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Abstract: Precision forestry is a useful technique to help forest stakeholders with proper sustainable
forest management. Modern sensors and technologies, with special reference to the sustainability of
forest operations, can be applied on a variety of levels, including the monitoring of forest activities
regarding the three pillars (economy, environment, and society). In this review, we summarised the
current level of knowledge regarding the use of precision forestry techniques for monitoring forest
operations. We concentrated on recent data from the last five years (2019–2023). We demonstrated
how an Industry 4.0 strategy for remote and proximal monitoring of working performance can
be effective when using CAN-bus and StanForD data collected by modern forest machines. The
same information can be effectively used to create maps of soil trafficability and to evaluate the
patterns of skid tracks or strip roads built as a result of forest intervention. Similar information
can be gathered in the case of small-scale forestry by using GNSS-RF (Global Navigation Satellite
Systems—Radio Frequency) or even monitoring systems based on smartwatches or smartphones.
LiDAR and Structure for Motion (SfM) photogrammetry are both useful tools for tracking soil rutting
and disturbances caused by the passage of forest machinery. SfM offers denser point clouds and
a more approachable method, whereas laser scanning can be considerably faster but needs a more
experienced operator and better data-processing skills. Finally, in terms of the social component
of sustainability, the use of location sharing technologies is strongly advised, based for instance on
GNSS—RF to monitor the security of forest workers as they operate.

Keywords: sustainable forest operations; Industry (/Forestry) 4.0; CAN-bus; StanForD; soil disturbance

1. Introduction

The execution of Sustainable Forest Operations (SFOs) is one of the most crucial factors
to consider when aiming to achieve Sustainable Forest Management (SFM) [1–5], a core
objective of the European Forest Strategy [6]. The concept of SFOs refers to using logging
practices that are economically affordable, have little impact on the environment, and
ensure the safety of operators while working [7,8]. The application of modern technologies,
such as GIS (Geographic Information Systems), GNSS (GNSS (Global Navigation Satellite
Systems), UAVs (Unmanned Aerial Vehicles), and various sensors, to improve the overall
sustainability of forest management defines the paradigm of precision forestry [9,10]. The
utilisation of these modern technologies, nowadays often already implemented within
modern forest machines, allows us to generate optimal harvesting results while consuming
less energy, protecting the environment, and safeguarding the health of the operator [11,12].

The term precision forestry denotes a multidisciplinary and inter-disciplinary concept
that enables the integrated use of emerging technology in finding creative solutions for
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particular contexts in the forest sector [13]. Indeed, considering the great multidisciplinarity
that characterises the forest sector, there is a plethora of applications of different smart
technologies in the framework of precision forestry. Satellites or UAVs can be used to estimate
aboveground biomass during the establishment of forest inventories [14,15] or to monitor
disturbances such as pests or drought [16–18]. Geographic Information Systems can be applied
to the planning of harvesting operations, for instance by selecting the most appropriate
extraction system [19,20], by defining a priori optimised skid trail networks [19,21,22], or by
developing soil trafficability maps [23–26]. Some efforts have also been focused on forestry
robotics and automatisation of harvesting operations, although the current level is one of
research and ideas rather than one of real-world implementation [27].

A further fundamental task that modern and smart technologies can perform in the
framework of precision forestry is monitoring harvesting operations. Proper monitoring
is indeed the base for sustainability [28,29]. Modern sensors and technologies can be
applied to monitor forest operations under all three pillars (economy, environment, and
society), and in this review we aim to precisely summarise the recent advances in the topic
of monitoring the sustainability of forest operations by smart and modern technologies.
Concerning the economic pillar, one of the most investigated topics has been the monitoring
of work productivity in harvesting operations [30], with the goal of optimising the cost-
effectiveness of the intervention. Regarding environmental sustainability, large efforts have
been spent on monitoring soil disturbances via modern technologies, with the double goal
of reducing the time spent on field surveys and improving the reliability of the obtained
data [31]. Finally, regarding social sustainability, the most investigated topic has been the
monitoring of working crews in the forest environment with the goal of preventing work
accidents [32].

This review is addressed to scientists, researchers, and scholars in the forest engineer-
ing sector and students that wish to become familiar with the topic of monitoring the overall
sustainability of forest operations via the precision forestry approach. Considering the very
rapid technological advances in the topic, we focused on a short time span (2019–2023),
with the goal of reporting to the readers the newest advances in the field and promoting
knowledge and future developments in the sector.

2. Materials and Methods

To build the database of papers to be used for the review, we followed an unconven-
tional approach to improving the effectiveness of the literature search process on such
a specific topic. We started our literature search from the databases of specific scientific
journals on the topic of forest engineering, namely: the Croatian Journal of Forest Engi-
neering, the International Journal of Forest Engineering, the European Journal of Forest
Engineering, and Forests (Forest Operations and Engineering Section). As previously
stated, we considered only papers published in the period from 2019 to 05/2023. We then
applied the snowball approach, which consists of looking for further literature sources
starting from the reference lists of recent publications to identify further references. In this
way, we obtained the database for our review, which consists of 34 papers.

The papers in the database were categorised according to the pillar of sustainability
to which they referred, namely monitoring of economic sustainability, environmental
sustainability, or social sustainability of forest operations. While environment and economy
showed a very similar percentage of studies, those dealing with the monitoring of societal
sustainability via smart technologies were less represented (Figure 1). Concerning the share
of papers among different countries, the highest number of studies were carried out in the
USA, but a high percentage were performed in Italy, Turkey, and Scandinavian countries as
well (Figure 2).
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3. Harvesting Systems Usually Applied in the Investigated Countries 
The highest number of papers in the database for this review were from the USA. 
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vesting systems generally applied also vary substantially within the USA. In the eastern 
hardwood region, where the terrain conditions do not favour the applicability of 
Cut-to-Length (CTL) technology such as harvesters and forwarders, the most-applied 
harvesting system consists of motor-manual felling using chainsaws with extraction via 
cable skidders [33]. In the Southwest, where pine stands are dominant, the most common 
system is a fully mechanised one, based on feller–bunchers and extraction via grapple 
skidder [34,35]. Finally, in the western USA, where slopes are generally steeper than 40%, 
cable yarding is the most-applied extraction system [33,36]. 

Italy and Turkey were also well represented in the database. In Italy, concerning 
felling and processing, the chainsaw is still the most common machinery [37,38]. Con-
cerning extraction operations, cable yarding is the most-applied harvesting systems in 
the northern Alps, while in the rest of the country, ground-based extraction based on 
forestry-fitted farm tractors equipped with winches or forwarding boxes is still very 
common [39]. Skidders and forwarders have started to be widespread only in recent 
years [11,40,41]. In Turkey as well, felling and processing are mainly motor-manual using 
chainsaws, and extraction is based on skidding, generally via forestry-fitted farm tractor 
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3. Harvesting Systems Usually Applied in the Investigated Countries

The highest number of papers in the database for this review were from the USA.
Considering the high variability of forestry contexts present in that country, the harvesting
systems generally applied also vary substantially within the USA. In the eastern hardwood
region, where the terrain conditions do not favour the applicability of Cut-to-Length (CTL)
technology such as harvesters and forwarders, the most-applied harvesting system consists
of motor-manual felling using chainsaws with extraction via cable skidders [33]. In the
Southwest, where pine stands are dominant, the most common system is a fully mechanised
one, based on feller–bunchers and extraction via grapple skidder [34,35]. Finally, in the
western USA, where slopes are generally steeper than 40%, cable yarding is the most-
applied extraction system [33,36].

Italy and Turkey were also well represented in the database. In Italy, concerning felling
and processing, the chainsaw is still the most common machinery [37,38]. Concerning
extraction operations, cable yarding is the most-applied harvesting systems in the northern
Alps, while in the rest of the country, ground-based extraction based on forestry-fitted farm
tractors equipped with winches or forwarding boxes is still very common [39]. Skidders
and forwarders have started to be widespread only in recent years [11,40,41]. In Turkey as
well, felling and processing are mainly motor-manual using chainsaws, and extraction is
based on skidding, generally via forestry-fitted farm tractor [42].
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In Scandinavian countries such as Sweden and Finland, CTL technology is largely
dominant, with harvesters and forwarders extensively used to manage the large extensions
of coniferous stands [43]. In central Europe, in countries such as Poland, Slovakia, and
Germany, CTL technology is largely applied in coniferous stands, while skidding via cable
or grapple skidders is very common in the management of broadleaf forests [40].

In South Korea, the cut-to-length harvesting system is the most commonly applied;
however, it relies generally on non-forest-specific machinery, such as for instance excavators
with a grapple [44]. Cable yarding is also common in mountain conditions [44]. In New
Zealand, cable yarding is the most common harvesting system, given the usually steep
terrain [45]. In recent years in this country, the application of winch-assisted harvesting has
also been increasing in order to maximise work productivity in the presence of difficult
mountain conditions [46].

Finally, in South Africa, forest management is mostly based on artificial plantations
of Eucalyptus and Pinus genera; in recent years, mechanisation has strongly entered in the
forest management in that country [47]. Harvesting systems are generally fully mechanised,
even if it is common to adapt different machinery to forestry (for example, excavators) rather
than relying on machines specifically developed for forest operations (e.g., harvesters) [48].

Different harvesting systems have different potential to be integrated with smart
technologies. It is obvious that harvesting systems based on modern machinery, such
as the Scandinavian CTL, are better suited to precision forest harvesting, given that new
forwarders and harvesters are already installed with on-board computer system software
and sensors for the monitoring of the harvesting activities. The same applies, however,
to modern skidders and cable yarders. The integration of precision forest harvesting and
smart technologies in the case of older machinery can be more difficult but still possible
using different devices such as, for instance, smartphones or smartwatches.

4. Monitoring Economic Sustainability of Forest Operations

Valid instruments for forest management to ensure the traceability of forest prod-
ucts [49,50] as well as validate theoretical models regarding forest harvesting systems and
efficiency [51] are made possible by the increasing performance of data acquisition, process-
ing, and transmission brought on by new technological advancements (Industry/Forestry
4.0) and the application of the principle of Precision Forestry (PF) [52,53]. With the use of
this technology, decision-makers can characterise wood resources in detail, including their
geographical characteristics and stand factors. These data platforms or the usage of new
harvesting equipment outfitted with this technology allow for the uploading of all data
continuously gathered during normal working conditions as well as the option to request it
as needed [54]. Therefore, it is usually possible to automatically record all the data related
to the machine parameters as well as the characteristics of the harvested timber, such as
metrics, species, or position, from the stand to the roadside, when a fully mechanised
harvesting system with modern machines is applied [55]. It is moreover possible to view
these data (fuel consumption, productivity, and position) online using the portal offered by
the manufacturer. All these applications are made possible by the Controller Area Network
(CAN-bus) system, which transmits machine status and parameters to the on-board com-
puter (OBC) using the Standard for Forest Machine Data and Communication (StanForD),
which is implemented in almost all contemporary forest harvesters and processors to record
not only the machine engine and vehicle condition but also the parameters of the harvesting
and felling operations [56]. As a result, modern forest machine automation data travel
across a CAN-bus network that links all relevant components, including actuators, sensors,
and controllers, to create a distributed control system. Hundreds of signals pertaining to
harvester head performance and control, vehicle engine, and transmission operation and
production parameters are continuously produced and processed by the control system [52].
The forest machine on-board control system, which also generates standard production and
performance statistics based on measurements taken while working, serves as a conduit for
communication between the control system and the human operator. Forest contractors can
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also track every vehicle from a single place utilizing the Fleet Management System (FMS)
and CAN-bus technology in conjunction with Geographic Information Systems (GIS) [57].
The Fleet Management System makes it possible to maximise technical efficiency, boost
productivity, and enhance vehicle and driver safety for a company. Usually, a combination
of vehicle tracking (GNSS position), reporting on fuel use, monitoring driver conduct, and
managing vehicle maintenance is used to achieve this. Additionally, the Fleet Management
System can be used to more thoroughly investigate various facets of forest operations,
including those connected to environmental performance (fuel consumption and CO2
emissions, among others), which become more and more relevant for both contractors
and forest managers every day [58–60]. StanForD data can also be integrated with local
allometric equations for the real-time monitoring of aboveground biomass and for the
estimation and quantification of harvesting residues [61]. An example of StanForD data
integrated with local topographic maps and with the OBC system of a forwarder is given
in Figure 3.
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When CAN-bus systems are not available because the forest operations are carried
out in the framework of small-scale forestry, therefore not using modern dedicated forest
machinery, it is however possible to develop monitoring systems of working activity by
using GNSS-RF (GNSS—radio frequency) systems or smartwatch/smartphone sensors [62].
GNSS-RF systems can collect and share positional data in real-time in off-grid remote
locations where cellular and internet connectivity are otherwise unavailable [63]. In a
recent study by Becker and Keefe [64], a GNSS-RF monitoring system was used to check the
working performance of an excavator-based mastication operation in the USA. The system
was based on two GNSS-RF transponders, one located on the boom and the other within
the cabin, and it showed very good performance in identifying productive elements and
delay time, with an accuracy of 95% [64]. A monitoring system based on GNSS was tested
also in Italy and New Zealand to evaluate the performance of cable yarding operations,
working on four study sites in Italy (selective thinning in Norway spruce stands) and four
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sites in New Zealand (clear-cut in radiata pine stands); the system was able to identify 361
of 368 working cycles with a less than 1% difference in gross working time in comparison
to a typical time and motion study by chronometer [65]. Data on 7 working cycles were
missing after losing the GNSS signal in one of the Italian sites [65]. Similarly, cable yarding
operations in Romania were monitored via a GNSS system, the data from which were
analysed by machine learning algorithms to classify the working times, reaching a very
high accuracy ranging from 98.4% to 98.8% [66]. GNSS technology based on more user-
friendly devices such as smartphones and smartwatches was tested as well with the aim
of monitoring the working productivity of forest operations. These systems reached a
working time prediction accuracy ranging from 65.9% to 99.6%, thus demonstrating their
reliability in monitoring small-scale forest operations [67–69], even if the main limitation,
as it often happens when applying GNSS in a forest environment, is signal loss due to
canopy occlusion [70,71]. GNSS use in forestry is frequently impacted by multi-pathing
error, which is caused when satellite signals are reflected or diffracted by surrounding
objects or surfaces or blocked by the canopy or other solid objects [63,72,73]. This problem
remains unsolved, even when applying correction algorithms such as real-time kinematics,
which are generally able to improve the position accuracy even at a sub-centimetric level,
but only in the presence of good satellite coverage [74]. For this reason, improving the
accuracy of GNSS positioning in forest environments is considered the main challenge to
be solved to achieve the automatization of forest operations [74].

Another monitoring system for forwarding extraction was recently developed by
Civitarese et al. [75]. It consists of a weighing system installed on the loading deck of
the machine to evaluate extracted biomass in each working cycle, coupled with a GNSS
handheld receiver with a dedicated app installed, designed to use the Android platform.
The system can record working time and work productivity as well as the strip roads pattern
followed by the forwarder [75]. This system can be particularly helpful for monitoring
forwarding operations performed by older models not equipped with CAN-bus and on-
board computer systems (Figure 4). This aspect is particularly relevant in different parts of
the world, including in well-developed countries such as for instance the USA and Italy;
it is common that logging companies relies on old machinery in which modern on-board
computing systems are not available [76]. Systems such as that proposed by Civitarese
et al. [75] are very important in this framework, being able to transfer the precision forest
harvesting approach to the context of small-scale forestry as well. Similar results can also
be obtained via simple smartphones and smartwatches, even if in this case it is not possible
to monitor the biomass harvested in each working cycle. Working time can indeed be
monitored via a plethora of apps available for smartphones or, by the same token, for
smartwatches, but the harvested biomass has to be estimated by the logger or weighed at
the landing site if a scale is available (this situation is not so common in the majority of
forest yards).

The possibility of using smart technologies for monitoring forest operations is a
fundamental advance in the framework of forest engineering, considering that a proper
assessment of economy of forest interventions can be a difficult task. Thanks to the
large amount of precise data obtained via the above-described systems, precise pricing
for new expenditures can be supported by detailed machine data capture of economic
variables within a forest enterprise [52]. Furthermore, with the use of these technologies,
decision-makers can describe wood resources in great detail, including their geographical
characteristics and forest factors and it will be possible to create precise models that can be
used in various simulations that seek to identify new, more productive operative methods,
to optimise whole operations, or to create more productive machines [77].
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5. Monitoring Environmental Sustainability of Forest Operations

When dealing with the monitoring of environmental impacts related to forest op-
erations, one of the main concerns is without any doubt disturbances to the soil after
harvesting activities are carried out with ground-based systems [78–80]. As a natural
consequence, scientific research in the framework of precision forestry has been trying
to look for alternative solutions to the classic monitoring via soil sampling and rutting
measurement, given that these approaches require a certain amount of resources [31].

CAN-bus and StanForD data can also be effectively applied to monitoring soil dis-
turbances related to the passage of forest machinery, particularly to defining skid trails or
strip road patterns and therefore the percentage of the cutting block affected by soil distur-
bances [81]. A particularly interesting application of CAN-bus data is the development of
soil trafficability maps for forwarding operations. In the Cut-to-Length harvesting system
implemented in harvesters and forwarders, the harvester moves into the cutting block
before the forwarder, and the latter follows the strip road patterns established by the former.
Given that the forwarder follows the harvester, data on power from the harvester CAN-bus
system can be used to develop a trafficability map for the forwarder. This is because at a
constant speed on level ground, power is expended in overcoming motion resistance, which
is directly related to forwarder trafficability [57]. When compared to manual measures
of rutting and penetration resistance, the CAN-bus data revealed promising results for
mapping site trafficability. Using CAN-bus data to map site trafficability with such a Big
Data approach is surely fascinating, considering that the expense of completely automated
and thorough trafficability mapping as part of operational forestry is minimal because
modern harvesters are practically prepared for indirect power recording [57].

In the recent literature, two other precision forestry approaches for the monitoring of
soil disturbances after ground-based forest operations can be found; these are Structure-
from-Motion (SfM) Photogrammetry and LiDAR [82,83]. Photogrammetry consists of a
technique in which measurements made from one or more images are used to estimate
the three-dimensional coordinates of points on a surface. The application of SfM, in which
images are taken from a variety of positions and matched in an overlay to provide depth
perception, permits three-dimensional modelling with a monocular camera [84]. The qual-
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ity and resolution of the photos, as well as the degree of overlap between succeeding
photographs (usually 70%–80%), all affect how accurate photogrammetric models are. In
photogrammetry, the surface roughness of the item being modelled is crucial, and stationary
water presents a challenge for the technique, frequently leading to no data representation
of such surfaces [31]. LiDAR (Light Detection and Ranging) is a reliable measuring method
that can pierce scant vegetation, operates regardless of lighting conditions, and is well
established for both operational and research application in forest inventory and map-
ping [85–87]. Essentially, a LiDAR system measures the distance between a target and
sensor and consists of both technology that uses a beam emitter and rotating mirrors to
steer the beam. New developments include solid state LiDARs that have no moving parts
and simultaneously evaluate multiple beams (such as Leddar Pixell) that measure distance
without any moving parts [31]. LiDAR technology in forestry applications can be imple-
mented in four different ways: Terrestrial Laser Scanning (TLS), Airborne Laser Scanning
(ALS), Unmanned Aerial Vehicle Laser Scanning (UAV-LS), and Mobile Laser Scanning
(MLS). TLS is a ground-based LiDAR scanning technique that uses visible or near-infrared
light to measure three-dimensional (3D) forest structure [88]. The major advantage of TLS
is the high accuracy of the estimation of aboveground tree biomass, even if surveying
with this technique is time-consuming and can suffer from occlusion in particularly dense
stands [89]. ALS consists of a LiDAR sensor mounted on a plane; it is particularly useful for
detecting tree height and can cover large survey extensions, although the accuracy is much
lower than TLS [90]. Unmanned aerial vehicles (UAV) fly at significantly lower altitudes
of 50–300 m (ALS obtained point cloud data at a higher altitude of 500–3000 m); however,
UAV-LS components are relatively similar to ALS [91]. UAV-LS is more adaptable and
practical, has a higher point density, and is less expensive than ALS, although it covers less
area [92,93]. MLS is instead more similar to TLS, being based on ground surveys; however,
these systems allow the operator to move within the stand, while a typical TLS is fixed
while acquiring data [94]. Just as reflection from bodies of water is the main concern in SfM
photogrammetry, in both TLS and MLS, when applied to soil disturbance evaluation, the
main challenge is the correct segmentation of the point cloud between points belonging to
the soil and points belonging to other objects [95].

UAV-based photogrammetry has demonstrated the ability to detect soil displace-
ment after the passage of forest machinery, even if only in the case of complete canopy
removal after clearcutting, and not being therefore applicable in the framework of retention
forestry [96]. UAV-LS also showed itself to be particularly efficient in detecting rutting
on the strip roads after clearcutting with a flight altitude ranging from 60 to 120 m. The
authors of the publication stated that the results from the UAV-LS survey are equivalent to
manual measurement of rutting depth [97].

Both SfM photogrammetry and MLS showed satisfactory results in the measurement
of rutting and soil displacement [98,99]. Both techniques were used by Marra et al. [98] to
assess soil rutting after the passage of the same forestry-fitted farm tractor while skidding
and forwarding logs; for both extraction techniques there were no significant differences
between the results obtained via SfM and MLS. In this study, the SfM images were collected
via an RGB reflex camera mounted on a tripod 3 m in height with an angle of 45◦, and
ground control points were used to georeference the obtained images in a local reference
system; the 3D soil model was obtained starting from the input images by using a dedicated
software [98]. Concerning MLS, a 2D laser scanner combined with an inertial measurement
unit (IMU) was used to scan the trails with ground control points used to georeference the
images in a local reference system [98]. The operator walked slowly (about 30 cm s−1) while
holding and oscillating the instrument at chest height (1.40 m above ground) to capture
data in the plots. Walking in straight lines (spaced 0.5 m apart) throughout the whole plot
surface allowed for the coverage of the route inside the plot area [98].

The two techniques present relative advantages and disadvantages. Photogrammetry
can provide an almost twice as dense point cloud and a homogeneous distribution of
points, which is impossible for MLS, given that the density of points is at maximum when
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closer to the LiDAR sensor and decreases with increasing distance of the target object [100].
Additionally, while utilizing MLS, the data check process cannot be performed in the field
because a computer is required. With photogrammetry, it is instead possible to verify
on the camera screen that the acquired images are of high quality and that the GCPs are
correctly included, covering the studied plot as planned, easily and quickly identify and
correct errors during data collection. This eliminates the need to conduct any additional
field surveys in case of errors, as may occur when using MLS [98]. On the other hand,
data acquisition time with MLS is much more rapid than with photogrammetry. Eker
reported 30 min for an MLS survey on a 120 m unpaved forest road established in 2021
in eastern Turkey, whereas to perform the same task with photogrammetry, up to two
hours were needed [99]. MLS is a more complex technique than photogrammetry, and
therefore the skill of the operator is a crucial parameter; indeed, it is important to keep
the instrument in the same direction during scanning, to allow the SLAM (Simultaneous
localisation and mapping) algorithm to perform reliable positioning of the point cloud [99].
Another important aspect to be considered is that with MLS relying on SLAM, it is essential
to start and close the survey at the same point so as to facilitate the positioning of the point
cloud by SLAM [101].

It is important to highlight the fact that rutting assessment using MLS is generally
carried out after creating two Digital Terrain Models (DTM) by interpolating the point
cloud, one before and one after the passage of the machine, and then applying the map-
algebra to calculate the differences between the two DTMs. Eker [99] proposed instead
a different approach based on the M3C2 algorithm, already integrated as plugin in the
reference open-source software for point cloud elaboration, namely CloudCompare [102].
The advantage of M3C2 algorithm consists in its ability to determine changes in complex
topography directly on point clouds, without meshing or gridding [103].

6. Monitoring Social Sustainability of Forest Operations

The job of a forest operator is certainly among the most dangerous types of work
in the world [104,105], and therefore ensuring the safest possible working conditions for
forest workers is crucial to achieving full sustainability in forest operations. In comparison
to environmental and economic sustainability, the application of precision forestry for
the monitoring of operator safety has been less investigated in the recent literature. One
application of modern technology in operator safety is the utilisation of Location Sharing
(LS) devices. The use of LS technology could help in injury prevention and response while
also improving team situational awareness during logging operations. For example, LS
devices with help alert features would enable isolated people to warn co-workers or off-site
response agencies of a crisis. Automatic location updates may be useful in incapacitating
situations to let co-workers know when someone might need assistance. Geographic
coordinates are supplied in both situations to help with response operations. In order
to prevent injuries, automatic position updates combined with geofences could improve
worker awareness of their whereabouts in relation to equipment or hazardous regions [106].

LS systems can be based on GNSS-RF paired with smartphones, and these systems
are often used in the USA [107]. However, it is important to highlight that, as with
every precision forestry application, this system is a support tool but not a panacea for all
problems. Indeed, we have to continuously be aware that GNSS in the forest environment
can experience occlusion problems; for instance, in the study by Zimbelman and Keefe [107],
on average the full GNSS-RF network was connected only 32.6% of the time (range: 0% to
90.5%), and the mobile radios were disconnected from all other devices 18.2% of the time
(range: 0% to 44.5%). Therefore, such systems can help to monitor working operations, but
every forest operator, even if equipped with this system, should continue to maintain a
high level of attention while performing his/her tasks while also monitoring the situations
of his/her co-workers to prevent possible accidents and act quickly in the case of injuries.

It is worthwhile to also discuss some other beneficial effects of smart technologies
towards the social sustainability of logging. As previously mentioned, being a logger is
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still a dangerous and physically stressful job, and in many countries the attractiveness of
this job is decreasing, thus raising the issues of who will be the loggers in the future [108].
Extending the applicability of mechanised harvesting, which is able to also guarantee safer
and more comfortable working conditions in steeper terrain and in a wide variety of stands,
is a sure determinant to attract young people to a logging career [109]. However, modern
technology can also play a significant role, for instance in the application of augmented
reality in logger training. Thanks to this technology, non-expert loggers can learn how
to operate a specific type of machine safely and without running the risk of damaging it.
This method makes it possible to shorten learning timeframes, allow for training errors
that would be highly risky under real-world circumstances, and teach operators to become
comfortable with the equipment even under complicated conditions. This could also play a
positive role in increasing the willingness of young people to embark on the career of logger.

Safety monitoring of tree stability and cable tension is another sector in which smart
technology can make a strong contribution. Trees and their stumps are typically used as
anchoring materials in traditional cable-supported forest operations to withstand strong
lateral stresses [110]. These loads are distinguished by increased magnitude and dynamic
amplification effects, even when applied close to the stem base where the cross-section is
larger. As a result, stem fracture or overturning could cause an anchor to fail. In a study
carried out in northern Italy, authors used modern low-cost sensors generally used in tree
stability assessment to evaluate the resistance of individual Norway spruce in a forest
stand [111]. The findings suggested that tree failure is possible with tension forces close
to the ones usually recorded during cable yarding, thus highlighting the importance of a
proper monitoring effort not based solely on the dimension of the base of the tree selected
as possible anchor [111]. In the optics of the application of winch-assisted systems for
mechanised harvesting in steep terrain, monitoring cable tension is a fundamental issue in
the topic of operator safety. A recent study conducted in the USA, dealing with a clear-cut
performed in a 53-year-old second-growth forest composed of Douglas fir (Pseudotsuga
menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) via a
tracked Tigercat LS855E equipped with a directional felling head tethered with a “DC
Equipment Falcon Winch Assist” anchor machine, monitored the tension of the winch cable
via a load cell connected to a data logger measuring at a frequency of 100 Hz [112]. The
study revealed that the highest tension peak was detected when moving the harvesting
machinery downhill, even if the tensile force never exceeded the safety threshold [112]. The
application of this kind of sensor demonstrated its great suitability for monitoring tensile
force in winch-assisted logging, thus ensuring safe working conditions for loggers. A
similar approach with consistent results was applied to the monitoring of a skyline system
t several working sites in the Italian Alps, consisting of clear-cut or retention harvesting
interventions in coniferous plantations [113,114].

Accelerometer sensors can be used as well for monitoring machine tilt and its relation
to terrain slope, thus monitoring the working conditions in steep terrains when working
with mechanised systems and giving information to the operator when the machine is
to face different terrain conditions which can lead to accidents [115]. Wheel slippage can
also be monitored via incremental rotary encoders sensors as in the study by Schönauer
et al. [116], who detected a reduction of wheel slippage when applying winch-assisted
harvesting. It is worth highlighting that monitoring wheel slippage is fundamental not
only to the safety of the drivers, but also to reducing soil impacts, given that it is properly
slippage that causes the highest soil compaction in the skid trails or strip roads [78,117,118].

7. Conclusions

The precision forestry approach is a valuable tool to allow forest managers to achieve
sustainable forest management. With particular reference to the sustainability of forest
operations, modern sensors and technologies can be helpful at different levels, including
the monitoring of forest operations in terms of the three pillars of sustainability (economy,
environment, and society). In this review, we summarised the state of the art on the topic
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of the application of precision forestry approaches in monitoring forest operations. We
focused in particular on recent findings from the last five years (2019–2023).

We showed that CAN-bus and StanForD data obtained via modern forest machines can
be useful for the remote monitoring of working performance with an Industry (/Forestry)
4.0 approach. The same data can be efficiently used to develop soil trafficability maps and to
assess skid trails or strip road patterns established with a forest intervention. In the case of
small-scale forestry, similar data can be obtained via GNSS-RF (Global Navigation Satellite
Systems—Radio Frequency) or even smartwatch-based or smartphone-based monitoring
systems. Structure for Motion (SfM) photogrammetry and LiDAR are both valuable options
to monitor soil displacement and rutting related to the passage of forest machines. SfM
provides denser point clouds and a more user-friendly approach, while laser scanning can
be much faster but requires a more skilled operator and higher ability in data processing.
Concerning the social aspect of sustainability, the utilisation of location-sharing systems is
highly recommended to monitor the safety of forest crews while working. Additionally, the
application of tension monitoring through dedicated sensors is very important for ensuring
operator safety while working in cable logging.

It is essential to highlight that any precision forestry technology represents a tool to
support the forest managers and not a way to replace them. The harsh working conditions
and the complex environment in which forest operations take place make the presence of
skilled forest engineers and operators mandatory. The tools and approaches presented in
this review are therefore instruments to support the people working in the forest to enhance
performance, working conditions, and results.
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