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Abstract: The gum acacia Senegalia senegal (L.) Britton (Fabales: Fabaceae) is a drought‑tolerant plant
belonging to the genus Acacia of the Leguminosae family, possessing significant economic and eco‑
logical value. Despite its importance, there is a knowledge gap regarding the potential impact of
climate change on the distribution of S. senegal, crucial for the conservation of plant resources and
optimizing its use in introductory silviculture. In this study, we selected 23 environmental variables
and utilized the optimized maximum entropy (MaxEnt) model to analyze the key environmental
factors affecting the distribution of S. senegal worldwide and simulate the current and future distri‑
bution range of S. senegal in Pakistan under the SSP1‑2.6, SSP2‑4.5, SSP3‑7.0, and SSP5‑8.5 climate
change scenarios. The results highlight key environmental factors influencing the distribution of S.
senegal, including BIO3 (isothermally), BIO4 (coefficient of seasonal variation of temperature), BIO11
(mean temperature of the coldest season), and BIO12 (annual precipitation). Regionswith higher and
less fluctuating temperatures exhibit a higher potential for S. senegal distribution. Currently, suitable
habitats of S. senegal are concentrated in the southern region of Pakistan, covering provinces such as
Punjab, Sindh, and Balochistan, with highly suitable habitats accounting for 6.06% of the total area.
Under the current climatic conditions, this study identifies the spatial patterns of suitable habitats
and their concentration in specific regions. With climate change, a notable expansion of suitable habi‑
tats towards higher latitudes is observed, with the most significant expansion under the extremely
severe climate change scenario (SSP5‑8.5), reaching 223.45% of the current level. The results of this
study enhance our understanding of the dynamics of S. senegal distribution under climate change
and offer valuable insights into the long‑term introduction of S. senegal for afforestation and soil con‑
servation in Pakistan. This study provides theoretical support for the sustainable development of
the local ecosystem and socio‑economy, emphasizing the importance of proactive measures to adapt
to changing climatic conditions.

Keywords: MaxEnt model; climate change; species distribution; Senegalia senegal (L.) Britton;
Pakistan

1. Introduction
Approximately 1/4th of the world’s land area is affected by desertification, and the es‑

tablishment of protective forests is an important preventive and control measure adopted
by countries to address ecological problems and natural disasters, particularly desertifica‑
tion [1–3]. The gum acacia Senegalia senegal (L.) Britton (Fabales: Fabaceae), which grows
predominantly in tropical and subtropical arid zones, is an important multipurpose agro‑
forestry species in desert regions [4,5]. It boasts widespread economic applications with
a low‑input production cycle and the gum Arabic it yields can be used in foods, bever‑
ages, feed, pharmaceuticals, cosmetics, industrial products, and fuelwood [6,7]. Senegalia
senegal has demonstrated ecological value in addition to its economic versatility, and S.
senegal‑based agroforestry systems have been used for centuries in the Sahel, adapting to
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climate, topography, and geomorphological and anthropogenic changes [8]. Additionally,
S. senegal exhibits the capability to fix atmospheric nitrogen (N2), increasing the soil inor‑
ganic nitrogen content andmicrobial biomass, presenting a potential alternative to address
the scarcity of chemical fertilizers in the arid regions of Africa and counteract declining fer‑
tility resulting from shortened fallow periods [9–11]. Therefore, S. senegal plays a vital role
in advancing socioeconomic development, maintaining agro‑ecosystem stability, and fa‑
cilitating ecological restoration and construction in arid areas, making it an optimal choice
for protective forest species.

Species distribution models (SDMs) quantify a species’ ecological niche and project
it onto a spatially referenced model. SDMs have become advantageous tools for predict‑
ing the potential geographical distribution and habitat suitability of species and are widely
used across various disciplines [12–14]. Among SDMs, themaximumentropymodel (Max‑
Ent), a machine learning method, determines the ecological requirements of species based
on their distribution records and environmental factors [15,16]. Due to its broad applica‑
bility, objectivity, and high reliability, MaxEnt is extensively utilized in predicting species
habitat areas, including the Chinese fir Cunninghamia lanceolata (Lamb.) Hook (Pinales:
Cupressaceae) [12], the spiny‑bellied frog Quasipaa boulengeleri (Günther, 1889) (Anura:
Dicroglossidae) [14], the long tube lousewort Pedicularis longiflora (Rudolph) (Lamiales:
Orobanchaceae) [17], and others. Although MaxEnt modeling has been widely studied,
there are fewer projections of species distributions under the four carbon emission climate
scenarios (SSP1‑2.6, SSP2‑4.5, SSP3‑7.0, and SSP5‑8.5). Most studies utilize global climate
models (GCMs) from individual institutes, which do not accurately and comprehensively
represent changes in habitat areas under future climate change scenarios [18–20]. There‑
fore, studying the habitat change of S. senegal under different climatic conditions is essen‑
tial to enhance the success of plantation introduction.

The arid and semi‑arid land area of Pakistan, constituting 80% of the national terri‑
tory, has undergone severe degradation and desertification [21]. The introduction of S.
senegal for afforestation is effective in alleviating desertification. However, limited knowl‑
edge exists regarding the distribution of potentially suitable habitats for S. senegal, partic‑
ularly in the context of significant global climate change. Climate change exerts profound
impacts on the geographic distribution and population dynamics of species, potentially
hastening the loss of biodiversity [22–25]. For instance, Alabar et al. [26] forecasted the
distribution of eight tropical dry forest plant species and observed a southward shift in
their potential range. Guo Yanlong et al. [27] discovered that, under the most extreme
warming scenarios, 22 tree species in southern China may lose over 50% of their poten‑
tial distribution area. Tiago et al. [28] predicted that, due to climate change, the endemic
orchid species Prosthechea jauana (Carnevali & I. Ramírez) W.E.Higgins (Orchidales: Orchi‑
daceae) in Venezuela could lose up to 92% of its habitat by 2080. Therefore, investigating
the environmental variables and suitable habitats of S. senegal amidst climate change and
understanding the influence of environmental factors on its distribution can offer scientific
and theoretical support for planning S. senegal planting areas.

In this study, we utilized the MaxEnt model and ArcGIS 10.8, incorporating current
(1970–2000) climatic data and S. senegal distribution point data, to comprehensively ana‑
lyze globally suitable habitats for S. senegal and identify the key environmental factors in‑
fluencing its distribution. Additionally, we projected the potential distribution pattern of S.
senegal in Pakistan in the future using climate data for four SSP scenarios, each represent‑
ing different greenhouse gas emission intensities, across four future periods (2020–2040,
2040–2060, 2060–2080, and 2080–2100). In this study, we aim to elucidate the key envi‑
ronmental factors influencing the distribution of S. senegal worldwide, as well as the spa‑
tial pattern changes of S. senegal distribution in Pakistan under the backdrop of global
climate change. Our goal is to provide a reference for the conservation and rational uti‑
lization of S. senegal plant resources and contribute insights for long‑term afforestation
planning programs.
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2. Material and Methods
2.1. Occurrence Data

The occurrence data for S. senegalwere collected from theGlobal Biodiversity Informa‑
tion Facility (GBIF; http://www.gbif.org), the Chinese Virtual Herbarium database (CVH;
http://www.cvh.ac.cn), and the National Specimen Information Infrastructure (NSII;
http://www.nsii.org.cn/2017/home.php). A total of 2711 occurrence data points were col‑
lected. Direct use of sample information with accurate latitude and longitude was made,
while the coordinate information of sample points with place names but lacking coordi‑
nate information was completed via Google Earth. To prevent sampling bias from result‑
ing in overly dense local distribution points and overfitting the model, it was imperative
to meticulously screen and proofread the obtained coordinate point data using the R pack‑
age “ENMeval v2.0.0” to remove overfitting data. It was ensured that the spatial resolu‑
tion of the recorded occurrence matched that of the environmental variables. Ultimately,
1117 records of the global distribution of gum acacia trees were collected (Figure 1). As
shown in Figure 1, S. senegal is mainly distributed in Africa, with some distribution in In‑
dia in Asia. Its occurrence is predominantly in regions with tropical desert and tropical
grassland climates, being greatly influenced by temperature and precipitation.
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Figure 1. Global distribution status of S. senegal. (Abbreviations in the map follow those of the
Köppen–Geiger climate classification map [29]).

2.2. Environment Variables
We selected 23 environmental variables to model under the current (1970–2000) and

future (2020–2100) climate prediction scenarios, encompassing 19 bioclimatic variables
(BIO1–BIO19), elevation (Elev), soil available water content (AWC), topsoil salinity (TS),
and subsoil salinity (SS) (Table 1). The Harmonized World Soil Database (HWSD;
http://www.fao.org/soils‑portal/) provided AWC, TS, and SS, while the WorldClim2.1
database (http://www.worldclim.org/) provided the 19 bioclimatic variables and elevation
data at a spatial resolution of 2.5 Arc‑min. For all future scenarios, all four types of shared
social economy pathways (SSP1‑2.6, SSP2‑4.5, SSP3‑7.0, and SSP5‑8.5) were selected as en‑
vironmental data sources. Moreover, to mitigate climate uncertainty arising from a single
climate model, the average of future climate simulation data from four different institutes
(MIROC 6, BCC‑CSM2‑MR, CNRM‑CM 6‑1, and CanESM5) was employed for future cli‑
mate data [30].

http://www.gbif.org
http://www.cvh.ac.cn
http://www.nsii.org.cn/2017/home.php
http://www.fao.org/soils-portal/
http://www.worldclim.org/
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Table 1. Potential environmental factors affecting S. senegal distribution.

Number Variable Percent
Contribution

Permutation
Importance

1 Isothermality (BIO3) 30.5 8.1
2 Precipitation of driest month (BIO14) 12.7 0.3
3 Mean temperature of coldest quarter (BIO11) 10 33
4 Precipitation of coldest quarter (BIO19) 5.9 1.4
5 Annual mean temperature (BIO1) 5.5 0
6 Annual precipitation (BIO12) 5.3 22.4
7 Precipitation seasonality (BIO15) 4.6 3.3
8 Precipitation of wettest month (BIO13) 3.7 0
9 Available Water Content (AWC) 3.6 5.7
10 Min temperature of coldest month (BIO6) 3.2 10.5
11 Max temperature of warmest month (BIO5) 2.6 0
12 Mean temperature of warmest quarter (BIO10) 2.3 0.6
13 Mean temperature of wettest quarter (BIO8) 2 0.1
14 Mean diurnal range (BIO2) 1.9 0.1
15 Precipitation of wettest quarter (BIO16) 1.3 2.6
16 Temperature seasonality (BIO4) 1.1 6
17 Precipitation of warmest quarter (BIO18) 0.9 1.9
18 Mean temperature of driest quarter (BIO9) 0.7 0
19 Elevation (Elev) 0.6 1.1
20 Temperature annual range (BIO7) 0.5 1
21 Topsoil salinity (TS) 0.5 1.2
22 Precipitation of driest quarter (BIO17) 0.2 0.7
23 Subsoil salinity (SS) 0.2 0

Correlations between environmental variables, all of which are used for model pre‑
diction, can lead to overfitting. Therefore, environmental variables were first analyzed
for correlation using the R package “ENMTools v1.0.4” to obtain correlation coefficients
(Figure 2). Then, based on the observed contributions of all environmental factors during
the model training process (Table 1), environmental factors with correlation coefficients
|r| ≥ 0.8 and contribution rates < 1.0 were excluded from the modeling process to reduce
the risk of overfitting caused by collinearity. Following that, seven environmental vari‑
ables demonstrating statistical and biological significance were selected from the 23 envi‑
ronmental factors for inclusion in themodeling process: BIO3, BIO11, BIO12, BIO14, BIO15,
BIO19, and AWC.

2.3. Modeling Optimization
When simulating species distribution, MaxEnt is typically executed using default pa‑

rameters. However, this may result in overfitting and increased complexity, reducing re‑
sult accuracy. Hence, enhanced parameter optimization is imperative [31]. In this study,
the R package “ENMeval” was used to optimize the MaxEnt model [32]. Eight regulariza‑
tion multipliers (RM) ranging from 0.5 to 4 at intervals of 0.5 were systemically combined
with six feature combinations (FC): L, LQ, H, LQH, LQHP, and LQHPT. The Akaike infor‑
mation criterion correction (AICc) was used to evaluate the degree of fit and complexity
of the model. Typically, the combination with a delta.AICc = 0 is considered the optimal
choice [33,34]. In this study, when RM = 2 and FC = LQHPT, delta.AICc = 0, indicating this
optimal parameter combination was used for MaxEnt modeling.

2.4. MaxEnt Modeling and Evaluation
Occurrence records of S. senegal and seven environmental variables were imported

into MaxEnt 3.4.4. The optimal parameter combination (RM parameter set is 2, FC param‑
eter set is LQHPT)was adopted. Themaximumnumber of iterationswas set to 10,000. The
data output format was configured as logistic. Using cross‑validation to extract the test set,
all occurrence records are randomly divided into 10 equally sized subsets for iteration. For
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each iteration, one subset is selected as the validation set, and the remaining 9 subsets are
used as the training set. The MaxEnt model is trained on the training set and validated on
the corresponding validation set to obtain the model performance metrics. This process is
repeated ten times to obtain the average values, thus mitigating uncertainty.
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The accuracy assessment primarily relied on evaluating the area under the receiver
operating characteristic (ROC) curve of the MaxEnt model output. The area under the
curve (AUC) ranged from 0 to 1, with higher values indicating increased confidence in
predictions. AnAUCvalue <0.8 suggested low confidence, 0.8–0.9 indicated good accuracy
and 0.9–1.0 represented excellent accuracy [35]. In this study, theAUCvalues of the 10‑fold
cross‑validation range from 0.926 to 0.943, with a standard deviation of 0.005 and a mean
of 0.933, signifying excellent accuracy.

2.5. Classification of Suitable Regions and Spatial Pattern Changes
The suitability values for S. senegal, as predicted by the MaxEnt model, were contin‑

uous raster data ranging from 0 to 1, with higher values indicating greater suitability for
species growth. In the current classification of suitable areas, the Jenks natural break clas‑
sification method was used to categorize habitats into four groups: inappropriate, low‑
suitability, medium‑suitability, and highly suitable. This grouping strategy, utilized in
future distribution models, ensures consistent grouping with minimized errors, thereby
reducing the uncertainty associated with climate change [36].

Utilizing the current habitat as the standard, SDMtolbox in ArcGIS10.8 was used to
classify habitat changes into three categories: unchanged, expanding, and shrinking. This
classification was based on disparities between habitats under varying climatic conditions
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and their counterparts in the present environment. Changes in the geometric center posi‑
tion of habitats with medium and high suitability under different climatic conditions were
calculated. Comparative analyses were conducted on the overall trends in the core suit‑
able area of S. senegal across different periods to elucidate the influence of environmental
changes on its distribution over time.

3. Results
3.1. Assessment of Key Environment Variables

Based on the output of the MaxEnt model, along with regularization training gain,
test gain, contribution rate, and displacement importance from the knife‑cutting method,
this study identifies key environmental variables affecting the geographical distribution of
S. senegal (Figure 3, Table 1). Table 1 shows that BIO3, BIO14, and BIO11 were the three en‑
vironmental variables with the highest contribution rates, totaling 53.26%. BIO11, BIO12,
and BIO6 were the top three factors with the highest permutation importance, accounting
for 65.89%. As shown in Figure 3, the highest regularization training gains during univari‑
ate simulation were observed for BIO4 (1.1449), BIO3 (1.1403), and BIO6 (1.1102), whereas
the three variables with the highest test gains were BIO4 (1.1736), AWC (1.1696), and BIO3
(1.1577). This suggests that these variables contain crucial information. Notably, when
simulating nonspecific variables, the most significant reductions in regularization training
gain, test gain, and AUC values were evident for BIO12 and AWC, indicating that these
variables contain information that is not present in other variables. In summary, the dom‑
inant environmental variables influencing the distribution of S. senegal are BIO3 (isother‑
mality), BIO4 (temperature seasonality), BIO11 (mean temperature of coldest quarter), and
BIO12 (annual precipitation).
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3.2. Response Curve Analysis of Key Environmental Variables
The single‑factor response curve, derived from logistic regression analysis of key en‑

vironmental factors, elucidates the relationship between the occurrence probability of S.
senegal and environmental variables, offering insights into the impact of each dominant en‑
vironmental variable on suitable habitats. Instances where the probability of occurrence
exceeded 0.5 were considered conducive to plant growth. The probability of S. senegal
occurrence was minimal when BIO3 was below 40, gradually increasing and peaking at
BIO3 = 56.01, then decreasing with further BIO3 increments. BIO3 favored the growth of
S. senegal within the range of 52.5–71.8. (Figure 4a). The BIO4, BIO11, and BIO12 trends
were similar to those of BIO3, which showed an increasing‑to‑decreasing pattern. Opti‑
mal peaks for BIO4, BIO11, and BIO12 were 291.1, 25.19 ◦C, and 1014.7 mm, respectively.
Occurrence probabilities above 0.5 were observed when BIO4 ranged from 115.9–416.31,
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BIO11 from 18.2–35.8 ◦C, and BIO12 from 129.88–1263.6 mm, favoring S. senegal growth
(Figure 4).

Forests 2024, 15, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 3. Evaluation of environmental factors using the jackknife method (a–c). 

3.2. Response Curve Analysis of Key Environmental Variables 

The single-factor response curve, derived from logistic regression analysis of key en-

vironmental factors, elucidates the relationship between the occurrence probability of S. 

senegal and environmental variables, offering insights into the impact of each dominant 

environmental variable on suitable habitats. Instances where the probability of occurrence 

exceeded 0.5 were considered conducive to plant growth. The probability of S. senegal 

occurrence was minimal when BIO3 was below 40, gradually increasing and peaking at BIO3 

= 56.01, then decreasing with further BIO3 increments. BIO3 favored the growth of S. senegal 

within the range of 52.5–71.8. (Figure 4a). The BIO4, BIO11, and BIO12 trends were similar to 

those of BIO3, which showed an increasing-to-decreasing pattern. Optimal peaks for BIO4, 

BIO11, and BIO12 were 291.1, 25.19 °C, and 1014.7 mm, respectively. Occurrence probabilities 

above 0.5 were observed when BIO4 ranged from 115.9–416.31, BIO11 from 18.2–35.8 °C, and 

BIO12 from 129.88–1263.6 mm, favoring S. senegal growth (Figure 4).  

 

Figure 4. The relationship between potentially suitable areas and single factor response variables. 

(a) BIO3 (Isothermality); (b) BIO4 (Temperature seasonality); (c) BIO11 (Mean temperature of cold-

est quarter); (d) BIO12 (Annual precipitation).  

Figure 4. The relationship between potentially suitable areas and single factor response variables.
(a) BIO3 (Isothermality); (b) BIO4 (Temperature seasonality); (c) BIO11 (Mean temperature of coldest
quarter); (d) BIO12 (Annual precipitation).

3.3. Potentially Suitable Habitats under Current Climatic Conditions
The suitable distribution of S. senegalworldwide is shown in Figure 5. Among 1117 oc‑

currence records of S. senegal, only 1.62%were found in unsuitable habitats. Themodel sim‑
ulation of potentially suitable habitats broadly aligns with the occurrence records. These
suitable habitats are predominantly concentrated in the tropics and subtropics, encom‑
passing an area of 3.63 × 107 km2. Africa exhibits the broadest distribution, harboring
the largest range of highly suitable habitats. Additionally, potentially suitable habitats are
identified in South America, Oceania, and Southern Asia, demonstrating areas of
notable suitability.
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Suitable habitats for S. senegal also exist in the southern coastal areas of Pakistan, a
country in Southern Asia. Highly suitable areas are primarily situated in the significant
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cities of Karachi and Tharparkar in the Sind Provinces, covering an area of 53,300 km2,
accounting for 6.06% of Pakistan’s total area. Medium‑suitable areas include the east‑
ern regions of the Gwadar District in Balochistan Province, as well as the southern re‑
gions of Sindh Province, covering an area of 70,300 km2, which accounts for 7.99% of
the total area of Pakistan. Areas of low suitability cover 97,000 km2 or 11.02% of Pak‑
istan’s total area, mainly located in the Sind Province, Bahawalpur and Rahimyar Khan
Districts of Punjab Province, and Makran Division, Awaran, and Khuzdar Districts of the
Balochistan Province.

3.4. Potentially Suitable Habitats in Pakistan under Different Future Climate Scenarios
The habitats suitable for S. senegal under various climatic scenarios for the next four

periods (2020s–2040s, 2040s–2060s, 2060s–2080s, and 2080s–2100s) are shown in Figure 6.
Medium and highly suitable habitats continue to concentrate in the southern coastal ar‑
eas of Pakistan, demonstrating an overall expanding trend, whereas low‑suitable habitats
experience significant expansion from the southern coasts northward into the Islamabad
Capital Territory.
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figure uses the 2030s to represent the 2020–2040s, 2050s to represent the 2040–2060s, 2070s for the
2060–2080s, and the 2090s to represent the 2080–2100s. Similarly, thereafter).

In the SSP1‑2.6 scenario, the total suitable habitat for S. senegal experiences limited
variability, ranging from 112.97%–125.37% of the current suitable distribution area, indi‑
cating an overall expanding trend. A reduction in total suitable area is observed only in
the 2070s compared to the preceding period (2050s). However, all subsequent four peri‑
ods of medium‑suitability habitats show a decrease compared to the current one, with a
maximum reduction of 21.75%.

In the SSP2‑4.5 scenario, the total suitable habitat gradually expands over time to
105.77% of its current size by the 2030s and 140.79% by the 2090s. The middle‑suitable
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habitat demonstrates relative stability, exhibiting a trend of initial contraction followed by
expansion, with an expected reach of 102.00% by the 2090s.

In the SSP3‑7.0 scenario, the total suitable habitat contracts to 86.16% of its current size
in the 2030s and then gradually increases, with a significant expansion observed in 2090,
reaching 151.56% of its current size. Themedium‑suitability habitat showed an expansion–
contraction–expansion trend. The highly suitable habitat experiences a notable contraction
in the 2030s to 63.94% of the current level, followed by gradual expansion.

In SSP5‑8.5, a substantial increase in the total suitable habitat was observed, expand‑
ing to 118.55% of the current size in the 2030s, 130.16% in the 2050s, 161.58% in the 2070s,
and nearly doubling to 195.60% of the current size by the 2090s. No significant changes
were observed in the medium‑suitable areas. The most significant change occurs in the
highly suitable habitat, expanding to 223.45% of its current size by the 2090s.

3.5. Spatial Pattern Changes of Potential Habitat Regions in Pakistan
With increasing climatic severity (SSP1‑2.6 to SSP5‑8.5) and the passage of time, the

medium and high habitats of S. senegal continued to expand slowly northward, reaching as
far as the Bahawalpur District in Punjab Province. The shrinkage of suitable areas is infre‑
quent and mainly occurs in the central part of the Gwadar District in Balochistan Province.
The stable area, encompassing the eastern Gwadar District, southern Karat District, and
most regions of Sindh Province, remained the largest in proportion and exhibited minimal
change (112,200 km2 to 127,400 km2) (Figure 7).
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The geometric center point of the potentially suitable distribution area (distribution
center) of S. senegal tended to migrate northward in different scenarios and at different
times (Figure 8). In the SSP2‑4.5 scenario, the distribution center migrated 56.27 km to the
northeast in the 2050s, 82.79 km to the northeast in the 2070s, and 52.61 km to the north‑
west in the 2090s. In the SSP5‑8.5 scenario, the migration of the distribution center is the
most significant, especially in the 2050s, with a migration of 208.17 km to the northeast
compared with the current. In the current climate scenario, the distribution center is situ‑
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ated in the Khuzdar District. By the 2090s, in each climate scenario, the distribution center
has migrated to the Dadu and Qambar Districts near the Indus River basin. At different
time periods, the magnitudes of four key environmental factors at the distribution center
also change (Table 2). Compared to the present, in the 2090s, BIO3 and BIO12 both exhibit
a significant decrease, while BIO4 and BIO11 show a significant increase.
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Table 2. Changes in key environmental factors at the distribution center under future climate
conditions.

Environmental Variables Climate Scenario Current 2050s 2070s 2090s

BIO3

SSP1‑2.6 48.65 45.14 50.44 44.51
SSP2‑4.5 48.65 43.19 42.65 39.62
SSP3‑7.0 48.65 43.48 43.59 39.29
SSP5‑8.5 48.65 41.43 38.48 37.08

BIO4

SSP1‑2.6 550.62 626.35 563.49 744.97
SSP2‑4.5 550.62 653.49 744.72 768.59
SSP3‑7.0 550.62 642.31 704.32 737.19
SSP5‑8.5 550.62 743.82 753.74 756.59

BIO11/◦C

SSP1‑2.6 16.81 15.46 21.31 19.30
SSP2‑4.5 16.81 17.98 19.79 20.07
SSP3‑7.0 16.81 15.52 21.24 21.33
SSP5‑8.5 16.81 19.55 21.60 22.83

BIO12/mm

SSP1‑2.6 424.00 507.50 245.25 145.25
SSP2‑4.5 424.00 285.75 145.25 129.00
SSP3‑7.0 424.00 454.75 165.25 129.00
SSP5‑8.5 424.00 121.75 132.75 122.25

4. Discussion
4.1. Effects of Environmental Variables on the Distribution of S. senegal

The geographical distribution of plants is mainly affected by climate [37], with hy‑
drothermal conditions playing a dominant role in the distribution pattern of plants [38].
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The knife‑cut method, employed to derive training gain, contribution, and single‑factor re‑
sponse curves, elucidates crucial environmental factors affecting species distribution. Wa‑
heed et al. [39] identified BIO1, BIO3, BIO8, and BIO12 as key bioclimatic variables influ‑
encing the growth of the Bengal quince Aegle marmelos (L.) Corrêa (Sapindales: Rutaceae)
in Pakistan. Similarly, Khan et al. [40] demonstrated the significance of BIO3, BIO11, and
BIO14 in determining the occurrence of the chilghoza pine Pinus gerardianaWall. ex D. Don
(Pinales: Pinaceae) in South Asia (Afghanistan, Pakistan, and India). Bhandari et al. [41]
highlighted BIO4, BIO7, BIO12, and BIO15 as major climatic factors influencing the distri‑
bution of the tree rhododendron Rhododendron arboreum Sm. (Ericales: Ericaceae) in the
central Himalayas. In this study, the most significant environmental factors affecting S.
senegal distribution were identified as BIO3, BIO4, BIO11, and BIO12. Temperature fac‑
tors (BIO3, BIO4, and BIO11) determine species adaptations and affect plant germination,
growth, and development [42]. For example, BIO3, indicative of temperature change mag‑
nitude, is related to plant temperature sensitivity and cumulative temperature effective‑
ness [43]. Moisture factors (BIO12) play a key role in plant growth and water balance,
directly influencing growth stability [42,44,45].

The use of environmental response curves facilitates the understanding of the rela‑
tionship between species distribution probability and climatic variables. This study reveals
that the distribution potential of S. senegal is higher in areaswith higher and less fluctuating
temperatures within a given range (Figure 4a–c). Precipitation also influences the distri‑
bution potential of S. senegal, with a higher probability of occurrence in areas with lower
annual rainfall and a lower probability of occurrence in areas with higher annual rainfall
(Figure 4d). Previous studies, including the work by Raddad et al. [46], have shown that
the natural distribution area of S. senegal is primarily on stabilized sand dunes with an an‑
nual rainfall of approximately 280 mm or on sandy soils within the 280–500 mm isopach
lines. Diatta et al. [4] reported that S. senegal usually grows in arid areas with low soil fertil‑
ity and rainfall ranging from 200–800mm. The results from this study further demonstrate
that a suitable habitat for S. senegal is minimally affected by soil physicochemical proper‑
ties, exhibits low soil fertility requirements, and has a high growth potential with rainfall
between 129.88 and 1263.6 mm. In summary, our research findings regarding the suitable
habitat range for S. senegal are similar to but not entirely consistent with other studies,
which may be attributed to the multifaceted nature of plant survival influenced by various
environmental factors [47–49]. While the response curve of a single factor can reflect the
overall trend of its impact on plant survival, deriving thresholds from it as the suitable
range for plants with regard to that factor is inaccurate. Additionally, we considered bio‑
climatic variables, topography, and soil factors in assessing the distribution of S. senegal.
However, environmental factors influencing plant distribution may extend beyond these,
and future research could incorporate additional environmental variables for modeling to
achieve more accurate estimates of species potential distribution.

4.2. Changes in Suitable Habitat for S. senegal in Pakistan
Utilizing the MaxEnt model with optimized parameters, this study identified suit‑

able distribution areas for S. senegal in the Sindh, Balochistan, and Punjab Provinces of
Pakistan under current climatic conditions. Climate change can significantly impact the
range of species, prompting migration to higher latitudes or altitudes [50,51]. Future pro‑
jections, as indicated by increased precipitation intensity in the Northern Hemisphere’s
middle and high latitudes, alongside higher temperatures and increased CO2 concentra‑
tions [52], suggest a potential adaptation of species to these changing conditions. The re‑
sults of this study show that the range of S. senegal in Pakistan under the present climatic
conditions was between 24◦ N and 30◦ N (Figure 6). However, under the four future cli‑
mate change scenarios, the range of S. senegal will continue to expand to higher latitudes,
potentially reaching a maximum range of 24–34◦ N (Figure 7). Similar to our study find‑
ings, Ashraf et al. [53] found that in Pakistan, the habitat of the Indian olive tree Olea fer‑
ruginea (syn. Olea europaea subsp. cuspidata) (Wall. & G.Don) Cif. (Lamiales: Oleaceae) in
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high‑altitude and high‑latitude areas will increase under future climate change scenarios.
Ali et al. [54] showed that the west Himalayan fir Abies pindrow (Royle ex D.Don) Royle
(Pinales: Pinaceae) in Pakistan migrate to higher latitudes owing to global warming and
climate change. The economically important crop P. gerardiana Wall. in South Asia also
shows a trend of northward migration [40]. In addition, species in various regions around
the world are also following their suitable climatic conditions. For example, in Africa, the
endemic rose Rosa arabica (Crép. ex Boiss.) Déségl. (Rosales: Rosaceae) in Egypt and the
African bamboo Oxytenanthera abyssinica (A.Rich.) Munro (Poales: Poaceae) in Ethiopia
are both migrating to higher altitude and higher latitude areas under two future climate
change scenarios [55,56]. In Europe, the ecological niche of the false acacia Robinia pseu‑
doacacia L. (Fabales: Fabaceae) tends to shift northeastward with climate change [57]. In
the United States of America, the potential distribution areas of three major invasive plant
specieswill also expand northward in the future [58]. These research findings indicate that,
against the backdrop of global warming, plants in various regions of the Northern Hemi‑
sphere are showing a trend of migrating towards higher latitudes and altitudes. However,
the adaptive capacity of different species to extreme climate change differs, leading to sig‑
nificant differences in their habitat ranges under distinct climate change scenarios [39,59].
Qazi et al. [60] showed that compared to SSP2‑4.5, the areas of suitable zones of the shrub
Buxus papillosaC.K.Schneid. (Euphorbiales: Buxaceae) and the Indian gentianGentiana kur‑
roo Royle (Gentianales: Gentianaceae) decreased in Pakistan under the SSP5‑8.5 scenario
(2070s), whereas the area of suitable zones of the shrub Rydingia limbata (Benth.) Scheen
& V.A.Albert (Lamiales: Lamiaceae) increased. Gilani et al. [61] showed that compared to
RCP4.5, the areas of the habitable zones of the Himalayan pine Pinus wallichianaA. B. Jacks
(Pinales: Pinaceae) and the holm oak Quercus ilex L. (Fagales: Fagaceae) decreased in the
RCP8.5 scenario (2050s), whileA. pindrow, and otherHimalayan trees, the birch Betula utilis
D.Don (Fagales: Betulaceae), the cedar Cedrus deodara (Roxb.) G.Don (Pinales: Pinaceae),
and the spruce Picea smithiana (Wall.) Boiss. (Pinales: Pinaceae) showed an increase in
the areas of their suitable habitats. In this study, compared with SSP1‑2.6, SSP2‑4.5, and
SSP4‑7.0, the area of the S. senegal suitable zone increased significantly under the SSP5‑8.5
scenario (the 2090s), with the most significant increase in the area of the low‑suitability
zone, suggesting that S. senegal continues to have a high level of resilience, even under
extreme climate change conditions.

In addition, the results of the distribution center shift in the suitable area revealed that
S. senegal is gradually shifting to higher latitudes in Pakistan, driven by different climatic
factors (Figure 8). Specifically, the migration path of the distribution centers of suitable
areas for S. senegal generally migrated towards smaller BIO3 and BIO12 and larger BIO4
and BIO11(Table 2), and the reason for this result may be related to the physiological char‑
acteristics of S. senegal. Gaafar et al. [62] demonstrated that S. senegal can utilize a well‑
developed root system to improve drought tolerance in a composite agroforestry system.
Githae et al. [63] showed that S. senegal has a strong nitrogen fixation capacity that can
enhance its adaptability to arid and infertile soil environments. S. senegal exhibits a rare
adaptive response to water and drought stress, ensuring that it produces high biomass
in extremely dry environments [62,64]. In summary, S. senegal can respond well to dras‑
tic climate change in the future, and the extension of cultivation through S. senegal may
help Pakistan alleviate the environmental stresses caused by extreme climate change to
some extent.

4.3. Recommendations for the Introduction of S. senegal for Afforestation in Pakistan
Senegalia senegalholds economic and ecological value anddemonstrates robust growth

under hot, dry, and infertile soil conditions. It is well‑suited for extensive cultivation
in Pakistan, especially in the southern coastal areas. Pakistan faces severe challenges re‑
lated to land degradation and desertification, particularly in the irrigated areas of Punjab,
Sindh, and Balochistan [65]. Poor irrigation and drainage, coupled with low local rainfall
and higher evapotranspiration than annual precipitation, lead to salt accumulation in the
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soil profile, contributing to low soil fertility, reduced crop yields, and the loss of biodiver‑
sity [66]. In addition, sandy areas are predominantly located in regions with low develop‑
ment potential and moving sand dunes pose a significant threat to local agricultural facili‑
ties and settlements [65,67]. The results of this study indicate that S. senegal is less affected
by soil fertility, is suitable for survival in high‑temperature and low‑rainfall environments,
and has a high potential for survival in Sind Province, Balochistan Province, and Punjab
(Figure 5). Moreover, suitable habitats rarely shrink under different climate change scenar‑
ios, tending to expand evenunder extreme climate change conditions (Figure 7). Therefore,
we propose implementing S. senegal afforestation in the three southern provinces of Pak‑
istan (Sindh, Balochistan, and Punjab), especially around the Cholistan, Thal Doab, Thar,
and Kharan Desert patches, which will be crucial for protecting the security of agricultural
production and promoting socioeconomic development.

5. Conclusions
In this study, the optimized MaxEnt model was used to predict potentially suitable

habitats for S. senegal under four climate change scenarios ranging from positive to ex‑
tremely severe. This predictive modeling offers a theoretical foundation for the judicious
utilization and sustainable scientific management of S. senegal plant resources. Under cur‑
rent climatic conditions, suitable habitats are predominantly concentrated in the southern
region of Pakistan, spanning the provinces of Punjab, Sindh, and Balochistan. Hydrother‑
mal conditions, represented by BIO3, BIO4, BIO11, and BIO12, emerge as pivotal factors
influencing the suitability of habitats for S. senegal. Notably, under various future climate
change scenarios, habitats conducive to S. senegal rarely shrink, with an overarching ten‑
dency to expand towards higher latitudes, particularly under extremely severe climate
change scenarios. Therefore, it is recommended to implement afforestation initiatives for S.
senegal in the southern coastal areas of Pakistan, particularly in Gwadar, Lasbela, Karachi,
Thatta, and Tharparkar. This strategic approach aims to enhance the success rate of S.
senegal introductions and provide a reference for Pakistan’s afforestation efforts for sand
stabilization, land protection, and ecological sustainability.
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