 91.3%. These findings underscore RRMSA-Net’s superior
performance in processing remote sensing images with pronounced urban–rural contrasts,
showcasing its strengths in multi-scale target recognition and domain adaptation.

In Table 6, to verify the generalization ability of the RRMSA-Net model in macro land
cover classification tasks, we performed a comparative experiment using the LandCoverNet
dataset with the RefineNet [24], SGR [25], and ACNet [26] models. All the compared models
utilize ResNet-101 as the backbone network, and the experimental results are presented in
Table 6. In terms of segmentation accuracy, RefineNet exhibited the lowest MIoU value,
while SGR and ACNet showed marginal improvements compared to RefineNet. The
analysis revealed that the macro-geographical nature of the LandCoverNet dataset poses
a challenge, indicating limitations in the generalization performance of the compared
models across varying geographical environments. Additionally, the dataset employed
10 m resolution remote sensing images, which cannot offer precise pixel information akin
to other high-resolution remote sensing images. This might have posed difficulties for
the comparison models in identifying and extracting fine details from the images, thereby
affecting segmentation accuracy. In comparison to the other three models, RRMSA-Net
achieved a superior MIoU value of 45.21%. This is due to the enhanced understanding of
the underlying semantic information of target features in remote sensing imagery provided
by the RRG and MSAS modules. The results underscore the versatility of the RRMSA-NET
model in handling diverse geographical regions and land types.

Table 6. Comparison with state-of-the-art methods on LandCoverNet.

Method Backbone MIoU (%)

RefineNet ResNet-101 40.20
SGR ResNet-101 44.30

ACNet ResNet-101 45.06
RRMSA-Net (w/MSAS) RRG 45.21
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In Table 7, to assess the capability of the RRMSA-Net model in processing unmanned
aerial vehicle (UAV) imagery tasks, we conducted comparative experiments using the
DroneDeploy dataset against models such as Attention+SSL [27], CE2P [28], and CNIF [29],
all of which incorporate the RRG module as their backbone network. The results are
presented in Table 3. In terms of segmentation accuracy, the model with Attention + SSL
applied to PSPNet recorded the lowest Mean Intersection over Union (MIoU) value, fol-
lowed by CE2P and CNIF. This outcome can be attributed to the susceptibility of UAV
imagery to lighting conditions; shadows can obscure ground features, complicating the
identification of areas concealed by shadows for the comparative models. Additionally,
Attention + SSL, CE2P, and CNIF did not effectively retain sufficient detail when extracting
higher level abstract features, failing to achieve a balance between global context and local
detail information, which resulted in lower segmentation accuracy. In contrast, RRMSA-Net
achieved the best performance with an MIoU value of 57.39%, thanks to the MSAS module’s
employment of a sparse self-attention mechanism, which enhanced the model’s focus on
target features, thereby improving segmentation accuracy. These findings underscore the
RRMSA-Net model’s utility and robustness in handling UAV aerial imagery.

Table 7. Comparison with state-of-the-art methods on DroneDeploy.

Method Backbone MIoU (%)

Attention + SSL RRG 44.73
CE2P RRG 53.10
CNIF RRG 56.90

RRMSA-Net (w/MSAS) RRG 57.39

To validate the generalization ability of the RRMSA-Net model in macroscopic land
cover classification tasks, comparative experiments were conducted based on the PASCAL
VOC dataset against models such as U-Net [30], the FCN, and SegNet [31], all of which
utilize RRG as their backbone network. The experimental results are shown in Table 8.
In terms of segmentation accuracy, the MIoU value of the FCN was the lowest, with U-
Net and SegNet showing certain improvements over the FCN. The analysis suggests that
this is due to the PASCAL VOC dataset including images under various illumination
conditions, scales, and occlusions. The comparative models struggle to correctly identify
areas obscured by shadows, as they lose detail information during the convolution and
pooling processes. Furthermore, the presence of objects at different scales in the images
makes it challenging for the models to segment all scale pairs accurately, thereby affecting
the segmentation precision of the models. In contrast, the MIoU of RRMSA-Net reached
the highest value of 86.35%, attributed to the RRG module and MSAS module enhancing
the model’s understanding of the underlying semantic information of terrestrial objects in
remote sensing images. This result demonstrates the RRMSA-NET model’s applicability in
processing different geographical areas and land types.

Table 8. Comparison with state-of-the-art methods on PASCAL VOC.

Method Backbone MIoU (%)

FCN RRG 73.25
U-Net RRG 76.35
SegNet RRG 80.10

RRMSA-Net (w/MSAS) RRG 86.35

The experimental results fully demonstrate the effectiveness of our proposed RRMSA-
Net in enhancing the performance of deep neural networks, especially in handling com-
plex semantic segmentation tasks, effectively improving the accuracy and efficiency of
the model.
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To validate the generalization capability of RRMSA-Net, we applied it to the ACGF
agricultural dataset, focusing on the extraction of winter wheat distribution. Figure 6A
demonstrates the significant advantage of RRMSA-Net in extracting winter wheat, par-
ticularly in terms of boundary segmentation. The boundaries of the winter wheat are
more distinct and retain finer details, avoiding excessive smoothing of edges. Figure 6B
highlights the model’s exceptional performance in extracting other crops, with smoother
and more precise edge processing. The model accurately identifies the corners of crop
fields, showing notable precision. Moreover, the extraction of urban roads is comprehen-
sive, showcasing the model’s capability to achieve high segmentation accuracy. Figure 6C
illustrates precise urban area extraction, accurately segmenting different sections of the
city and clearly delineating the boundaries between roads and their surroundings. This
underscores RRMSA-Net’s proficiency in recognizing and segmenting edge features in
complex urban scenes, further affirming its effectiveness in precise object recognition.

Figure 6. Visualization of partial segmentation results from the RRMSA-Net model.

In Figure 7A, RRMSA-Net successfully differentiates between other crops and win-
ter wheat, achieving pronounced clarity in boundary delineation. It skillfully identifies
urban and barren landscapes amidst winter wheat, accurately outlining their contours
and perimeters. This demonstrates its ability to discern and distinguish between different
terrain features. In Figure 7B, the model adeptly navigates transitions between roads, urban
spaces, and wheat fields, showcasing its precision in road delineation and maintaining
segmentation accuracy across natural terrains. Figure 7C introduces urban topographical
segmentation, where RRMSA-Net precisely demarcates city areas with smoother bound-
aries. The consistency in edge detection across roads and various crops underscores the
model’s ability to accurately capture category-specific information for distinct types of land.
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Figure 7. The visualization application of RRMSA-Net’s segmentation results.

4. Conclusions

In this study, we comprehensively detailed the two pivotal modules of the semantic
segmentation network for RS imagery and elucidated their respective roles. The Rapid
Redundant Feature-Generation module, integrating lightweight convolutional strategies
and feature selection techniques, significantly diminishes computational complexity during
feature extraction. This methodology not only curtails the parameter count of the network,
but also sustains the integrity of feature extraction. Concurrently, the multi-level spatial
aggregation strategy module, through the amalgamation of feature maps across diverse
hierarchical levels, adeptly captures the foundational semantic attributes of targets within
RS imagery. For instance, it adeptly handles both high-resolution terrestrial details and
expansive features at lower resolutions, thereby facilitating a holistic interpretation of multi-
scale data inherent in RS imagery. This nuanced approach to feature integration empowers
the network to more precisely discern and categorize a variety of terrestrial phenomena
within RS images, thereby augmenting the overall efficacy of semantic segmentation in
this domain. Empirical evidence from our experiments demonstrates that our approach
surpasses contemporary advanced methodologies, including Thinet, NISP, Versatile filters,
and Sparse Structure Selection (SSS), particularly for the PASCAL VOC dataset, marking a
pinnacle in performance.

Looking ahead, we aim to investigate the applicability of these modules in handling
an expansive array of RS data types. Moreover, their operational viability in scenarios
characterized by real-time constraints and limited resources will be a focal point of our future
research endeavors, thereby propelling the progress in the field of RS semantic segmentation.
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