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Abstract: The Transformer architecture has gained widespread acceptance in image segmentation.
However, it sacrifices local feature details and necessitates extensive data for training, posing chal-
lenges to its integration into computer-aided medical image segmentation. To address the above
challenges, we introduce CCFNet, a collaborative cross-fusion network, which continuously fuses a
CNN and Transformer interactively to exploit context dependencies. In particular, when integrating
CNN features into Transformer, the correlations between local and global tokens are adaptively fused
through collaborative self-attention fusion to minimize the semantic disparity between these two
types of features. When integrating Transformer features into the CNN, it uses the spatial feature
injector to reduce the spatial information gap between features due to the asymmetry of the extracted
features. In addition, CCFNet implements the parallel operation of Transformer and the CNN and
independently encodes hierarchical global and local representations when effectively aggregating
different features, which can preserve global representations and local features. The experimental
findings from two public medical image segmentation datasets reveal that our approach exhibits
competitive performance in comparison to current state-of-the-art methods.

Keywords: Vision Transformer;CNN; medical image segmentation; collaborative cross-fusion

1. Introduction

Accurate image segmentation can more clearly identify changes in anatomic or patho-
logic structure in medical images [1], which is crucial in various computer-aided diagnostic
applications, including lesion contour, surgical planning, and three-dimensional recon-
struction. Medical image segmentation can detect and locate the boundaries of lesions in
an image, thus helping to quickly identify the potential existence of tumors and cancerous
regions, which may help clinicians save diagnosis time and improve the possibility of
finding tumors [2]. Traditionally, the symmetric encoder–decoder structures has been the
standard in medical image segmentation, where U-Net [3] has become the benchmark of
choice among different variants with great success.

The U-Net model consists of convolutions, the fundamental operation of which is the
convolution operator with two characteristics, weight sharing and local connection, which
ensures the affine invariance of the model. Although these characteristics help to create
effective and versatile medical imaging systems, they still require additional improvements
to aid clinicians in early disease diagnosis [4]. Researchers have proposed various improved
methods to add global context to convolutional neural networks (CNNs), among which
influential methods include introducing an attention mechanism [5–8] and expanding
convolution kernels [9–11] to extend their receptive fields. However, the locality of the
convolutional layer’s receptive fields leads to the inability of networks to utilize remote
semantic dependence effectively, so their learning ability is limited to a relatively small
area and they fail to fully explore object-level information, especially for organs in terms
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of texture, shape, and size, typically yielding weaker properties and exhibiting sizable
inter-patient variability.

Transformer [12] has shown high performance in language learning tasks, and the
attention-based model has emerged as an appealing solution because of its ability to effi-
ciently handle very long sequence dependencies, adapting to various vision tasks. Recent
research has demonstrated the ability of Transformer modules to entirely take over the
role of conventional convolutions by manipulating sequences of picture patches; the most
representative of these is Vision Transformer (ViT) [13]. There have been many works
proving that the ViT model can promote the development of many computer vision tasks,
including semantic segmentation [14], object detection [15], and image classification [13],
among others. The accomplishments of ViT in processing natural images have captivated
the medical field. In response, researchers are delving into the capabilities of Transformer
for medical image segmentation to address the intrinsic receptive field limitations of CNNs
and make them suitable for medical imaging applications [16–19].

However, the performance of Transformer-based models largely depends on pre-
training [20,21]. There are two problems with Transformer-based models’ pre-training
process. First, there is a scarcity of comprehensive and widely accepted large datasets
for pre-training in the medical imaging field due to the extensive time professionals need
to dedicate to annotating medical images (in contrast, ImageNet [22], a large dataset, is
available for pre-training natural scene images). Secondly, pre-training consumes much
time and many computing resources. Moreover, using large natural image datasets for pre-
training medical image segmentation models is difficult because of the domain difference
between medical and natural pictures. In addition, there are also some open challenges in
different types of medical images. For example, when Swin UNETR [23] is pre-trained on a
CT dataset and subsequently applied to different medical imaging modalities like MRI, its
performance tends to decline. This is attributed to the significant differences in regional
characteristics between CT and MRI images [24].

Fully exploiting CNNs’ and Transformer’s respective advantages to effectively inte-
grate fine-grained and coarse-grained information in images, thereby boosting the precision
and performance in deep learning models, has become a research direction researchers
are actively working on. In Figure 1, we summarize various medical image segmentation
methods that utilize a combined CNN and Transformer hybrid architecture. As shown in
Figure 1a, researchers have incorporated Transformer into models with CNN as the back-
bone in different ways, either by adding them or replacing certain architectural components
to create a network that combines Transformer and a CNN in a serial or embedded fashion.
However, this strategy only uses stacking to fuse fine-grained and coarse-grained features,
which may reduce the fusion effect and not fully leverage the synergistic capabilities of
both network types. Figure 1b,c illustrate parallel frameworks of a CNN and Transformer,
extracting distinct feature information from both structures and merging them multiple
times before passing them to the decoder for decoding. In Figure 1b, additional branches
are used to fuse the CNN and Transformer branches, but this introduces network overhead
and lacks effective interaction. For example, TransFuse [25] uses a branch composed of
BiFusion modules to simultaneously utilize the different characteristics of the CNN branch
and the Transformer branch during the feature extraction process, alleviating the problem
of ignoring intermediate features due to serial connections. However, its upsampling
method struggles to effectively restore the mid-layer information, leading to a loss of detail.

In Figure 1c, each layer extracts features using the CNN and Transformer, respectively,
and finally, adds and fuses them as the output. However, due to semantic differences be-
tween Transformer’s and the CNN’s features, this strategy limits the fusion’s effectiveness.
In Figure 1c, the input features are independently extracted by both the Transformer and
the CNN, then added and merged as the input of the CNN or Transformer. However, due
to the feature semantic differences between Transformer and CNNs, this strategy limits the
fusion effect. For example, both HiFormer [26] and CiT-Net [27] use CNN and Transformer
branches to extract features, respectively, but HiFormer only implements one-way feature
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fusion from the CNN to Transformer, while CiT-Net only fuses the two features through
a single fusion method and sends them to different branches. Both ignore the different
characteristics of the two branches.

(a) (b) (c) (d) 

Figure 1. Comparison of different CNN and Transformer integration strategies. (a) Serial or embedded
fusion strategy; (b) CNN and Transformer branch fusion strategy; (c) parallel fusion strategy of CNN
and Transformer at each layer; (d) CCFNet fusion strategy. The arrows in the figure indicate the
direction of data flow in the feature map.

In our study, we present the collaborative cross-fusion network (CCFNet), designed
for medical image segmentation. CCFNet’s encoder consists of two parts: first, in the
shallow layers of the encoder, a CNN is employed to acquire convolutional depth features,
compensating for detail lost in upsampling; second, in the deep encoder layers, a collab-
orative cross-fusion of Transformer and the CNN is applied, which can simultaneously
enhance the image’s local and global depictions. As shown in Figure 1d, compared with
other combination strategies, CCFNet achieves close information interaction between the
CNN and Transformer while continuously modeling local and global representations. By
continuously aggregating the hierarchical representation and information interaction of
global and local features, the information interaction of collaborative cross-fusion is closer
and the feature fusion is more thorough. This makes CCFNet excellent in medical image
segmentation tasks.

In CCFNet, high-resolution features extract fine-grained local information and perform
depthwise convolutions. Since low-resolution features contain more global information
(location and semantic information), feature prediction can fuse long-distance global infor-
mation, and the self-attention mechanism facilitates the capture of deep information [28].
CCFNet processes low-resolution features through a parallel fusion of the CNN and Trans-
former within the collaborative cross-fusion module (CCFM). This method capitalizes on
the self-attention mechanism’s robust long-range dependency capabilities to ensure accu-
rate medical image segmentation. Considering the complementarity of the two network
features, the CCFM sequentially delivers global context from the Transformer branch to the
feature maps through the spatial feature injector (SFI) block. This integration significantly
boosts the global perceptual capabilities of the CNN branch. Likewise, the collaborative
self-attention fusion (CSF) block progressively reintroduces the local features from the
CNN branch back into the Transformer, enriching the local detail and creating a dynamic
interplay of fused features. Finally, local–global feature complementarity can be achieved,
and the network’s feature-encoding capabilities can be enhanced. The experiments utilize
Synapse, an open accessible dataset for multi-organ medical image segmentation. When
the average Dice similarity coefficient (DSC) scores are compared with those from other
hybrid models, our proposed CCFNet shows improved accuracy in organ segmentation.
This paper’s important contributions are summarized below:

• We propose CCFNet, a collaborative cross-fusion network, to integrate Transformer-
based global representations with convolutional local features in a parallel interactive
manner. Compared with other fusion methods, the collaborative cross-fusion module
can not only encode the hierarchical local and global representations independently
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but also aggregate the global and local representations efficiently, maximizing the
capabilities of the CNN and Transformer.

• In the collaborative cross-fusion module, the CSF block is designed to adaptively fuse
the correlation between the local tokens and the global tokens and reorganize the
two features to introduce the convolution-specific inductive bias into the Transformer.
The spatial feature injector block is designed to reduce the spatial information gap
between local and global features, avoiding the asymmetry of extracted features and
introducing the global information of the Transformer into the CNN.

• On two publicly accessible medical image segmentation datasets, CCFNet outperforms
other competitive segmentation models, validating its effectiveness and superiority.

2. Related Work
2.1. CNN

The first widely known CNN model was U-Net [3], named because of its U-shaped
network structure, which consisted of an encoder–decoder symmetrical network composed
of convolution, downsampling, upsampling, and stitching operations. U-Net employed an
encoder to capture global contextual information by downsampling feature representations.
Conversely, the decoder restored these features to the original input resolution for semantic
prediction through upsampling. Additionally, skip connections linked outputs from the
encoder with corresponding decoder layers at the same resolution, helping to recover
spatial details lost in downsampling and enhancing detail preservation. V-Net [29] was
developed specifically for 3D image segmentation, focusing on direct, end-to-end training
to facilitate volume segmentation in MRI scans of the prostate.

Most U-Net variants were based on the residual block [30], dense block [31], and at-
tention mechanism [5–7] to improve the network’s segmentation capabilities. The concepts
behind dense and residual blocks can increase the rate of feature reuse and alleviate
the problem of vanishing gradients. Dense-UNet [32] and Res-UNet [33], inspired by
dense and residual connections, respectively, adapted the U-Net structure by replacing its
sub-modules with versions that incorporate these connections, enhancing the network’s
architecture. UNet++ [34] added the dense block and convolutional layers between its
decoder and encoder, aimed at narrowing the semantic differences in its processed features
to improve segmentation accuracy. MultiResUNet [35] innovatively combined the Mul-
tiRes module and U-Net, in which the MultiRes module extends the concept of residual
connections. In this configuration, feature maps produced by three 3 × 3 convolutions
were spliced together as a combined feature map and then added to the outcome of a 1 × 1
convolution performed on the input feature map.

An attention mechanism in the network enables it to concentrate on vital sections while
suppressing irrelevant input to improve processing efficiency. AttnUNet [8] introduced
an attention mechanism into U-Net, adjusting encoder output features before they are
concatenated with matching decoder features at each resolution level. This attention setup
generates a gating signal that modulates feature importance at different spatial locations.
FocusNet [36] employed the dual encoder–decoder architecture, leveraging attention gating
to transfer relevant features from the decoder of one U-Net to the encoder of another. This
mechanism enhances the propagation of features throughout the network.

On the improvement of a non-network structure, the authors of nnUNet [37] asserted
that further enhancements could be achieved by gaining deeper insights into the data and
training techniques tailored to medical data and implementing suitable preprocessing,
and proposed a robust U-Net-based adaptive framework (including 2D and 3D frame-
works) that automatically adjusted itself to preprocess data and selected the best network
architecture for the task without human intervention.

2.2. Transformer

The groundbreaking Transformer architecture [12] sparked a paradigm shift in natural
language processing, swiftly establishing itself as a commonly used foundational model for
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visual comprehension tasks. Transformer has great visuals because of its ability to create
distinct visual environments, but it also has an inherent drawback of not being able to
exploit spatial environments in images as a CNN does. Recent works have evolved toward
possible solutions to overcome this drawback, and most extant studies in medical image
segmentation employ CNN–Transformer hybrid models for feature processing.

TransUNet [16] introduced the integration of the Transformer architecture into medical
image segmentation frameworks. It introduced a novel approach by framing the segmenta-
tion task as a sequence-to-sequence prediction, incorporating self-attention mechanisms.
This model adopts a hybrid CNN–Transformer design, strategically combining the spa-
tial details extracted by CNN features with the Transformer’s capabilities. Additionally,
within the realm of medical image segmentation, several other hybrid models, built upon
the U-Net architecture, have also seen enhancements. For example, UCTransNet [17]
adopted the Channel Transformer (CTrans) module, leveraging the channel attention mech-
anism as a modification to the traditional U-Net skip connections. This implementation
includes one sub-module designed for channel-wise cross-attention via Transformer tech-
nology and another for multi-scale channel fusion. These enhancements facilitate the
efficient integration of multi-scale channel data with decoder features to enhance clarity
and resolution. Like TransUNet, UNETR [18] employed a Transformer along with a con-
volutional decoder in its encoder architecture to build segmentation maps. MT-UNet [19]
developed a U-shaped network, utilizing the mixed Transformer module (MTM) designed
for both intra-sample and inter-sample learning, aimed at enhancing the precision of
medical image segmentation. First, the MTM applied the LGG-SA module to assess self-
similarity. It then explored inter-sample connections using an external attention mechanism.
MSFusion-UNet [38] adopted a flexible and efficient multi-stream fusion encoder to fa-
cilitate multi-scale fusion of multiple imaging stream features through spatial attention.
LeVit-UNet [39] used LeViT blocks to build a U-Net variant of the encoder, which enables
it to learn long-range dependencies more efficiently. DCA module [40] used double cross-
attention on the U-Net framework and enhanced skip connections to solve the semantic
gap between encoder and decoder features. TransAttUnet [41] adopted an effective feature
screening method by jointly designing multi-scale skip connections and multi-level guided
attention. It learned non-local interactions between encoding features and passed key
features to the decoder. From a macro perspective, these architectures integrated a CNN
and Transformer in a serial combination manner.

In terms of parallel strategies, TransFuse [25] implemented the BiFusion module, which
performed spatial attention on the CNN branch and channel attention on the Transformer
branch. Following this, operations such as convolution, multiplication, concatenation,
and residuals were executed to facilitate the merging of features from both branches.
On this basis, FAFuse [42] improved the BiFusion module through a four-axis fusion
module to improve the ability of representation learning. The HiFormer [26] algorithm uses
CNN and Transformer branches to extract features. To provide positioning information
and reuse features, it incorporates a skip connection that conveys local CNN features to
the Transformer. CiT-Net [27] employs dynamically deformable convolutions within its
CNN branch to enhance feature extraction capabilities, while it incorporates the compact
convolution projection and the SW-ACAM module in the Transformer branch to more
effectively capture long-term dependencies across dimensions. CSwin-PNet [43] connected
a CNN and Swin Transformer [44] as the backbone for feature extraction, building a
pyramidal network structure for feature encoding and decoding. CT-Net [45] utilized an
asymmetric asynchronous branch parallel structure to efficiently extract local and global
representations while reducing unnecessary computational costs. DPCTN [46] combined
the dual-branch fusion of a CNN and Transformer. To reduce the information loss during
the information pooling process, DPCTN specially adopted a three-branch transposed
self-attention module to significantly improve the segmentation performance.

Several other studies also exist, ranging from developing hybrid CNN and Trans-
former models to improving the Transformer blocks themselves to handle the complexities
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of medical imagery. Impacted by the general adoption of the Swin Transformer, Swin-
Unet [28] proposed an innovative approach by substituting the convolutional blocks with
Swin Transformer blocks for 2D medical image segmentation, and this marked the intro-
duction of the first entirely Transformer-based U-shaped architecture. DS-TransUNet [47]
expanded upon Swin-Unet by incorporating an encoder designed to handle multi-scale
inputs and integrating a new multi-scale feature fusion module. This module uses the self-
attention mechanism to effectively link global dependencies among features from various
scales, enhancing the quality of segmentation across diverse medical images. MedT [48]
improved upon the current system by incorporating a control mechanism within the self-
attention module, specifically to tackle the scarcity of medical image segmentation datasets.
Additionally, it introduced a local–global training strategy, optimizing the model’s training
process on medical images, which can further improve the performance.

3. Method

CCFNet follows a U-shaped structure featuring hierarchical decoder and encoder sec-
tions, in which skip connections facilitate the linkage between the decoder and encoder. It
is essential to note that CCFNet is structured with two branches, which process information
differently, as shown in Figure 2. The two branches preserve global contexts and local fea-
tures through the parallel fusion layer composed of the CCFM. In this CCFM, the CSF block
can adaptively fuse them according to the correlation between local and global tokens, thus
introducing convolution-specific inductive bias into the Transformer. The SFI block can
avoid asymmetry of extracted features and introduce global representations of Transformer
into the CNN branch, which has extracted local semantic features through the detail feature
extractor (DFE) block. Features from both parallel branches are successively fused to form
features that are fused with each other, and finally, realize the complementarity of the
two features. The proposed parallel branching approach has three main benefits: Firstly,
the CNN branch gradually extracts low-level, high-resolution features to obtain detailed
spatial information, which can help Transformer obtain rich features and accelerate its con-
vergence. Second, the Transformer branch can capture global information while remaining
sensitive to low-level contexts without building a deep network. Finally, during feature
extraction, the proposed CCFM can leverage the different characteristics of Transformer
and the CNN to the full extent, continuously aggregating hierarchical representations from
global and local features.
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Figure 2. The overall architecture of the CCFNet model for medical image segmentation. The network
follows a standard U-shaped structure and consists of four parts: CNN branch, Transformer branch,
parallel fusion layer, and decoder. Among them, the CNN branch uses convolution to extract fine-
grained features, the Transformer branch uses attention to capture global information, and the parallel
fusion layer combines the CNN and Transformer in parallel to extract rich depth information.

3.1. CNN Branch

The CNN branch adopts a feature pyramid structure. This is because while in the
Transformer branch patch embedding is used to project image patches into vectors, which
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results in the loss of local details, in the CNN the convolution kernels slide across overlap-
ping feature maps, which provides the possibility of preserving fine local features. As a
result, the CNN branch is able to supply local feature details to the Transformer branch.
Specifically, as the network depth increases in the CNN branch, the resolution of feature
maps gradually decreases, the number of channels gradually increases, the receptive field
gradually increases, and the feature encoding changes from local to global. Given an input
image x ∈ RH×W×D0 , its spatial resolution is H × W and D0 is the number of channels,
the feature map generated by FCNN(·) is represented as

{ fl}L
l=1 = FCNN

l (x; Θ) ∈ R
H
2l ×

W
2l ×Dl , (1)

where D represents the dimension of the feature map, Θ represents the parameters of the
CNN branch, and L represents the quantity of feature layers. Specifically, the first block f1
is made up of 2 convolutions (3 × 3) with strides 1 and 2, and each convolution block is
followed by normalization and the GELU activation function to extract initial local features
(such as edge and texture information). As shown in Figure 3a, f2 and f3 are stacked with
SEConv blocks composed of three convolutional blocks and an SE module [6]. The number
of SEConv blocks in f2 and f3 is 2 and 6, respectively. The efficient and lightweight SE
module can be seamlessly integrated into the CNN architecture, which can help the CCFNet
network to enhance local details, suppress irrelevant regions, correct channel features by
modeling the relationship between channels, and improve the representational capacity of
the neural network.

(a) SEConv (b) Collaborative Cross-Fusion Module
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Figure 3. The architecture of the proposed CCFNet. (a) Shows the convolution process of SEConv;
(b) shows the structure of the CCFM, there are two branches in the module whose inputs are Ci−1

and Ti−1. The Transformer branch is composed of collaborative self-attention fusion blocks, and the
CNN branch is composed of detail feature extractor blocks and spatial feature injector blocks.

The CNN branch of the parallel fusion layer consists of a six-layer stack of modules
consisting of a DFE block and an SFI block. The feature map output Ci of each layer has the
same resolution size ( H

16 , W
16 , D4), and the output of the i-th layer is expressed as

Ci = SFI(DFE(Ci−1), Ti), (2)

where Ti is the i-th layer’s CSF-block-coded image representation on the Transformer
branch with the same resolution as Ci−1. The structures of the DFE block and SFI block are
shown in Figure 3b. More detailed operations are described in the parallel fusion layer.

3.2. Transformer Branch

The CNN branch obtains rich local features under a limited receptive field through con-
volution operations, while the Transformer branch performs global self-attention through
attention mechanisms. The Transformer branch has the same input image x ∈ RH×W×D0

as the CNN branch. Following [13,16], in the patch embedding we first divide x into an
N = H

P × W
P sequence of patches, the size of each patch is P× P, and the default setting is 16.

After splitting the input images into small patches, the patches are flattened to a sequence
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of 2D patches {xi
p ∈ Rp2·D0 |i = 1, . . . , N} and fed to a trainable linear layer, which converts

the vectorized patches xp into a sequence embedding space with an output dimension of
D4, and then, in order to facilitate the fusion with the CNN branch, the reshape operation
is used to generate image T0 ∈ R

H
16×

W
16×D4 , which can be expressed as

T0 = Reshape([x1
pE; x2

pE; . . . ; xN
p E]), (3)

where E ∈ R(p2·D0)×D4 is the patch embedding projection. The Transformer branch in
the parallel fusion layer is connected to six CSF blocks of attention operations, and the
CSF block consists of a ConvAttention and a CMLP (convolution multi-layer perceptron).
The feature map output Ti of each layer has the same resolution size ( H

16 , W
16 , D4). Therefore,

the output of the i-th layer can be written as follows:

T′
i = ConvAttention(Normal(C′

i−1), Normal(Ti−1)) + Ti−1, (4)

Ti = CMLP(Normal(T′
i )) + T′

i , (5)

where C′
i−1 and Ti−1 are the two inputs of the CSF block, C′

i−1 is the intermediate output
of the i-th layer DFE module on the CNN branch, which has the same resolution as Ti−1,
and Ti is the encoded image representation. The structure of a CSF block is illustrated in
Figure 3b. More detailed operations are described in the parallel fusion layer.

3.3. Parallel Fusion Layer

The parallel fusion layer has two branches, namely, the Transformer branch and the
CNN branch, which process information in distinct ways. In the CNN branch, local features
are collected hierarchically through a convolution operation, and local clues are also saved
as feature maps. The parallel fusion layer fuses the feature representation of the CNN in a
parallel manner through cascaded attention modules, which maximizes the preservation
of local features and global representations. The parallel fusion layer is composed of six
CCFMs superposed.

An image has two completely different representations: global features and local
features. The former focuses on model object-level relationships between remote parts,
while the latter aims at fine-grained details and is beneficial for pixel-level localization and
tiny object detection. As shown in Figure 3b, a CCFM is used to efficiently combine these
encoded features of the Transformer and CNN, which can interactively fuse convolution-
based local features and Transformer-based global representations.

The CCFM has two inputs, Ci−1 and Ti−1, where Ci−1 is the input on the CNN branch
with the same resolution as Ti−1, Ti−1 is the input on the Transformer branch, and C

′
i−1

is the feature map formed after extracting features on the CNN branch with the same
resolution and number of channels as Ti−1, which can be expressed as

C
′
i−1 = GELU(Normal(Conv2d(Ci−1))). (6)

The Transformer aggregates information between global tokens, but CNN only ag-
gregates information in the limited local field of view of the convolution kernel, which
leads to certain feature semantic differences between the Transformer and CNN. Therefore,
by superimposing the feature maps of the CNN and Transformer, the CSF block adaptively
fuses the self-attention weights with common information between them to calculate the
mutual relationship between local tokens and global tokens.

As shown in Figure 3b, the CSF block consists of ConvAttention and CMLP. Like
the traditional attention mechanism, the basic module of ConvAttention is multi-head
self-attention (MHSA). As shown in Figure 4a, the difference is that ConvAttention has two
inputs, adding Ti−1 and C

′
i−1 to obtain feature maps Fi and Ti−1 as its input. In addition,

ConvAttention uses convolutional mapping. The specific operation is that Ti−1 generates
Vi through 3 × 3 convolutional mapping, and Fi generates Qi and Ki through 3 × 3 convo-
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lutional mapping. Subsequently, we use the flatten operation to project the patches into
the d-dimensional embedding space as the input of the underlying module MHSA in the
ConvAttention block.

Fi = C
′
i−1 + Ti−1, (7)

Qi/Ki = Flatten(GELU(Normal(Conv2d(Fi)))), (8)

Vi = Falatten(GELU(Normal(Conv2d(Ti−1)))). (9)

The MHSA is performed on the obtained Qi, Ki, and Vi, an MHSA comprises h parallel
self-attention heads. The calculation process is as follows:

MHSA(Qi, Ki, Vi) = Concat(head1, ..., headh)Wmhsa, (10)

where Wmhsa ∈ Rd×d represents the multi-headed trainable parameter weights. The self-
attention of each head in MHSA is calculated as

Attention(Q, K, V) = SoftMax(
QKT
√

d
+ B)V, (11)

where Q, K, and V ∈ RNT×d are the query, key, and value matrices, which are obtained by
convolution projection, NT = Wh × Ww denotes the number of patch tokens. {Wh, Ww}
stand for the size of the feature Fi/Ti, and d is the query/key dimension. We follow [28,44]
by including a relative position bias B ∈ RNT×NT . Since the relative position along each
axis lies in the range [−Wh/w + 1, Wh/w − 1], we parameterize a smaller deviation matrix
B̂ ∈ R(2Wh−1)×(2Ww−1); the value of B is taken from B̂.

(b) Spatial Feature Injector(a) Collaborative Self-Attention Fusion
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Figure 4. The architecture of the CCFM. (a) Structure of CSF block, which is composed of ConvAtten-
tion and CMLP; (b) the SFI block.

As shown in Figure 4a, a CMLP is then carried out, which consists of two convolution
layers (1 × 1). The output Ti+1 obtained after the CMLP is used as the input of the Trans-
former branch in the next fusion module, and at the same time, it is feature-fused with the
feature map of the same resolution on the CNN branch.

Given the varying receptive fields of the CNN and Transformer, the features they
extract exhibit asymmetry. At the same time, the information reflected by these features has
a great gap in space. As shown in Figure 4b, when the Transformer branch is fused to the
CNN branch, the SFI block uses the spatial attention weight map of the feature obtained on
the Transformer branch. The calculation formula is as follows:

M(T) = σ(Conv2d([AvgPool(T); MaxPool(T)]))

= σ(Conv2d([Tavg; Tmax])),
(12)

where σ represents the sigmoid function, and Tavg and Tmax represent the cross-channel
average-pooled features and max-pooled features, respectively. The attention map is
multiplied by the feature map on the CNN branch to achieve spatial information feature
enhancement. Then, it is concatenated with the feature map on the Transformer branch,
and the features are further fused by 1 × 1 convolution. The final output is used as the
input of the CNN branch in the next fusion module. In the last layer of the parallel fusion
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layer, the two features are finally used as the input of the decoder through fuse operation.
Specifically, the outputs of the CNN branch and Transformer branch are added together
and fused through a convolution.

3.4. Decoder

The decoder in CCFNet is a pure convolution module that consists of numerous up-
sampling steps to decode hidden features, with the ultimate output being the segmentation
result. Firstly, bilinear interpolation is applied to the input feature map. The following
operations are then repeated until the resolution of the original input is restored by con-
catenating the feature maps with the resolution improved by a factor of 2 with the feature
maps on the corresponding jump joins, inputting them into successive convolution layers
(3 × 3), and upsampling the output using bilinear interpolation. Finally, the feature maps
with the restored original resolution are fed into a special convolution layer (segmentation
head) to generate the pixel-level semantic prediction.

The encoder and decoder merge the semantic information of the encoder through
skip connections and concatenation operations to obtain more contextual information.
The outputs of the three layers of the CNN branch in the encoder are sequentially connected
to the three layers of the decoder to regain local spatial information to improve finer details.
The parallel fusion layer is a dual-stream fusion operation of the CNN and Transformer,
which sends the fused feature output of the two features to the decoding layer.

3.5. Loss Function

In general segmentation tasks, Dice loss [29] and cross-entropy loss are both frequently
used, with Dice loss being suitable for large-sized target objects and cross-entropy loss
performing well for a uniform distribution of categories. Following the TransUNet [16]
literature, the loss function used in CCFNet training also uses the combined form of Dice
loss and binary cross-entropy, which is defined as

L(G, Y) = 1 − 2
J

J

∑
j=1

∑I
i=1 Gi,jYi,j

∑I
i=1 G2

i,j + ∑I
i=1 Y2

i,j

− 1
I

I

∑
i=1

J

∑
j=1

Gi,jlogYi,j

, (13)

where I and J are the number of voxels and classes, respectively; Yi,j and Gi,j, respectively,
represent the predicted value and true value of class j at pixel i.

4. Experiments
4.1. Dataset

The effectiveness of the CCFNet model is demonstrated by experiments on two
different public medical image datasets, such as the Synapse dataset [49] and the Automated
Cardiac Diagnosis Challenge dataset [50] (ACDC).

The Synapse dataset, a public multi-organ segmentation dataset, contains 3779 axially
enhanced abdominal clinical CT images from 30 abdominal CT scans. Following the
partitioning method of the TransUNet [16] dataset, the dataset is divided into 18 cases
for training and 12 cases for validation. The annotations for each image include eight
abdominal organs (stomach, spleen, pancreas, liver, left kidney, right kidney, gallbladder,
aorta); average HD (Hausdorff distance) and average DSC are used to evaluate CCFNet on
this dataset.

ACDC is a publicly available dataset of cardiac magnetic resonance imaging (MRI) that
contains 150 MRI 3D cases gathered from various individuals, with each instance covering
the cardiac organ from the bottom to the top of the left ventricle. Following the setup in [16],
only 100 well-annotated cases are used in the experiment, and labels for three key parts of
the heart are chosen: the left ventricle (LV), right ventricle (RV), and myocardium (MYO).
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Following the partitioning method of the dataset in TransUNet [16], the ACDC dataset is
split at a ratio of 7:1:2, with training (1930 axial slices), validation, and test data, and the
average DSC is used to evaluate the CCFNet approach on this dataset.

4.2. Evaluation Metrics

We use the Dice score and HD to evaluate the accuracy of segmentation in our experiments.

Dice(G, P) =
2 ∑I

i=1 GiPi

∑I
i=1 Gi + ∑I

i=1 Pi
, (14)

HD(G
′
, P

′
) = max{ max

g′∈G′
min
p′∈P′

||g′ − p
′ ||,

max
p′∈P′

min
g′∈G′

||p′ − g
′ ||}.

(15)

where Pi and Gi represent the predicted and actual values for voxel i, and P
′

and G
′

signify
the sets of surface points for the prediction and ground truth, respectively.

4.3. Implementation Details

The CCFNet model is implemented based on PyTorch and trained on an Nvidia
GeForce RTX 3090 GPU with 24 GB of memory. Unlike previous work (TransUNet [16],
Swin-Unet [28]) in which models were initialized by pre-trained models on ImageNet [22],
the CCFNet model is randomly initialized and trained from scratch, so the maximum
number of training epochs is increased to 1000. The other variables are kept the same
as the initial learning rate of 0.01, using a multi-learning rate strategy, batch size of 24,
and using the SGD optimizer with momentum of 0.9 and weight decay of 1e-4. For all
experiments, we apply simple data augmentation, such as random rotations and flips. We
slice all samples layer by layer to analyze 3D datasets. Finally, in order to reconstruct the
3D prediction for assessment, we stack all of the prediction’s 2D slices together.

4.4. Results

We evaluate the performance of the CCFNet model on two different types of dataset
(Synapse and ACDC) and compare it with various state-of-the-art models.

As shown in Table 1, experiments are performed on Synapse using the same image
size and preprocessing, and CCFNet is compared with various of the main Transformer-
or CNN-based methods such as TransUNet, LeVit-UNet-384, MT-UNet, UCTransNet,
TransFuse, and Swin-Unet. Meanwhile, to visually demonstrate the performance of the
CCFNet model, some qualitative results of the CCFNet model on Synapse are visually
contrasted with a variety of other approaches, such as Swin-Unet, TransUNet, and U-Net.
As shown in Figure 5, the red boxes indicate areas where CCFNet outperforms the other
methods. Specifically, CCFNet can outperform Swin-Unet by more than 7.08 mm and
2.46% on average HD and DSC, respectively. Among them, CCFNet has the highest DSC
in five organs: the stomach, liver, kidney (left), kidney (right), and gallbladder. For some
specific organs that are hard to segment, CCFNet can better capture remote dependence.
In the first row of Figure 5, CCFNet can better segment the pancreas with long and narrow
shapes than other models. In identifying large organs, CCFNet has better accuracy in
recognizing and delineating stomach contours, as shown in the second row. The CCFNet
segmentation results are primarily compatible with the ground truth labels. When it
comes to identifying small organs, CCFNet has certain advantages. As shown in the
third row, individual models may not fully identify the gallbladder. CCFNet can identify
organ junctions more accurately, as shown in the fourth row, at the junction of the liver
and stomach, while the other three models make some errors, which shows that CCFNet
is effective. The visualization intuitively demonstrates the high segmentation accuracy
of CCFNet, especially on some difficult-to-segment slices. The excellent performance
is attributed to the CCFM in CCFNet, which can consider the local small organs while
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focusing on large organs, showing the strong representation ability of CCFNet in learning
low-level specifics and high-level semantic features that are critical in the segmentation of
medical images.

(e) UNet(d) TransUNet(c) Swin-Unet(b) Ours(a) GT
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Figure 5. Qualitative visual comparison of CCFNet and other 2D methods on Synapse, and quantita-
tive evaluation of images using SSIM, DSSIM, FSIM, MSE, and RSNR. (a) Ground truth; (b) CCFNet,
our proposed method; (c) Swin-UNet, incorporating Swin Transformer blocks in both the encoder
and decoder; (d) TransUNet, utilizing a ViT encoder on the ResNet-50 backbone and employing a
UNet decoder; (e) UNet, featuring a U-shaped encoder-decoder architecture. The red box indicates
areas where CCFNet outperforms the other methods.

Table 1. Comparison on Synapse (Dice score % for each organ, average Dice score %, and average
Hausdorff distance in mm).

Method Avg. DSC
(%)

Avg. HD
(mm) Stomach Spleen Pancreas Liver Kidney (L) Kidney

(R) Gallbladder Aorta

V-Net [29] 68.81 - 56.98 80.56 40.05 87.84 77.10 80.75 51.87 75.34
DARR [51] 69.77 - 45.96 89.90 54.18 94.08 72.31 73.24 53.77 74.74

TransFuse [25] 77.42 - 73.69 87.03 57.06 94.22 80.57 78.58 63.06 85.15
U-Net [3] 76.85 39.70 75.58 86.67 53.98 93.43 77.77 68.60 69.72 89.07

R50 UNet [3] 74.68 36.87 74.16 85.87 56.90 93.74 80.60 78.19 63.66 87.74
R50

AttnUNet [8] 75.57 36.97 74.95 87.19 49.37 93.56 79.20 72.71 63.91 55.92

AttnUNet [8] 77.77 36.02 75.75 87.30 58.04 93.57 77.98 71.11 68.88 89.55
R50 ViT [13] 71.29 32.87 73.95 81.99 45.99 91.51 75.80 72.20 55.13 73.73

TransUNet [16] 77.48 31.69 75.62 85.08 55.86 94.08 81.87 77.02 63.13 87.23
LeVit-UNet-

384 [39] 78.53 16.84 72.76 88.86 59.07 93.11 84.61 80.25 62.23 87.33

MT-UNet [19] 78.59 26.59 76.81 87.75 59.46 93.06 81.47 77.29 64.99 87.92
UCTransNet [17] 78.23 26.75 79.42 87.84 56.22 93.17 80.19 73.18 66.97 88.86
Swin-Unet [28] 79.13 21.55 76.60 90.66 56.58 94.29 83.28 79.61 66.53 85.47

Ours 81.59 14.47 80.47 88.19 56.89 95.37 87.42 83.50 72.49 88.35

Table 2 shows the experimental results of ACDC. CCFNet exceeds TransUNet by
1.35% and exceeds Swin-Unet by 1.07% in average DSC score. The excellent performance
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is attributed to the SEConv and CCFM modules in CCFNet, which provide powerful
representation capabilities in learning low-level specifics and high-level semantic features
for CCFNet, which is crucial in medical image segmentation. This once again confirms that
CCFNet using CNN–Transformer collaborative cross-fusion has a stronger ability to learn
effective representations for medical image segmentation than other advanced methods,
indicating that CCFNet has excellent generalization and robustness.

Table 2. Comparison on the ACDC dataset in DSC (%).

Method Avg. DSC (%) RV Myo LV

R50 UNet [3] 87.55 87.10 80.63 94.92
R50 AttnUNet [8] 86.75 87.58 79.20 93.47

R50 ViT [13] 87.57 86.07 81.88 94.75
UNETR [18] 88.61 85.29 86.52 94.02

TransUNet [16] 89.71 88.86 84.53 95.73
Swin-Unet [28] 90.00 88.55 85.62 95.83
MT-UNet [19] 90.43 86.64 89.04 95.62

UCTransNet [17] 89.69 87.92 85.43 95.71
LeViT-UNet-384 [39] 90.32 89.55 87.64 93.76

Ours 91.07 89.78 89.30 94.11

To comprehensively evaluate the performance of CCFNet, in Table 3 we compare the
number of parameters and calculations between CCFNet and several mainstream network
structures. As can be seen from the table, CCFNet has increased both the number of
parameters and the amount of operations compared to Swin-Unet and TransUNet. This
is because we make full use of the self-attention mechanism in CCFNet to obtain a more
refined feature representation. However, it is important to emphasize that this modest
increase in complexity resulted in significant improvements in segmentation accuracy. Its
improvement in segmentation accuracy is attributed to the model’s ability to effectively
capture global information and multi-scale features, thereby more accurately segmenting
structures in medical images.

Table 3. Comparison of number of parameters and FLOPs for 2D segmentation models in Synapse ex-
periments.

Method Params (M) FLOPs (G)

U-Net [3] 31.13 55.84
Swin-Unet [28] 96.34 42.68
TransUNet [16] 105.32 38.52
MT-UNet [19] 79.07 44.72

UCTransNet [17] 65.6 63.2
Ours 137.36 76.18

4.5. Ablation Studies

We mainly perform ablation research using the Synapse database to assess the ef-
fectiveness of each basic component of CCFNet. All tests are executed with the same
hyperparameters and are initiated from scratch to maintain fairness in comparison. Table 4
shows that incorporating the SEConv module into the baseline model results in a consis-
tent gain in segmentation accuracy over the baseline. This is due to the critical role of
this module in being able to compensate for the large amount of detail information lost
during the upsampling process of the decoder. Adding the CCFM module also brings
huge gains, because the CCFM module integrates global and local features to improve
segmentation efficiency.
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Table 4. Ablation studies on effects of different components of CCFNet.

Method Avg. DSC (%) Avg. HD (mm)

Baseline 78.91 24.08
Baseline + SEConv 80.20 19.33

Baseline + SEConv + CCFM 81.59 14.47

Table 5 displays the influences of evaluating various fusion techniques within CCFM
modules by ablating different components in ablation studies on the Synapse dataset. Using
only the DFE module is equivalent to removing the Transformer branch and only using the
CNN branch. Using only the CSF module is equivalent to removing the CNN branch and
only using the Transformer branch. The experimental results reveal that when removing
different branches, the DSC scores on Synapse are almost the same. To some extent, this
means that the global information represented by Transformer and the local information
represented by the CNN play an equally important role in visual representation, indicating
that both global features and local features are important for organ segmentation, and the
fusion of the two can help the model to achieve more precise segmentation.

Table 5. Ablation studies of effects of different fusion methods on CCFM. The presence of a checkmark
(✓) in the corresponding column indicates the utilization of the module, while the absence of such a
mark signifies its non-utilization.

DFE CSF SFI Avg. DSC (%) Avg. HD (mm)

✓ 80.20 19.33
✓ 79.93 18.44
✓ ✓ 81.11 18.26

✓ ✓ 79.57 17.65
✓ ✓ 80.37 22.40
✓ ✓ ✓ 81.59 14.47

When only removing the CSF block (using a splicing operation to fuse different
features on the two branches), the DSC score on Synapse drops by 2.02%. This shows that
the CSF block can reduce the feature semantic difference between two features, introduce
convolution-specific inductive bias into the Transformer branch, and enrich the detailed
features of the Transformer. When only the SFI block is removed (using splicing operations
to fuse different features on the two branches), the DSC score on Synapse drops by 1.22%,
and the performance on HD is far worse than the original model. This shows that the SFI
block can reduce the spatial information gap between features caused by the asymmetry
of extracted features and introduce the global information of the Transformer branch into
the CNN branch. The results show that the operations of the CSF block and SFI block are
conducive to the fusion between two different feature maps and can integrate the global
encoding of the Transformer and the local encoding ability of CNN. This is because the
cross-fusion between the CNN to Transformer and Transformer to the CNN can more
thoroughly integrate the features between the two different methods than the general
simple fusion.

4.6. 3D Implementation

To further explore the performance of CCFNet, we implement a 3D implementation of
CCFNet. The performance of 3D CCFNet is evaluated on the Synapse dataset and compared
to a variety of state-of-the-art 3D models, and the final experimental results are shown in
Table 6. Among them, nnFormer [52] is a Transformer model based on a cross structure
that is mainly used to deal with the 3D image segmentation problem in medical image
analysis. According to 3D implementation, the image input size is set to 64 × 128 × 128 in
the nnFormer. The 3D CCFNet shows a 0.31% improvement over nnFormer on average
DSC, and 3D CCFNet achieves 8.78 mm in HD performance, meaning that 3D CCFNet can
better delineate object boundaries.
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Table 6. Comparison with 3D module on Synapse (Dice score % for each organ, average Dice score %,
and average Hausdorff distance in mm).

Method Avg. DSC
(%)

Avg. HD
(mm) Stomach Spleen Pancreas Liver Kidney (L) Kidney (R) Gallbladder Aorta

ViT [13] 67.86 36.11 70.44 81.75 42.00 91.32 74.70 67.40 45.10 70.19
R50 ViT [13] 71.29 32.87 73.95 81.99 45.99 91.51 75.80 72.20 55.13 73.73
UNETR [18] 79.56 22.97 73.99 87.81 59.25 94.46 85.66 84.80 60.56 89.99

nnFormer [52] 86.57 10.63 86.83 90.51 83.35 96.84 86.57 86.25 70.17 92.04
Ours 86.88 8.78 85.17 89.67 82.36 97.01 85.92 90.01 72.19 92.74

4.7. Analysis and Discussion

Feature Analysis. As shown in Figure 6, in order to verify our motivation and effects,
the feature maps of Synapse are visualized using the Grad-CAM method [53]. Due to
the limitations of convolution, the region of attention in Figure 6b tends to be locally
informative and suffers from a lack of remote information capture. Because of the global
features provided by the Transformer branch, Figure 6e learns to activate a larger region
than the local region in Figure 6b, indicating that Figure 6e enhances the long-range feature
dependence compared to Figure 6b. As the Transformer focuses on extracting global feature
dependencies, the region of attention in Figure 6c is insufficient in local feature details.
Because of the progressively finer local features captured by the CNN branch, critical
local features are retained in Figure 6f. At the same time, the background is significantly
suppressed, indicating that the learned feature representation in Figure 6f has a higher local
perception ability than in Figure 6c.

(a) GT

(f) Transformer branch (deep layers)(e) CNN branch (deep layers)(d) Fusing CNN and Transformer

(b) CNN branch (shallow layers) (c) Transformer branch (shallow layers)

Figure 6. Feature Analysis. (a) Ground truth; (b,e) attention maps of shallow and deep layers
in the parallel fusion layer’s CNN branch; (c,f) attention maps of shallow and deep layers in the
parallel fusion layer’s Transformer branch; and (d) the attention map finally integrating the CNN
and Transformer (best color effect).

Defect analysis. In order to analyze the current shortcomings of CCFNet and improve
them in future work, the ground truth of Synapse is compared with the prediction results
of CCFNet separately. The red box underscores regions where the performance of CCFNet
falls short, as shown in Figure 7. Although the masks of CCFNet-predicted organs are
very close to the ground truth labels, there are still some problems. In organ segmentation,
CCFNet can sometimes accurately segment organs but cannot accurately identify the
corresponding organs. For example, in the first row, in the kidney segmentation, the middle
part of the left kidney is identified as the right kidney. Similarly, in the segmentation of
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the spleen in the two left images of the second row, part of the spleen is identified as the
stomach. In addition, for specific organs, it is challenging to segment organs, such as the
pancreas. In the two images on the right-hand side in the second row, CCFNet can segment
the pancreas area but cannot accurately describe the pancreas’s contour, which indicates
that CCFNet still has room for improvement. Processing 2D pictures will lose much spatial
information from the original 3D pictures. As shown in the third row, comparing the
identification results of two adjacent liver slices. The former slice can accurately segment
the liver, but the latter slice cannot segment the liver completely.

AortaAorta GallbladderGallbladder Left kidneyLeft kidney Right kidneyRight kidney LiverLiver PancreasPancreas StomachStomachSpleenSpleenAorta Gallbladder Left kidney Right kidney Liver Pancreas StomachSpleen

Figure 7. Qualitative visualization of CCFNet prediction results and ground truth on Synapse, each
row of ground truth and model prediction results are placed in pairs (the left picture is ground truth,
the right picture is the prediction result). The red box underscores regions where the performance of
CCFNet falls short.

5. Conclusions

This paper first summarizes and discusses existing frameworks for medical image
segmentation, and then, proposes a collaborative cross-fusion network to solve the existing
problems. CCFNet utilizes the CNN’s inductive bias in spatial correlation modeling and
the Transformer’s powerful capabilities in global relationship modeling to process the
global features based on the Transformer and the local features extracted by convolutions
in a parallel interactive manner. The different features extracted from the two branches
are merged and exchanged employing the CCFM, which can not only encode the hierar-
chical local and global representations independently but also effectively aggregate the
local and global representations to narrow the semantic gap between different network
features. Experiments show that CCFNet displays a considerable advantage over previous
Transformer-based models on various segmentation tasks, striking a balance in modeling
long-term dependencies and preserving the details of underlying features, exploiting the
CNN and Transformer to the fullest extent possible. We recognize that there are some limi-
tations in our current CCFNet, particularly in terms of model performance and efficiency
when dealing with highly complex datasets. In future work, we plan to design a more
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lightweight and efficient parallel fusion network that can solve the problems currently
found in CCFNet and test the model on more tasks. By developing a comprehensive fusion
network, we expect to be able to overcome these limitations and further optimize the
overall performance of the model.
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