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and Bruno Gašperov

Received: 4 April 2024

Revised: 23 April 2024

Accepted: 29 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Deep Q-Network Algorithm-Based Cyclic Air Braking Strategy
for Heavy-Haul Trains
Changfan Zhang, Shuo Zhou , Jing He and Lin Jia *

College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China;
zcf@hut.edu.cn (C.Z.); 14381@hut.edu.cn (S.Z.); hejing@hut.edu.cn (J.H.)
* Correspondence: jialin@hnu.edu.cn

Abstract: Cyclic air braking is a key element for ensuring safe train operation when running on a long
and steep downhill railway section. In reality, the cyclic braking performance of a train is affected
by its operating environment, speed and air-refilling time. Existing optimization algorithms have
the problem of low learning efficiency. To solve this problem, an intelligent control method based
on the deep Q-network (DQN) algorithm for heavy-haul trains running on long and steep downhill
railway sections is proposed. Firstly, the environment of heavy-haul train operation is designed
by considering the line characteristics, speed limits and constraints of the train pipe’s air-refilling
time. Secondly, the control process of heavy-haul trains running on long and steep downhill sections
is described as the reinforcement learning (RL) of a Markov decision process. By designing the
critical elements of RL, a cyclic braking strategy for heavy-haul trains is established based on the
reinforcement learning algorithm. Thirdly, the deep neural network and Q-learning are combined
to design a neural network for approximating the action value function so that the algorithm can
achieve the optimal action value function faster. Finally, simulation experiments are conducted on the
actual track data pertaining to the Shuozhou–Huanghua line in China to compare the performance of
the Q-learning algorithm against the DQN algorithm. Our findings revealed that the DQN-based
intelligent control strategy decreased the air braking distance by 2.1% and enhanced the overall
average speed by more than 7%. These experiments unequivocally demonstrate the efficacy and
superiority of the DQN-based intelligent control strategy.

Keywords: heavy-haul train; long and steep downhill; cyclic air braking; DQN; intelligent control

1. Introduction

Heavy-haul train transportation has been widely valued around the world due to
its advantages such as large capacity, high efficiency and low transportation cost. When
heavy-haul trains run on long and steep downhill railway sections, cyclic air braking is
needed for controlling the train speed [1]. At present, the utilization of air braking mainly
relies on the driving experience of the driver. However, existing braking methods based on
drivers’ experience cannot meet the safety and efficiency requirements of heavy-haul train
operation [2]. Therefore, it is of great importance to develop an intelligent control strategy
for the cyclic braking of heavy-haul trains running on long and steep downhill sections [3].

To date, air braking methods for heavy-haul trains running on long and steep downhill
railway sections have been studied in-depth by many researchers. The main solutions
can be classified into imitation learning methods based on expert data, numerical solution
methods based on an optimal train control models, and reinforcement learning based on a
Markov decision process.

In terms of imitation learning based on expert data, it is necessary to provide data on
experts’ driving courses during the training stage to simulate an expert’s driving behavior
in a supervised manner. For example, Ref. [4] combined expert data with the concept
of generative adversarial learning and proposed a representative generative adversarial
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imitation learning algorithm. Ref. [5] integrated expert data with reinforcement learning
to train a new intelligent driving control strategy. The reinforcement learning algorithm
supervised by the expert model was able to make the operation more efficient and stable.
However, this type of imitation learning method did not directly establish safety assess-
ments and constraints, and the expert data it used failed to fully cover special emergency
traffic situations.

In terms of research on numerical solutions based on train optimal control models,
Pontryagin’s Maximum Principle (PMP) was employed in ref. [6] to ascertain the most
effective driving approach for controlling trains through the use of generalized motion
equations. By considering line conditions, such as different slopes and different speed
limits, a version of the key equation for train traction energy consumption was proposed,
and it was used to calculate the speed of train cyclic braking. Ref. [7] established an
optimized model based on a train dynamic model, and integrated the artificial bee colony
algorithm to find the appropriate switching points of different states and develop an optimal
operation strategy for heavy-haul trains running on long and steep downhill railway
sections. Ref. [8] combined an approximate model of data-learning systems with model
predictive control to solve planning problems with safety constraints. Ref. [9] considered
the energy consumption and comfort of a heavy-haul train when determining the optimal
strategy for cyclic braking. Two methods were implemented, including a pseudo-spectral
method and a mixed-integer linear programming method, to develop an optimal driving
strategy for the train. However, this type of method requires comprehensive data to build
the model. Moreover, the accuracy of the model has a strong influence. Therefore, the
problem of model bias under complex uncertainty scenarios is prominent.

Reinforcement learning algorithms based on a Markov decision process have been
increasingly applied to the intelligent control of trains in recent years. Ref. [10] proposed an
optimal model of operation energy consumption leveraging a Q-learning algorithm. Then,
a cyclic braking strategy was developed based on the train status value function to solve the
problems of train punctuality and energy-saving operation optimization. Ref. [11] designed
an intelligent train control method using a reinforcement learning algorithm based on
policy gradient. The performance of the agent was continuously optimized to realize the
self-learning process of the controller. An improved Q-learning algorithm was proposed
in Reference [12]. The target reward for energy consumption and time are updated in
different ways. In Reference [13], a Q-SARSA algorithm was proposed by combining
Q-learning and the SARSA update rules, which considerably improved the efficiency of
subway operations by combining deep fully connected neural networks with it. These
methods can achieve cyclic braking, energy savings and emission reduction in a heavy-haul
train without the need for a pre-designed reference speed curve. However, the state space
in this algorithm is discretized, which results in slow convergence of the optimization
algorithm during the learning process and the curse of dimensionality problem. Thereafter,
ref. [14] proposed a reinforcement learning algorithm based on two-stage action sampling
to solve the combinatorial optimization problem in heavy-haul railway scheduling. This
approach not only alleviates the curse of dimensionality but also naturally satisfies the
optimization objective and complex constraints. Ref. [15] proposes a reinforcement learning
method for multi-objective speed trajectory optimization to simultaneously achieve energy
efficiency, punctuality and accurate parking. Ref. [16] employed a double-switch Q-network
(DSQ network) architecture to achieve fast approximation of the action value function and
enhance the parameter sharing of states and actions. However, the methods used in
refs. [14–16] still cannot make full use of the large amount of unstructured data generated
during train operation, that is, the data utilization rate is reduced. Furthermore, in the
design of a train model, the environmental characteristics of heavy-haul trains running on
long and steep downhill railway sections are not considered. Therefore, it is difficult to
apply such models to the optimal control of heavy-haul trains running on long and steep
downhill sections.
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Based on the above works, an intelligent algorithm utilizing DQN for the cyclic braking
of heavy-haul trains is proposed in this paper to solve the problem of the cyclic air braking
of heavy-haul trains traversing lengthy and steep downhill railway sections. The main
contributions of this work are as follows:

(1) A model with operation constraints is constructed for heavy-haul trains equipped
with a conventional pneumatic braking system and traversing lengthy and steep downhill
railway sections. In addition, the performance indexes of a train running on a long and steep
downhill section are introduced to evaluate the control performance of the heavy-haul train.

(2) The action value functions are approximated based on a neural network. In accor-
dance with the Q-learning algorithm, the neural network is combined with reinforcement
learning to avoid the occurrence of the curse of dimensionality inherent in the Q-learning
algorithm. Therefore, this method is suitable for solving the train control problem charac-
terized by continuous state space.

(3) A prioritized experience replay mechanism is proposed. The samples are prioritized
and selected according to their importance so that important and high-reward samples are
selected and trained more frequently. Therefore, the learning efficiency of the algorithm is
improved for important samples, which accelerates the convergence speed of the algorithm.
As a result, the performance of the algorithm can be improved.

The rest of this paper is organized as follows: In Section 1, the design of the control
model for heavy-haul trains is presented. The constraints of the train operation and
the performance indexes of the train control are introduced into the model. The train
control problems of a heavy-haul train running on a long and steep downhill section are
described in detail. In Section 2, a cyclic air braking method based on the DQN algorithm is
established for heavy-haul trains. In Section 3, the validity and robustness of the proposed
method are verified via simulation. Finally, the conclusions of this study are summarized
in Section 4.

2. Model Construction for Heavy-Haul Trains
2.1. Dynamic Model

During the operation of a heavy-haul train, factors such as track gradient, train
composition and on-board mass cause the train to be subjected to diverse forces. In this
study, the interaction forces between the cars are not taken into account when calculating
the additional resistance. Therefore, the forces imposed on the train during operation
mainly include locomotive traction force, braking force (including electric braking and
pneumatic braking), basic running resistance and additional resistance. Essentially, a
heavy-haul train is a distributed power network system consisting of multiple locomotives
and freight cars. According to the Newtonian principle of dynamics, the mathematical
expression of each train model can be defined as follows [17]:

M
.
v = F−U1 −U2 − FR, (1)

Usually, the running resistance FR encountered by a heavy-haul train during braking
on a long and steep downhill section is mainly composed of basic resistance MR and
additional resistance LR. These resistances depend on the operating speed of the heavy-
haul train as well as its physical characteristics [18]. The running resistance is calculated
as follows:

FR = MR + LR, (2)

According to previous research, the calculation formula of the basic resistance for a
heavy-haul train is as follows [19]:

MR = M(ϕ1 + ϕ2v + ϕ3v2), (3)
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The additional resistance is determined by the section force gR, the curvature resistance
cR and the tunnel resistance tR [19], as shown in Equation (4). The specific calculations of
these factors [20] are presented in Equation (5):

LR = gR + cR + tR, (4)
gR = Mg sin(arctan i

1000 )
cR = 600/R

tR = 0.00013Ls

, (5)

For heavy-haul trains, the control inputs for the locomotives include the traction force
and braking force, whereas the input for freight trains includes only the braking force. There
are mainly two types of brake equipment for heavy-haul trains: one is rheostatic brake
equipment and the other is pneumatic braking equipment. Rheostatic brake equipment,
also known as the regenerative brake, can feed back energy to other locomotives to provide
power. A pneumatic braking system achieves braking force by reducing the air pressure in
the train’s air braking pipes [21].

The traction force F of a heavy-haul train depends on the relative output ratio htr of
the maximum traction force utr

max(v), while the electric braking force U1 is determined by
the maximum electric braking force ud

max(v) and its relative output ratio hd. Therefore, the
traction force and electric braking force of a train can be calculated according to Equation (6):{

F = Ftr(utr
max(v), htr)

U1 = Fd(ud
max(v), hd)

, (6)

where utr
max(v) and ud

max(v) are the piecewise functions of the train’s running speed [22]. In
addition, it is impossible for each locomotive to output electric braking force and traction
force at the same time [23]; thus, the relative output ratio of hd and htr is hd × htr = 0.

The air braking system of a heavy-haul train is its main braking force and the key to
ensuring the safety of train operation. Figure 1 is a diagram showing the structural compo-
sition of the air braking system of a heavy-haul train [24]. According to Reference [25], U2
in Equation (1) can be calculated based on Equation (7):

U2 = θb × ϕb × βs × 1000, (7)

where θb and ϕb are intimately associated with the train’s physical characteristics, such
as the brake lever and transmission efficiency of locomotives and freight cars, while the
service braking coefficient βs is assigned a value based on the rated pressure p of the air
pipes and the corresponding air pressure drop ∆p. Therefore, when air braking is applied
by heavy-haul trains, the output of the air braking force depends on the air pressure drop
∆p [25]. Equation (7) can be rewritten as a function of ∆p as follows:

U2 = ha × F(∆p), (8)

where ha is a binary variable that determines whether air braking is engaged (ha = 1) or
released (ha = 1).
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Figure 1. The compositional structure of the air braking system for heavy-haul trains. 
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2.2. Running Constraints

The aim of this research on the circulating air braking of a heavy-haul train on a long
and steep downhill section is essentially to solve a multi-constraint and multi-objective
optimization problem. Considering the actual requirements of train driving control and
model design, the running constraints set in this research are as follows:

(1) Air-refill time: When a train operates on a long and steep downhill section, it
necessitates the adoption of cyclic braking for speed control. To guarantee sufficient
braking force in the next braking cycle, sufficient time should be ensured for refilling the air
pipe to its maximum pressure [26]. In other words, the release phase must not be shorter
than the minimum air-filling time Ta, as stated in the operating guidelines.

tb
j+1 − tr

j ≥ Ta, (9)

In the above formula, Ta is closely related to the formation of the train and the pressure
drop within the train air pipe. For predetermined train parameters, the air-filling time
needs to be ascertained.

(2) Speed limit: To ensure safety, the speed of the heavy-haul train cannot exceed
the speed limit V at any point on the lengthy and steep downhill line stretch. This value
often depends on the underlying framework of the railway line or the provisional setup.
Additionally, the speed of the train should be greater than the minimum air brake release
speed Vr

min. The specified limit is designated as 40 km/h for a 20,000-ton heavy-haul train
formation [19]. Therefore, the speed should meet the following requirement:

Vr
min ≤ v ≤ V, (10)

(3) Electric braking force: Heavy-haul trains are equipped with both an electric braking
system and an air braking system. When the train engages electric braking, the braking
current is regulated by adjusting the series excitation resistance of the electric braking
system, so as to generate a continuous electric braking force to slow down the running
speed of the heavily loaded train. In actual operation, the constraint is the maximum electric
braking force [27], so the relative output ratio of the electric braking force should satisfy

0 ≤ hd ≤ 1, (11)

2.3. Performance Indicators

This study primarily focuses on the safety and servicing cost of the heavy-haul train
operation process. The maintenance cost is expressed by air braking distance. Hence, two
indicators are introduced to evaluate the control performance of the heavy-haul train.

(1) Safety: Safety serves as the fundamental prerequisite for train operation. The speed
of the heavy-haul train should be kept under the upper limit. Yet, it cannot be lower than
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Vr
min. Here, the parameter Y is defined to indicate whether the train speed remains within

the speed range.

Y =

{
1, Vr

min ≤ v ≤ V
0, otherwise

, (12)

(2) Air braking distance: As excessive wear will be caused by the friction between
wheels and brake shoes when the air brake is engaged for a long distance, a maintenance
cost will be generated by the replacement of air brake equipment. By reducing the air brake
distance during operation, the maintenance cost can be reduced. Therefore, the air brake
distance La of a heavy-haul train is defined as Equation (13).

La =
∫ T

0
ba(t)× v(t)dt, (13)

3. DQN Control Algorithm

Reinforcement learning is a machine learning method for goal-oriented tasks. It does
not tell the agent how to act, but instead, guides the agent to learn the correct strategy
through interaction with the environment. In this section, the train operation process will
first be defined as a Markov decision process. Then, a control algorithm based on DQN is
proposed to learn the cyclic braking strategy of train operation when running on a long
and steep downhill railway section.

3.1. Markov Decision Process

Prior to implementing the DQN algorithm, it is essential to define the control process
for train operation when running on a long and steep downhill section as a Markov decision
process (MDP), which involves formalizing sequential decision-making. An illustration of
the MDP interaction during the operation of heavy-haul trains running on long and steep
downhill sections is shown in Figure 2.
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The locomotive of a heavy-haul train is described as the agent responsible for making
control decisions, while the heavy-haul train’s dynamics and the railway’s underlying
structure arrangements are defined as the environment. Assuming that the time interval
between two consecutive states is ∆t, the control process is evenly divided into N steps with
respect to the planned operating time T, and the position, operating speed and operating
time of the train are taken as the states of the heavy-haul train.

sk = [Pk, Vk, Tk], k = 0, 1, 2, · · · , n, (14)

where sk is the status of the heavy-haul train at step k, Pk is the position of the train, Vk is
the train speed and Tk is the train running time. s0 and sn represent, respectively, the initial
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state and final state of the heavy-haul train running on a long and steep downhill section,
and their calculation is as follows:

s0 = [0, V0, 0], (15)

sn = [P, Vn, T], (16)

Starting from the initial state s0 of the train, succeeding states in the train control
process are determined through actions until the final state sn is reached. Specifically, at
a given train state sk, the agent chooses the optimal action ak from all feasible actions.
After executing the action ak, the agent can obtain the next state sk+1 and receive the
corresponding reward rk+1. The next state is sk+1, which is solely influenced by the current
state sk and action ak. Its calculation is as follows:

sk+1 = Φ(sk, ak), k = 0, 1, · · · , n− 1, (17)

where Φ() represents the functional dynamics of the system associated with the heavy-haul
train dynamic model, while (sk, a k) is denoted as the state–action pair. Notably, the agent
lacks prior knowledge of train dynamics. Such knowledge is solely utilized for generating
driving experience throughout the interaction and to supply the agent with training data.
Herein, the control action refers to the setting of electric braking and the air braking notch.

ak = [ha
k, hd

k ], k = 0, 1, · · · , n, (18)

where ha
k is a binary variable, and hd

k denotes the relative output ratio of the electric braking
force generated by the train locomotive, which is subjected to the constraint condition
outlined in Equation (11).

The control output of a heavy-haul train in each cycle is determined solely by the
speed and time of the current train. Thus, the control process of a heavy-haul train can
be defined by reinforcement learning as a Markov decision process, which is expressed
as follows:

s0
a0→ s1, r1

a1→ · · · sk, rk · · ·
an−2→ sn−1, rn−1

an−1→ sn, (19)

3.2. DQN Algorithm Model

In this section, an intelligent control method based on the DQN algorithm is designed
for a heavy-haul train running on a long and steep downhill section. The DQN algorithm
combines reinforcement learning with deep neural networks to design a neural network
that approximates the action value function. By applying the neural network, the curse of
dimensionality caused by the discretization of the state space in the Q-learning algorithm is
avoided. To solve instability when using a neural network to approximate the action value
function, an independent target Q-network updated at regular intervals and a prioritized
experience replay mechanism are incorporated into the DQN. Hence, the performance of
the DQN algorithm in the cyclic braking control process of the heavy-haul train is further
improved. The overall structure of the algorithm is shown in Figure 3.

The intelligent cyclic air braking system for heavy-haul trains designed in this research
consists of a sensing module, a strategy-making module, an action execution module and a
reward feedback module. Among them, the sensing module is responsible for collecting the
train state information, the strategy-making module devises an optimal braking strategy by
using the DQN algorithm, the action execution module converts the strategy into specific
braking instructions, and the reward feedback module evaluates the effect of each braking
action. The key modules are described in more detail below.
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3.2.1. Policy Design

Policy decides how an agent behaves at a specific time step. In this scenario, the train
controller is treated as an agent and the state of the heavy-haul train can be described using
Equations (14)–(17). Formally, policy is a function that calculates the probability of selecting
each potential action relative to the Q function, and its expression is as follows:

π(a|s) = Γ[s, Q(s, a)], (20)

where Γ[] is the mapping policy. The action selection policy consists of two sub-policies,
i.e., π = {π1, π2}. Concretely speaking, to assure that the duration of the release air brake
release stage satisfies the constraint of minimum air-refilling time in Equation (9), when the
air brake release action is selected at the kth step, that is, a+k =

[
0, hd

k

]
, then this action ought

to be sustained for the subsequent nt − 1 steps, with ak+1 = ak+2 = · · · = ak+n−1 = a+k and
nt = TAI/∆t. Additionally, the ε-greedy strategy (Equation (21)) is employed to determine
the control actions for subsequent stages of the train operation process, wherein an action is
chosen randomly with a probability of ε, whereas with the probability of 1 − ε, the action
a∗ with the largest estimated Q value will be taken.

π(a|sk) =

{
(1− ε) + ε

|A(sk)|
, a = a∗

ε
|A(sk)|

, a 6= a∗ , (21)

where |A(s k)| is the number of actions in the event of sk.

3.2.2. Reward Design

The optimization goal of the reinforcement learning problem is reflected by the reward
function. For the train control process in question, the operating speed cannot exceed its
upper limit to ensure a safe operation. Therefore, the constraint of Equation (10) must
be fulfilled. On the condition that the speed exceeds the upper limit V or is below the
minimum remission speed Vr

min, a negative reward Rc will be given to the agent. If the
heavy-haul train engages in air braking at step k, it will receive a reward of zero. Conversely,
if air braking is not engaged, a positive reward Rd will be granted to incentivize the release
of air braking. Hence, the specified reward is delineated as listed below:

rk+1 =


Rc, Vk+1 < Vr

min orVk+1 > Vr
max

0, ha
k = 1 and Vr

min ≤ Vk+1 ≤ Vr
max

Rd, ha
k = 0 andVr

min ≤ Vk+1 ≤ Vr
max

, (22)
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3.2.3. Prioritized Experience Replay Design

The experience of the heavy-haul train at step k is recorded as a transition
ek = (sk, ak, rk+1, sk+1, done), and then, all experiences obtained over many training episodes
are stored in the buffer D. The term done in an array is a sign signal. If done is True, it
indicates that the training state sk+1 is the final state or a negative reward Rc will be im-
parted. During training, the DQN algorithm updated by means of sampling prioritization
is applied to small-batch transitions (sk, ak, rk+1, sk+1, done) according to the priority from
the memory buffer storing experience. This mechanism enables greater data efficiency, as
experiences of higher priority will be more frequently selected for weight updates. Samples
are selected probabilistically to ensure that experiences with zero TD error can be sampled.
The sampling formula P(i) of the priority experience replay is presented in Equation (23):

P(i) =
pα

i
∑
k

pα
k

, (23)

where pi represents the priority of the ith experience sample; α determines the utilization
priority; and pi is defined according to Equation (24),

pi =|δi|+η, (24)

where δi is the temporal difference error (TD error), representing the difference between
the reward received by the agent after performing an action and the expected reward. η is
a very small value, taken as 0.001 in this paper. It is used to prevent an experience sample
from not being played back into the experience pool after its TD-error value reaches 0.

The smaller the TD error, the smaller the actual difference between the Q value
estimated from the sampled data and the target Q value. A small TD error indicates that
the agent is able to manage the corresponding situation well and there is no need to sample
frequently or to train this experience. When there is significant deviation between the
estimated Q value and the target Q value, this indicates that the experience is relative
to the strategy currently learned by the agent, that is, the experience value is high, and
frequent training should be prioritized to cope with similar changes that could occur. In
addition, sampling by priority breaks the strong correlation between successive samples
that adversely affects the reinforcement learning algorithm. As a result, it reduces the
variance in the learning updates.

3.2.4. Action Value Function Design

Defined as Q(s, a; θ), the action value function demonstrates the quality of the action
taken by the agent in a given state. In the form of a formula, the value of an action can be
represented as the sum of all rewards that the agent is able to accumulate in subsequent
steps, commencing from the current state and action. During the learning process, the
agent is coached to choose an action in a manner that optimizes the overall future reward,
referred to as the expected return, as shown in the following formula:

Rk = ∑N
k′=k γk′−krk′, (25)

The optimal Q function Q∗(s, a) is characterized as the highest cumulative reward
attainable by adhering to the policy π upon entering the state s and executing the action a.
In the form of Q(s, a), it is a function consisting of two parts: the state value function and the
advantage function. The action value function expresses the expected return obtained by
executing the action in the specified states, that is, indicating that taking this action is good
or bad. The formula for calculating the optimal Q function is presented in Equation (26):

Q ∗ (s, a) = max
π

E[Rk|sk = s, ak = a, π], (26)
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Theoretically, the optimal Q function obeys the Bellman equation, which is shown in
Equation (27):

Q ∗ (s, a) = Es′[r(s,a) + γmaxa′Q ∗ (s′, a′)], (27)

where s′ and a′ denote the state and the potential action at the subsequent time step,
respectively.

In the DQN framework, the neural network is employed to approximate the op-
timal function. The Q function is estimated by the neural network, with the weight
parameters denoted as θ (henceforth called the Q-network). Throughout the training
process, the Q-network undergoes training through weight adjustments aimed at reduc-
ing the mean square error to a minimum, as defined by Equation (27). In this context,
the best possible target value, r + γmaxa′Q∗(s′, a), is approximated with the target value
y = r+γmaxa′Q̂(s′, a′; θ−). Thus, the loss function of updating the weight for the network
is as follows:

Li(θi) = Es,a∼p(),s′∼P[r + γmax
a′

Q(s′, a′, θ−)−Q(s, a, θ)]
2, (28)

where Li is the loss of the ith iteration; p is the joint probability distribution of states and
actions; θ is the weight parameter of the Q-network in the iteration; and θ− is the weight
parameter of the target network. The target network has an identical structure to the
Q-network. To revise the Q-network, it is necessary to initially compute the derivative of
the loss function concerning θ, and the gradient ∇θ L will be obtained. Then, the stochastic
gradient descent (SGD) method is used to update the weight θ as follows:

θ + λ•∇θ L→ θ, (29)

where λ is the learning rate. The weight of the target network θ− is updated periodically.
When the parameters of the Q-network undergo J iterations of updating, a weight θ− will be
assigned to the target network to generate a new target network. Then, Q̂ will be adopted
to generate the target value y of the Q-learning to perform subsequent parameter updates J
times for the Q-network. Through this approach, the overestimation or training instability
caused by the correlation between the Q-network and the target network Q̂ can be avoided;
thus, the algorithm can calculate more accurately and stably, and the convergence speed
can be increased.

Algorithm 1 summarizes the control method for heavy-haul trains based on the
DQN algorithm.

Algorithm 1 DQN-Based Intelligent Control Strategy for Circulating Air Brake of the
Heavy-Haul Train

///Initialization///
1: Use weight θ to randomly initialize the Q-network.
2: Use weight θ− = θ to initialize target network Q̂.
3: initialize the experience pool D with size C, greedy probability ε, small-batch sample size

ne, discount rate γ, learning rate λ and the parameter update episode J of the target network
///Process of training///
4: for episode = 1,. . .M do
5: initialize the state s0 of train through Equation (13)
6: for k = 0,1,. . .,N−1 do
7: choose action ak based on strategy π
8: execute action ak; receive rewards rk+1 and the next state of the train sk+1 according to

Equation (20) and Equation (15), respectively. Determine whether the train reaching the
target point is done, forming a quadruple (sk,ak,rk,sk+1, done)
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9: calculate the priority pi, of the quadruple, then calculate the sampling probability P(i),
and finally, calculate the importance sampling weight ωi and store the quadruple (sk, ak,
rk, sk+1, done) in the experience pool D with the probability P(i)

10: draw ne quadruples (sk,ak,rk,sk+1, done) from the experience pool D according to
sampling probability

11: If done = True, set yk =rk; otherwise, yk = rk + γmaxa′Q
(
sk+1, a′; θ−

)
12: calculate the ∇θ L of gradient (yk −Q(sk, ak; θ))2 with respect to weight θ

13: update the weight θ by SGD method
14: update the weight θ− of the target network Q̂ according to θ− = θ every J perods
15: end for
16: end for

4. Algorithm Simulation and Analysis

In this study, simulations were carried out with real data obtained for a section of the
Shuohuang railway line in China to confirm the efficacy of the proposed algorithm. Firstly,
the experimental parameter data setting was introduced. Then, the simulation results
were presented and analyzed. The simulations were divided into three parts: the model
training process, a practical application performance test, and performance comparison
using different algorithms.

4.1. Experimental Parameter Settings

To prove the effectiveness of the intelligent control method, a heavy-haul train weigh-
ing 20,000 tons was taken as the object of the simulations. The train formation consisted of
1 HXD1 electric locomotive + 108 freight cars + 1 HXD1 electric locomotive + 108 freight
cars. The HXD1 electric locomotive had the abilities of traction and regenerative braking.
The whole train was equipped with air braking. For specific train parameters, see Table 1.

Table 1. Train parameters.

Locomotive Parameters Freight Car Parameters
Parameter Name Value Parameter Name Value

Model HXD1 Model C80
Mass 200 t Mass 100 t

Length 35.2 m Length 13.2 m

Based on the data for the section spanning from Longgong Station to Beidaniu Station
of the Shuozhou–Huanghua Line, simulations were carried out to obtain a speed curve of
the heavy-haul train running on a long and steep downhill section. The operation section
had a total length S = 23,800 m, with a gradient of 10–12‰ for the extended and precipitous
downhill stretch. The speed limit on this line was 80 km/h. The specific data are presented
in Table 2.

Table 2. Route information.

Distance (m) Gradient (-‰) Distance (m) Gradient (-‰)

0–1000 1.5 12,430–14,080 10.5
1000–1400 7.5 14,080–16,330 11.4
1400–6200 10.9 16,330–19,130 10.6
6200–6750 9 19,130–22,260 10.9

6750–12,430 11.3 22,260–23,800 3.3

The parameter settings of Algorithm 1 used in this paper are listed in Table 3:
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Table 3. Algorithm hyperparameters.

Parameter Value Parameter Value

Maximum training episode M 100,000 Minimum air-refilling time TAI 100
Update period of target network 300 Batch size of sampling ne 32

Discount rate γ 0.94 Learning rate λ 0.001
Initial value of ε 0.98 Final value of ε 0.1

Capacity of memory buffer D 5000 Planned operation time T 1500 s
Positive reward Rd 5 Negative reward Rc −20

Minimum braking speed Vr
min 40 km/h Maximum braking speed Vr

max 80 km/h

4.2. Simulation Experiment Verification
4.2.1. Model Training Process

In this study, simulations were carried out under different parameters and training
cycles with the proposed DQN algorithm for verification purposes. Under the specified
circumstances, the time interval ∆t was 100 s. In addition, the initial speed V0 of the heavy-
haul train running on a long and steep downhill section was 65 km/h. The change curve
of the cumulative reward obtained using the proposed algorithm is shown in Figure 4.
As shown in Figure 4a–c, the learning rates were determined to be 0.03, 0.003 and 0.0003,
respectively, for the cumulative reward curve that changes depending on the number of
episodes in different experiments. It is evident that during the short-term training period,
the total cumulative reward gradually increases and converges in a good direction after
training, as shown in Figure 4a–c. It should be noted that the best training performance
is in Figure 4b, where the learning rate was determined to be 0.003. The average total
reward’s evolution curve exhibits a swifter and more consistent convergence rate, along
with a higher convergence value. Consequently, a learning rate of 0.003 was selected for
the other experiments.

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 19 
 

 

 
Episodes 

 
Episodes 

(a) (b) 

 
Episodes 

(c) 

Figure 4. Change curves of cumulative reward at different learning rates: (a) the learning rate λ of 
DQN algorithm is 0.03; (b) the learning rate λ of DQN algorithm is 0.003; (c) the learning rate λ of 
DQN algorithm is 0.0003. 

Figure 5 shows the change curve of the total cumulative reward with the number of 
training episodes at a learning rate of 0.003 and a training period of 10,000 episodes. It 
also illustrates the change curve of the cumulative reward after the algorithm has 
converged. The other parameters of the DQN algorithm are the same as those shown in 
Table 3. 

Figure 4. Change curves of cumulative reward at different learning rates: (a) the learning rate λ of
DQN algorithm is 0.03; (b) the learning rate λ of DQN algorithm is 0.003; (c) the learning rate λ of
DQN algorithm is 0.0003.



Algorithms 2024, 17, 190 13 of 17

Figure 5 shows the change curve of the total cumulative reward with the number of
training episodes at a learning rate of 0.003 and a training period of 10,000 episodes. It also
illustrates the change curve of the cumulative reward after the algorithm has converged.
The other parameters of the DQN algorithm are the same as those shown in Table 3.
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It can be seen from Figure 5 that in the 10,000-episode training experiment, the fluctua-
tion range of the cumulative reward gradually decreases as the number of training episodes
increases. From the change curve of the cumulative reward, it seems that the cumulative
reward was maintained at a significant level within a designated range upon practice when
executed about 5000 times, and the average cumulative reward converged to about 1400.
After training was executed 10,000 times, the average cumulative reward remained at 1450,
indicating that the proposed algorithm is convergent.

4.2.2. Practical Application Performance Test

Figure 6a,b exhibit the outputs of the air braking force and electric braking force
during the control process of the DQN algorithm, respectively. The curve in Figure 7
shows the train speed controlled by the DQN algorithm. With the above parameter, i.e.,
the index Done was 1 with a learning rate of 0.003, the speed of the train was kept within
the limitation range during the operation. This means that the agent had learned a safe
and feasible control strategy during the test simulations to ensure the safe operation of
the heavy-haul train. Moreover, it is evident from Figures 6 and 7 that during the process
of train control, cyclic air braking was engaged when the train was running on the long
and steep downhill section. Specifically, air braking was not applied during the initial 80 s.
Since the overall braking force was not sufficient to decelerate the heavy-haul train, the
train speed increased during this period. In the following 100 s, air braking and electric
braking were utilized concurrently (ha = 1 and hd = 0.8), resulting in the train’s velocity
dropping from 76 km/h to 52 km/h. Subsequently, air braking was discontinued, while
electric braking was maintained constantly for the next 100 s (ha = 0 and hd = 0.8). At 210 s,
the train speed reached 78 km/h. At this moment, air braking was reactivated to reduce
the train’s velocity (ha = 1 and hd = 0.8).
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Herein, an intelligent air braking strategy employing the DQN algorithm was used to
implement five braking cycles for a heavy-haul train running on a long and steep downhill
railway section. This approach ensured the safety of train operation. Furthermore, Figure 7
unequivocally illustrates that the train’s safe operation indicator Y maintains a value of
1, which signifies that the train velocity consistently remains within the predefined safety
limits during its entire operation. Figure 7 shows that the DQN agent in the experiment
learned a safe and feasible control strategy to ensure the safe operation of heavy-haul trains.
It can be seen that after training, the algorithm is able to control the train speed by applying
the air brakes before the train reaches the maximum speed of 80 km/h under the premise
of a slope speed of 68 km/h, and by releasing the air brakes before the speed drops below
the minimum release speed of 40 km/h after braking. This is done to ensure the train can
maintain safe operation until it exits the long downhill section.

4.2.3. Comparison of Algorithm Performance

To prove the superiority of the DQN algorithm in dealing with the cyclic braking of a
heavy-haul train running on a long and steep downhill section, the optimization results
with the above settings were compared with those of the Q-learning algorithm [10]. The key
parameters of the Q-learning algorithm were as follows: the learning rate λwas 0.05, the
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maximum number of iterations M was 100,000, the discount rate γwas 0.95, the acquisition
probability εwas 0.1, and the state transition interval ∆t was 10.

It can be seen from Table 4 that compared with the results of the Q-learning algorithm
from [10], the proposed algorithm based on DQN is superior in terms of braking distance,
braking efficiency and operation efficiency during the cyclic braking of a heavy-haul train
running on a long and steep downhill section. The safe operation of the train is, thus,
effectively ensured.

Table 4. Comparison of simulation results.

Algorithm

Target

Safety
Indicator Y

Air Braking
Distance/m

Planned
Running
Time/s

Actual
Running
Time/s

Average
Speed/(km/h)

Q learning 1 7576.9 1500 1360 63
DQN 1 7417.6 1500 1260 68

From Table 4, it can be observed that under the same conditions and with the same
hyperparameter settings, the DQN algorithm, which is focused on air braking distance,
actual running time and the train’s average speed, shows superiority in braking distance
and running efficiency when heavy-haul trains perform cyclic air braking on long downhill
sections. Our findings reveal that the DQN-based intelligent control strategy decreased
the air braking distance by 2.1% and enhanced the overall average speed by over 7%.
These results unequivocally demonstrate the efficacy and superiority of the DQN-based
intelligent control strategy. Our experimental results indicate that the DQN algorithm
proposed in this paper effectively ensures the safety of train operation.

5. Conclusions

In this article, we explore the optimal working condition (braking and braking release)
transition during cyclic braking when a heavy-haul train is running on a long and steep
downhill section. Aiming at obtaining the shortest air brake distance and the highest
operating efficiency, various constraints of the actual operation are considered at the same
time, including factors such as the air-refilling time of the auxiliary reservoir, operating
speed and operation action switch. The main conclusions are as follows:

(1) To achieve the optimization of multiple objects, a mathematical model is established
for a heavy-haul train running on a long and steep downhill section. An intelligent cyclic
braking system design based on the DQN algorithm is introduced for the train to adapt
to a variety of complex operation environments and line conditions. To improve the
convergence speed of the algorithm, the priority experience replay mechanism is used
instead of ordinary experience replay. By prioritizing experiences, the agent can choose
experiences with a higher priority for learning. In this way, the agent can more quickly learn
important experiences that are more conducive to the rapid convergence of the algorithm.
As a result, it improves the performance of the control algorithm.

(2) To verify the performance of the proposed DQN algorithm, comparative simula-
tions were carried out and tested with different parameters. The simulation results show
that the DQN algorithm proposed in this article exhibits better optimization performance
and can effectively generate train driving speed curves that fulfill the specified constraints.
This provides a valuable reference for the application of cyclic braking in heavy-haul trains
running on long and steep downhill sections.

This study primarily focuses on the intelligent control of a cyclic air braking strategy
for heavy-haul trains. However, during the research phase, we failed to comprehensively
consider all environmental factors that could affect braking effectiveness. In particular,
weather conditions (such as temperature, humidity and wind speed), track conditions (such
as track flatness and friction coefficient) and variations in train load were not within the
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scope of our research. In future, we plan to conduct in-depth research on these environmen-
tal factors to evaluate the braking performance of heavy-haul trains more comprehensively
under different conditions. In addition, the proposed DQN algorithm could be further
improved and a more efficient network structure could be developed. This, in turn, could
improve the performance of cyclic air braking with respect to heavy-haul trains.
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Nomenclature

M Sum of the masses of all carriages
.
v Acceleration of heavy-haul train

F Locomotive traction force v Running speed of train
U1 Output electric braking force U2 Output air brake force
ud

max Maximum electric brake force utr
max Maximum traction force

FR Resistance of train g Gravity acceleration

V
Upper limit of train running

Vr
min

Minimum release speed of air
speed braking

htr Relative output ratio of traction
hd Relative output ratio of the

force electric braking force

θb
Equivalent emergency brake ratio

ϕb
Equivalent friction coefficient

of air braking of air braking
R Curve radius Ls Tunnel length

βs
Service brake coefficient of

i Gradient of the line section
air braking

ϕ1, ϕ2, ϕ3 Running resistance constant La Air brake distance

tb
j+1

Time point of engaging air brake tr
j

Time point of releasing air brake
in the (j + 1)th cycle in the jth cycle
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