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Abstract: This paper investigated the integration of LiDAR technology in cut-to-length (CTL) har-
vesting machines to enhance tree selection accuracy and efficiency. In the evolution of CTL forest
machines towards improving operational efficiency and operator conditions, challenges persist in
manual tree selection during thinning operations, especially under unmarked conditions and complex
environments. These can be improved due to advances in technology. We studied the potential
of LiDAR systems in assisting harvester operators, aiming to mitigate workload, reduce decision
errors, and optimize the harvesting workflow. We used both synthetic and real-world 3D point cloud
data sets for tree stem defect analysis. The former was crafted using a 3D modelling engine, while
the latter originated from forest observations using 3D LiDAR on a CTL harvester. Both data sets
contained instances of tree stem defects that should be detected. We demonstrated the potential
of LiDAR technology: The analysis of synthetic data yielded a Root Mean Square Error (RMSE) of
0.00229 meters (m) and an RMSE percentage of 0.77%, demonstrating high detection accuracy. The
real-world data also showed high accuracy, with an RMSE of 0.000767 m and an RMSE percentage of
1.39%. Given these results, we recommend using on-board LiDAR sensor technologies for collecting
and analyzing data on tree/forest quality in real-time. This will help overcome existing barriers and
drive forest operations toward enhanced efficiency and sustainability.

Keywords: forest operations; thinning; mobile LiDAR; point cloud; tree defects; open-source tools

1. Introduction
1.1. Study Background and Aims

Cut-to-length (CTL) harvesting machines have revolutionized forest harvesting op-
erations, significantly boosting both efficiency and the quality of the yield. In modern
mechanized timber harvesting, enhancing operator working conditions, incorporating
guidance systems for support, and introducing task automation are key focuses. These ad-
vances have notably eased the daily workload for harvester operators, benefiting both the
workers and the forest industries. The design of these machines prioritizes the ergonomics
and well-being of the operator, ensuring safe and controlled operation [1]. For the forest
industries, using these machines leads to marked improvements in both productivity and
the quality of the wood harvested. However, as stated by Picchi et al. [2] opportunities
to further improve the efficiency and output quality of these machines remain, promising
even greater advancements in CTL harvesting operations. In forest thinning, selecting
which trees to remove is traditionally a manual task. This selection is either performed
by forest owners marking trees for felling or requires manual input from the CTL har-
vester operator [3], relying on their experience and judgment for critical decision-making.
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Kärhä et al. [4] investigated manual tree stem bucking practices within Finnish conifer-
ous forests, with a focus on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris).
Their study revealed inefficiencies in log utilization during thinning operations, primarily
attributed to manual bucking practices leading to suboptimal log lengths and volumes.
Manual bucking traditionally involves human operators manually determining cutting
points along a tree stem to produce logs of desired dimensions. While modern harvesting
machinery often incorporates optimizers to assist with bucking decisions, manual inter-
vention remains necessary in certain scenarios, resulting in varying degrees of automation
across forest harvesting operations.

In the context of our study, manual bucking entails human operators primarily respon-
sible for log length and volume decisions, with limited automation assistance. Building
on the findings and the recommendation of Kärhä et al. [4], our study underscores the
drawbacks of manual bucking, highlighting instances of suboptimal log dimensions. To
mitigate this issue, a transition towards automated or semi-automated bucking systems
is recommended. These advanced systems leverage technologies such as mobile laser
scanning (MLS) and machine vision to enhance log quality classification and optimize
bucking decisions. Embracing automation and integrating cutting-edge technologies into
forest operations can yield improvements in efficiency, log quality classification, resource
utilization, and overall productivity.

Additionally, Kärhä et al. [4] pointed out the selection challenges CTL harvester opera-
tors face, particularly without clear markings, which necessitates heightened operator focus
and quick decision-making, potentially increasing error rates and stress under prolonged
operation. Thinning aims to remove lower-quality trees, letting the healthier ones thrive
and increase in value [5]. However, this goal is difficult to achieve due to the human
element in decision-making. Identifying inferior trees is challenging due to limited visi-
bility and difficulties in fully observing distant tree stems. There is a growing need for an
assistive system to streamline tasks and enable precise tree selection for the operator and
the industry. The emergence and availability of new sensor technologies like LiDAR offer
potential solutions to these challenges [2].

We have seen advancements in utilizing LiDAR for extracting log segments and
assessing their quality or volume. Traditionally, this process involved manual methods
or less precise technologies. LiDAR offers a more efficient and accurate alternative. By
employing LiDAR, we can precisely measure log dimensions and assess quality without
the need for physical intervention or invasive measurements.

Leveraging LiDAR technology for log segment extraction and quality assessment
offers practicality and ergonomic benefits. LiDAR enables rapid data collection over
large areas, facilitating comprehensive assessments in shorter timeframes. Additionally, it
reduces the need for manual labor and physical measurements, minimizing operational
costs and labor-intensive processes.

Moreover, the non-invasive characteristic of LiDAR preserves forest ecosystems’ in-
tegrity and reduces disturbances during data collection. Utilizing LiDAR for log segment
extraction and quality assessment improves efficiency, accuracy, and sustainability in
forest operations.

This paper explored the application of LiDAR technology in CTL harvesting machines
and discussed the insights gained from this approach. The study aimed to answer the
following research questions:

(1) How to construct and test the functioning of the process for the tree stem identification
based on Point Clouds? This means we want to correctly estimate the number of tree
stems and their defects based on the data from the 3D module.

(2) What are the main challenges and advantages when detecting tree stems and their
defects with MLS mounted on the harvester in real-time?
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1.2. Literature Review on the State of the Art in Forest Operations

In the forest sector, the LiDAR technology for improved tree selection and harvesting
efficiency presents a dynamic and evolving field. Contrasting the static and meticulously
planned urban environments, forests pose unique challenges due to their diverse terrains,
varied tree species, and unpredictable arrangements influenced by natural factors [6]. This
complexity necessitates innovative approaches to forest management and harvesting opera-
tions. Previous studies, such as Kärhä et al. [7], have delved into the economic implications
and productivity challenges posed by root rot (Heterobasidion spp.) in trees like Norway
spruce, highlighting the need for advanced monitoring and detection technologies like
sonic tomography. Meanwhile, Miettinen et al. [8] introduced a measurement concept
for forest harvester heads, emphasizing the potential of non-contact measurement tech-
nologies, including 3D laser scanning and machine vision, to enhance log quality and
harvesting efficiency.

Further advancements were noted by Hyyti and Visala [9], where the deployment of
2D Sick scanners on a moving all-terrain vehicle demonstrated the capability to model tree
stems and ground despite the challenges of motion-induced noise. Similarly, Li and Thiel’s
exploration [10] of MLS’s impact on the tree stem attribute measurements underscored
the technology’s role in reducing manual labour and improving DBH estimates, thereby
supporting the development of autonomous forestry equipment.

The utilization of MLS systems, as discussed in [11–13], showcased the high accuracy
achievable in stem mapping and tree detection, emphasizing MLS’s utility in generating
precise 3D data for forest composition analysis. However, challenges in automated and
accurate tree segmentation from dense point clouds were acknowledged, necessitating
sophisticated segmentation methods. Morgan et al. [14] investigated handheld LiDAR and
Structure from Motion (SfM) photogrammetry for tree damage assessment, comparing
these techniques with conventional field methods. While traditional approaches identified
more damaged stems, the study attributed lower damage counts from LiDAR and SfM to
restricted point cloud reconstructions of upper stems. Panagiotidis et al. [15] explored the
feasibility of using a low-cost handheld camera for stem accuracy assessment by comparing
data from two-point clouds: one from a digital camera and the other from a FARO® Fo-
cus3D S120 laser scanner (FARO®, Lake Mary, USA). Euclidean distances were calculated
for corresponding points, revealing that points with errors less than 11 cm were mainly
located on the ground. Regression analysis demonstrated a significant relationship be-
tween height above ground and error, with higher points on the stems exhibiting increased
error. Nonetheless, these technologies showed promise for lower stem damage assessment,
offering a practical supplement to traditional forest inventory methods. Hyyppä et al. [16]
demonstrated the effectiveness of high-resolution airborne laser scanning for forest inven-
tory, using a handheld MLS for reference data. Yun et al. [17] evaluated laser scanning
for tree leaf area measurement using detailed tree models, finding improved accuracy
with multiple terrestrial scans and further enhancements with aerial scans. Lu et al. [18]
integrated UAV-LiDAR and Backpack-LiDAR (MLS) data, applying commercial software
for point cloud preprocessing. de Paula Pires et al. [19] employed a car-mounted MLS
to automate field-reference data collection for forest inventories, concentrating on the
detection of individual trees and the estimation of their stem attributes near forest roads.
This approach showed considerable promise for conducting forest inventories on a large
scale, providing an effective method to improve models used in remote sensing-based
forest inventories and to facilitate the advancement of precision forestry. Kukko et al. [20]
employed MLS and GNSS/INS technologies, using graph optimization to refine data tra-
jectories, thus efficiently mapping forests, and determining tree parameters. Gao et al. [21]
leveraged near-field LiDAR data from UAV and ground backpack scanners to determine the
structural parameters of trees in subtropical planted forests. The findings affirm near-field
LiDAR’s effectiveness in extracting tree structural details. Recent innovations, such as the
“ForestScanner” app developed by the Hokkaido Research Center [22], represent a leap
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towards simplifying LiDAR scanning in the forestry sector through user-friendly mobile
applications, albeit with limitations in scanning range and manual operation.

The introduction of the Thinning Density Assistant (TDA) by Ponsse Plc [23] marks a
significant step towards integrating LiDAR-based perception systems in CTL harvesters,
aiming to optimize thinning operations based on silvicultural standards. This aligns with
observations from [24,25] on the variability in adherence to thinning standards within
Finnish forests, highlighting the potential of technology to align forestry practices with
sustainability goals. As stated by Finnish Forest Industries [26], Kärhä et al. [27] and
Korhonen et al. [28], the integration of advanced sensor technologies and automation
in forestry operations represents a pivotal advancement towards sustainability. These
technologies enhance efficiency by streamlining operations and minimizing resource waste,
while also providing accurate data for informed decision-making. Real-time monitoring
of environmental parameters enables proactive intervention to maintain ecosystem health
and biodiversity. By reducing the environmental impact of harvesting activities and
facilitating compliance with regulations, these advancements contribute to sustainable
forest management. Moreover, they aid in adapting forestry practices to mitigate the effects
of climate change. Overall, the integration of advanced technologies in forestry holds
promise for promoting ecological balance and meeting human needs for forest products in
a sustainable manner.

The current state of automation in the forestry sector, as noted, is nascent with sub-
stantial room for growth. The partial automation of forest machinery, as explored in
research [29,30], suggests a promising direction for reducing operator workload and en-
hancing operational efficiency. This gradual integration of automation, coupled with the
strategic use of technologies like LiDAR, as highlighted in [31], has the potential to revolu-
tionize forest management by minimizing waste, optimizing resource use, and improving
financial outcomes for the forest industries.

In summary, the State of the Art reveals a concerted move towards integrating ad-
vanced sensor technologies and automation in forest operations. This trend not only
addresses the inherent challenges posed by the complex forest environment but also opens
avenues for significant improvements in efficiency, accuracy, and sustainability in forestry
practices. The current study builds upon this foundation, aiming to further refine and
expand the application of LiDAR technology to meet the nuanced demands of modern
forest operations, setting a new benchmark for precision and operator assistance in the field.

2. Materials and Methods
2.1. Mobile LiDAR Technology Used
2.1.1. LiDAR Functioning

MLS, a variant of LiDAR technology, has gained recognition for forest scanning
applications, offering a dynamic method to capture environmental data [30]. This technol-
ogy, characterized by its infrared laser source, scanner mounted on moving vehicles, and
GPS/IMU integration for real-time location and orientation data, operates on the principle
of emitting laser pulses and measuring their return time to calculate distances. MLS’s
ability to rapidly collect data over large areas makes it particularly suitable for extensive
forest landscapes [11]. However, the selection of the right LiDAR technology depends on
project-specific needs including area scale, required precision, budgetary constraints, and
time availability. The challenges of using MLS in forests include dealing with complex
environments that affect signal quality, handling large data volumes, maintaining accuracy
in adverse conditions, detecting minor or internal defects, integrating with harvesting
equipment, and the costs and maintenance of advanced systems. Despite these challenges,
the advantages of MLS, such as enhancing tree inventory management, timber value as-
sessment, harvesting planning, safety, environmental impact assessment, and providing
data for sustainable management, demonstrate its potential to improve efficiency, accuracy,
and sustainability in forest operations [11–13,22,29,30].
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In summary, while the challenges mainly revolve around technical, environmental,
and cost factors, the advantages of using MLS for tree stem detection lie in improved
efficiency, accuracy, and sustainability of forest operations. The MLS is considered in the
present research.

2.1.2. Scanning Resolution

The LiDAR measurement accuracy in a forest is contingent on several factors, includ-
ing the distance at which measurements are taken, the number of laser measurements
performed, the characteristics of the undergrowth, the tree parameters (shape, height,
diameter at breast height, etc.), the type and the capability of the used LiDAR sensor as well
as the number and height of branches. Figure 1 illustrates the potential setup of LiDAR on
a CTL harvester, highlighting the placement of the sensor, the proximity to the tree, and the
LiDAR’s field of view. In detail:

1. With a 45◦ vertical field of view, the LiDAR’s laser beams may not cover the entire
tree at a certain distance, though they are likely to hit the tree if it is positioned
further away.

2. A 90◦ vertical field of view ensures that the laser beams encompass the whole tree at
the specified distance.

3. From a top perspective, the likelihood of the tree being entirely covered by the laser
beams increases as the distance to the tree decreases.
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The angle ‘a’ in Figure 1. Represents the separation between the laser beams. A
narrower angle between these beams allows for more detailed information about the
object they hit. This concept is further developed through analytical models proposed
for calculating spatial resolution requirements, incorporating tree size, sensor placement,
and effective laser point distribution. These models leverage trigonometric principles to
estimate precise horizontal and vertical resolutions necessary for accurate forest structure
characterization, based on a specified number of laser points impacting the target tree.

Horizontal Resolution Calculation:
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1. Horizontal Angle of a Tree (θh): This is determined by dividing the tree’s diameter
(D) by the distance to the tree (L), represented as:

θh =
D
L

(1)

2. Desired Horizontal Resolution (Rh): To find this, divide the horizontal angle (θh)
by the desired number of points (N), giving:

Rh =
θh
N

(2)

Vertical Resolution Calculation
1. Top Angle (α): Calculated by taking the difference between the tree’s height (Ht)

and the sensor’s height (Hs), dividing by the distance to the tree (L), and then taking the
arctangent, resulting in:

α = arctan
(

Ht − Hs

L

)
(3)

2. Bottom Angle (β): Found by dividing the sensor’s height (Hs) by the distance to
the tree (L) and taking the arctangent, which is:

β = arctan
(

Hs

L

)
(4)

3. Total Tree Angle (θt): The sum of the top and bottom angles:

θt = α + β (5)

4. Desired Vertical Resolution (Rv): This is determined by dividing the total tree angle
(θt) by the desired number of points (N) giving:

Rv =
θt

N
(6)

These equations allow for the calculation of the resolutions needed to accurately
capture an object (like a tree) from a distance, ensuring that the resulting point cloud has
the desired level of detail.

2.2. The Defects of Tree Stems

Trees exhibit a diverse array of sizes and shapes, and they can have various types of
defects. These defects encompass natural irregularities such as bending, curvature, twisting,
and more. Additionally, trees can have man-made defects resulting from damages incurred
during the harvesting process. The present study focuses mainly on two types of defects:
Crooked and curved tree stems.

Crooked growth refers to a uniform bending along a stem’s length, requiring specific
measurement and cutting techniques to manage. The acceptable limit for crookedness is
defined as a maximum of 1 cm deviation per meter [32,33]. For curved growth, charac-
terized by localized bending on part of the stem, the cutting strategy involves removing
sections with a curvature exceeding 1 cm over a 1-m length [28,29]. The assessment of
crookedness involves measuring the maximum deviation of the log’s centerline from a
straight line connecting the top and bottom centers. Effective management includes cutting
at the curve’s lowest point for crooked growth and entirely removing curves or multi-
curvature segments, especially prevalent in hardwoods exhibiting constant crookedness
or spiral bending throughout the log. The study by Sagar et al. [31] offers insights from
the perspective of operators and industry, discusses the challenges associated with defects
and estimates the potential losses, both in time and finances when using real industry
data. In the forestry terminology, a “crook” typically refers to a pronounced and abrupt
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deviation or bend in the stem that may render a segment of the tree unmerchantable due to
its severity and abruptness. On the other hand, a “curve” denotes a more gradual deviation
or bending of the stem, which, with skilled bucking to shorter lengths, may still allow for
merchantability by accommodating the curvature within acceptable length specifications.

It is important to note that the distinction between a crook and a curve may vary
regionally and be influenced by local harvesting practices and market standards. Therefore,
clear and standardized definitions are essential for effective communication and consistency
in forest operations.

2.3. Data Collection

This study encompasses the analysis of two distinct data sets for in-depth understand-
ing. The initial data set, synthetic data was generated manually to ensure accuracy and
relevance to our study. This involved crafting and configuring 3D models and simulations
within the Blender environment to represent scenarios and conditions pertinent to our re-
search. This method allowed for precise control and customization of the data set, enabling
tailoring to specific experimental parameters and validation criteria, thereby ensuring its
accuracy and suitability for our study. Conversely, the second data set, the real-world data
originated from practical field data collected in a natural forest environment. This data
was gathered using an advanced physical LiDAR sensor, strategically mounted on a CTL
harvester. The following subsections provide detailed insights into these data collection
setups, outlining the methodologies and tools utilized in this research.

2.3.1. Synthetic Data

The data generation process involved the use of Blender version 3.6, a versatile
and freely available 3D creation suite. Blender offers a comprehensive set of tools and
capabilities across the entire 3D production pipeline, encompassing tasks such as modelling,
rigging, animation, simulation, rendering, compositing, motion tracking, video editing,
and even game development [34].

To create 3D tree stems, the Sapling Tree Gen add-on, included with the default
Blender installation, was employed. Each tree stem was meticulously customized to exhibit
specific and precisely measured curves. Subsequently, the 3D models were converted into
mesh representations. From these mesh models, a Point Cloud was generated using the
“blender-pcd-io” add-on, designed for importing and exporting Point Cloud Data (PCD) in
Blender versions 2.8 and above [35]. It is worth noting that the “blender-pcd-io” add-on
requires separate installation. The resulting exported Point Cloud data were then utilized
for subsequent Point Cloud processing tasks. Figure 2 presents the Blender view of the
created tree stems and the point cloud from the 3D models.
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2.3.2. Real-World Data Collection (Point Cloud)

Data collection was conducted in June 2023 in the forest of Vieremä, northwest Finland,
close to the Ponsse Plc headquarters. The Ouster LiDAR OS0 x64 (Ouster Inc., San Francisco,
CA, USA) was utilized for this purpose, mounted at the front of the safety cabin on the Pon-
sse Scorpion CTL harvester. The LiDAR sensor characteristics are as follows: It is equipped
with a capability for 360◦ horizontal and 90◦ vertical fields of view, ensuring comprehensive
environmental coverage. The sensor boasts a significant range of up to 100 m. The LiDAR
sensor utilized in our study boasts a precision characterized by a vertical channel count
of 64 and a horizontal resolution of 1024. It is noteworthy that this sensor provides three
distinct horizontal configurations: 512, 1024, or 2048. Given our experimental objectives
and requirements, we selected the 1024 configuration due to its consistent performance and
its capacity to yield satisfactory results within our experimental framework. The sensor
operates with angular resolutions of 1.40625◦ vertically and 0.3515625◦ horizontally. It
achieves a data acquisition rate of 655,360 points per second, supported by a rotation rate
of 10 Hz, which allows for rapid and efficient data collection [36]. Figure 3a provides a
visual representation of how the LiDAR system was positioned on the Ponsse Scorpion
harvester. The forest area, primarily composed of Scots pine trees, also featured a mix of
birch (Betula spp.) and Norway spruce trees. Figure 3b displays an image showing the view
angle from the forest where the test data collection took place.
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Figure 3. The Ouster LiDAR OS0 on the Ponsse Scorpion (a) and the view from the test forest (b).

The forest utilized in our study is privately owned. We identified three specific trees
within the private forest area, each exhibiting target defects. Subsequently, we conducted
LiDAR scanning on these trees and proceeded to fell, cut, and manually measure them. It
is worth mentioning that each selected tree originated from a distinct plot within the test
forest. We are currently unable to disclose specific numerical details due to confidentiality
constraints associated with private forest ownership.

A laptop equipped with Ubuntu 18.04 (Canonical Ltd., London, UK) and installed with
the ROS (Robot Operating System) (Open Source Robotics Foundation (OSRF), Mountain
View, CA, USA) melodic package was utilized for recording ROS message data into .bag
files. This same laptop was also employed for extracting point cloud data from these .bag
files. Additionally, Rviz (Robot Visualization), a 3D visualization tool for ROS, was used
both for real-time visualization of LiDAR data during test data collection and for playback
of the recorded data.

Figure 4 displays an image depicting the forest’s perspective as captured in point cloud
data. Figure 5 reveals the targeted curved tree before and after being felled, alongside the
manual measurements conducted with a measuring tape and a digital Masser BT caliper.
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2.4. Data Analysis
2.4.1. Tools Used

CloudCompare version 2.11.3 (Anoia) on a Windows 64-bit (Microsoft Corporation,
Redmond, WA, USA) platform served as the tool for visual inspection of the point cloud
data. CloudCompare is an open-source point cloud comparison and visualization soft-
ware [37]. It can be used to align, merge, and compare point clouds, as well as to extract
features and generate 3D models from point clouds. Before subjecting the Point Cloud file
to algorithmic analysis, it underwent a thorough examination within CloudCompare. This
process was essential to validate the integrity of the Point Cloud data and allowed for man-
ual measurements to be conducted. Various parameters such as tree count, tree height, and
inter-tree distances were among the measurements attainable during this inspection phase.

Point Cloud Library (PCL) installed on a Windows environment. The PCL is an
open-source library and includes algorithms and tools for processing point clouds [38].
It provides a wide range of algorithms for point cloud filtering, feature estimation, and
surface reconstruction, among other things. It is a critical tool in the field of computer
vision and 3D data processing, providing a fundamental method for understanding the
spatial arrangement of objects in a 3D environment.

Utilizing Visual Studio Professional 2022 (64-bit)) (Microsoft Corporation, Redmond,
WA, USA), a robust commercial IDE developed by Microsoft, we developed the necessary
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algorithms for our research. However, Microsoft does offer a free edition called Visual
Studio Community, which is designed for individual developers, open-source projects,
academic research, and education [39].

2.4.2. Point Cloud Processing

The PCL facilitated the import of point cloud data from a PCD file. For cluster
extraction, the EuclideanClusterExtraction algorithm was employed, which isolates clusters
within the point cloud by assessing the Euclidean distance that separates the points. The
process involves:

• Input: A cloud of points where each point has a position in 3D space.
• Distance Threshold: The algorithm requires a predefined distance threshold, which

determines how close points should be to each other to be considered part of the
same cluster.

• Clustering: The algorithm proceeds to group points that are within the distance
threshold of each other. Each group of points closer than the threshold to each other
forms a cluster.

• Output: The output is a set of clusters, where each cluster is a group of points that are
close to each other based on the Euclidean distance.

This method is widely used in various fields for segmenting point cloud data into
distinct groups. Applications include robotics (for obstacle detection and navigation),
autonomous vehicles (for understanding the vehicle’s environment), and 3D modelling
(for object reconstruction and analysis).

The ExtractIndices function in the PCL is utilized for extracting a subset of points
from a point cloud based on given indices. This is an essential function for manipulating
and processing point cloud data in various applications. In addition to leveraging the
pre-existing functions and algorithms within PCL, it became necessary to develop custom
functions to facilitate the management of the Point Cloud data. The steps in data analysis
are as follows:

1. Load Point Cloud: Utilizes the PCL’s PCDReader class to initiate the loading of point
cloud data.

2. Remove Outliers: This phase is dedicated to purging any points that contain “Not-a-
Number” (NaN) values from the point cloud to ensure data integrity.

3. Clustering: At this juncture, individual tree stems are discerned and segregated from
the collective point cloud data set.

4. Divide into Sections: Here, the point cloud cluster of each tree stem is segmented
into predefined height intervals. It involves calculating the minimum and maxi-
mum heights within the cluster, delineating sections for varying height ranges, and
allocating points to these sections based on their vertical position.

5. Get Center line: This process establishes the center line by pinpointing the central
point at both the base and apex sections of the point cloud cluster, effectively marking
the core axis of the stem.

6. Calculate the Curve: Employs vector calculus to ascertain the minimal distance
between any selected point and a three-dimensional line, or center line, which is
charted between two distinct points.

7. Visualize: This step involves the graphical representation of the tree stem alongside
the maximum distance value from its center line, providing a visual assessment of the
stem’s deviation or curvature.

For processing real-world point cloud data, a preliminary step was required: extracting
the point cloud from the recorded ROS bags. This involved loading each ROS bag and
retrieving the point cloud data from it, which was accomplished by executing a ROS
command in the terminal. After this extraction, additional steps were also necessary:



Forests 2024, 15, 818 11 of 20

• Alignment: Alignment for the point cloud using the orientation of the LiDAR. The
point cloud is orientated upright, the trees are pointing in Z direction, and the ground
is in the X and Y plane.

• Segmentation: In the initial phase of segmentation using a 2D grid approach, the
point cloud is segmented into grid cells based on their XY coordinates, forming an
XY grid. The process of ground point removal involves eliminating the lowest points
in each grid cell. Here, the ‘lowest’ refers to selecting the minimum Z value within
a grid cell and establishing an offset above this value. Points falling below this
threshold (minimum Z value plus offset) are classified as ground points and removed.
Following the ground removal, the remaining points in each cell are evaluated. If a
cell contains only a few points post-ground removal, it indicates the absence of a tree
stem. Conversely, cells with insufficient point counts, determined by a predefined
threshold, are identified as containing branch points. Cells meeting or exceeding
this point count threshold are then classified as tree stems. This method effectively
differentiates between tree stems and branches based on the density of points within
each grid cell.

• Fit a cylinder: Estimating the point normal and setting up the model type to a cylinder
and the SAC_RANSAC as a method type for each cluster. The cylinder inliers and the
coefficients are obtained. Following the grid approach, the focus shifts to isolating the
tree points once the ground points and branch points have been excluded. Clustering
of the tree or vegetation points is then undertaken. Clustering serves to divide the
trees into distinct point clouds for further processing.

2.4.3. Determining the Accuracy

The Root Mean Square Error (RMSE) and Bias between the measured curve value and
the predefined value were calculated using the following equations:

RMSE =

√
1
n

n

∑
i=1

(Pi − Ai)
2 (7)

where Pi is the predicted value, Ai is the actual value, n is the number of observations.
For calculating the RMSE Percent (RMSE%):

RMSE% =

(
RMSE

mean(A)

)
× 100 (8)

For calculating the Bias:

Bias =
1
n

n

∑
i=1

(Pi − Ai) (9)

For calculating the Bias Percent (Bias%):

Bias% =

(
Bias

mean(A)

)
× 100 (10)

where (A) is the average of the actual values.

3. Results
3.1. Detecting Tree Stems from Point Clouds

Implementing PCL algorithms proved to be fairly direct requiring adjustment of only
a few parameters. However, one of the major hurdles encountered was installing the
PCL library and ensuring its accessibility within the Windows environment. For synthetic
point cloud data, the process was relatively straightforward, as there were ample points
available on each tree stem. In contrast, handling real-world point cloud data presented
some challenges, particularly when trees were located further away from the sensor, trees
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with numerous branches, and areas where many trees were near each other, increasing
the likelihood of segmentation or clustering errors. This difference can be attributed to
the denser nature of point clouds in synthetic data. Despite these challenges, the process
generally succeeded in accurately identifying several tree stems from the point cloud.

3.2. Detecting Defective Tree Stems from Synthetic Point Clouds

To identify defects within the detected tree stems, each stem was segmented into
sections, with the central point of each section being determined. Figure 6 presents the
synthetic point cloud with measurements of the stem curves. The dimensions of the original
tree stem were first documented to evaluate the algorithms’ effectiveness and accuracy.
This initial measurement confirmed the precision of the outcomes. Following this, the PCL
was utilized to refine the tree stem’s point cloud using a VoxelGrid filter. This filtering
process streamlined the point cloud by aggregating the points within each voxel around
their centroid, resulting in a more concise and manageable representation of the tree stem.
As illustrated in Figure 7, specifically, sample (b) was reduced to 124 points, and sample
(c) to 74 points, compared to the original 392 points representing the entire tree stem (a).
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The tree stems modeled in 3D yielded curve measurements of 0.1, 0.242, 0.282, and
0.563. RMSE reached 0.00229 m with an RMSE percentage of 0.77%. Additionally, the Bias
stood at −0.00174 with a Bias percentage of −0.59%. These measurements confirmed the
effectiveness and accuracy of the selected methods and algorithms.

3.3. Detecting Defective Tree Stems from the Real-World Point Clouds

Detecting tree stems accurately within the real-world data proved difficult, and not
all stems were correctly clustered, as noted in Section 3.1. However, once a tree stem
was successfully identified, it was divided into sections, and the central point of each
section was determined. The central points of these sections were then recorded, and a
central line was drawn connecting the lowest and highest sections of the stem. After this,
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measurements were taken between the central points of each section and the central line,
with the greatest distance discrepancy being noted and visualized.
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Figure 7. The synthetic stem point cloud: The original full tree stem with the measurement (a),
down sampled point cloud (b), and more down sampled point cloud (c). Green dots represent
the point cloud, the red line represents the center line and the white text represents the value of
the measurement.

Figure 8 displays the entire point cloud, the identified tree stems, the central red line,
the maximum distance measured from this line which presets the tree stem maximum
curve value, and the lower measurements values presents the distance from the sensor.
Figure 8 displays the highest measurement value for a targeted curved tree that was
felled and measured manually, in contrast to another tree which was neither felled nor
subjected to manual measurement. Tree stems located farther from the sensor, which were
either unrecognized or incorrectly identified, did not pose significant challenges. It is
anticipated that these stems will be accurately recognized as the machine moves closer to
them. The primary focus of this study was on the identification of tree stem defects and the
measurement of such detected defects.

In the same test forest, we conducted three LiDAR scans, each targeting a tree with a
known defect that had been manually observed and measured in the field. The manual
measurements of the trees showed maximum curve values of 0.025 m, 0.054 m, and 0.086 m.
Conversely, the curve values automatically derived and measured from the point cloud
data were 0.025844 m, 0.054814 m, and 0.086625 m. The RMSE recorded was 0.000767 m
with an RMSE percentage of 1.39%, and the Bias was measured at 0.00761 with a Bias
percentage of 1.38%.
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4. Discussion

In this research, we explored the utilization of LiDAR technology, specifically focusing
on MLS, in CTL forestry machines to improve tree selection processes. In our current study,
we focused specifically on two variables, crook and curve, based on earlier research [31]
indicating their significance in forest operations. These variables were selected because
they pose challenges for harvester operators and require specialized handling, as supported
by industry perspectives. However, we acknowledge that tree selection involves numer-
ous other variables contributing to the distinction between acceptable and unacceptable
growing stock. While our study is limited in scope, it serves as an initial step towards
understanding the potential of MLS technology in improving the tree selection process.

Indeed, MLS on harvesters has the potential to enhance efficiency by automating
certain aspects of tree selection. However, we agree that the most effective decision-making
process often involves the expertise of a forester on the ground. Our intention is not to
replace the role of the forester but to complement it with technological assistance. By inte-
grating MLS technology with expert forestry knowledge, we aim to achieve both efficiency
and effectiveness in tree selection processes. Relevant prior art suggested that there is great
potential in using MLS technology in these applications, as pointed out by Ling et al. [40].
Panagiotidis and Abdollahnejad [41] employed the random sampling consensus method
(RANSAC) method for Terrestrial laser scanner (TLS) point cloud data, which achieved
a notable degree of accuracy in estimating tree height and diameter, resulting in high
merchantable volume estimations (97.7% for deciduous and 96.1% for conifer) trees. Our
investigation addressed two primary research questions. The methodology for processing
both synthetic and real-world data is in Section 2.4.2. For synthetic data, we utilized a
3D modeling engine, such as Blender, to create tree stems with predefined defects. Con-
versely, the real-world data collection commenced in a forest, employing an MLS sensor
mounted on a CTL harvester. The detection accuracies for tree stems and their defects were
promising; synthetic data showcased a 100% stem detection and the stem defect detection
rate with an RMSE percentage of 0.77%, whereas real-world data achieved a stem defect
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detection accuracy of an RMSE percentage of 1.39%. The primary focus in the real-world
scenario was on identifying defective tree stems and quantifying detected defects, without
estimating the total number of stems.

Addressing the second research question, we identified key challenges in stem detec-
tion, particularly in real-world contexts, including proximity of trees, intertwining branches,
stem-to-sensor distance, sensor positioning, sensor resolution limitations, and algorithmic
constraints. The mobility of the harvesting machine, expected to mitigate the issue of tree
proximity, and rapid advancements in sensor technology are anticipated to address many
of these challenges. Continuous development in machine learning and data mining is
crucial for overcoming algorithmic limitations.

Synthetic data offer advantages such as the swift creation of test environments with
adjustable properties to mimic desired real-world conditions, including stem number and
position, and types of predefined defects, offering a cost-effective approach. Synthetic
data plays a crucial role in testing MLS technology in real forest harvesting scenarios by
providing a controlled and customizable environment for experimentation. Synthetic data
allows researchers to simulate various forest stand conditions and scenarios, including
different tree species, terrain types, and environmental factors, which may be challenging
or impractical to replicate in real-world settings. By generating synthetic data, researchers
can systematically assess the performance and limitations of MLS technology under diverse
conditions, without the constraints of time, cost, or logistical challenges associated with
field testing. This approach enables the evaluation of MLS systems in hypothetical sce-
narios, allowing researchers to fine-tune algorithms, optimize sensor configurations, and
validate algorithms’ robustness before deployment in actual forestry operations. Ultimately,
synthetic data serves as a valuable tool for enhancing the efficiency, accuracy, and effective-
ness of MLS technology in real-world forestry applications. However, real-world data are
essential for validating the reliability and efficacy of the developed systems, ensuring their
applicability in practical forest operations.

While the accuracy assessment of our model yielded promising results, they are based
on a relatively small sample size. As highlighted in the Results section, the assessment
was based on a modest data set comprising only three measured values. Although these
data points provided initial insights into the model’s performance, a broader validation set,
ideally consisting of more than 10 or even 30 measured values, would offer a more reliable
evaluation of its prediction capability. The limited sample constrains the generalizability of
our findings and warrants caution in interpreting the accuracy of the model. Future studies
should collect a larger and more diverse data set to validate and refine the model further.

Despite demonstrating high defect detection accuracy in both data sets, our study
revealed limitations, including the variability in sensor performance and the complexities
of proper sensor placement and protection on CTL harvesters. The core of our research
centered on understanding the impact of these MLS technologies on forest operations,
particularly on operational efficiency, accuracy, and sustainability. MLS technology can
improve sustainability in forestry operations in several ways:

• Reduced environmental impact: By providing accurate and detailed data on tree char-
acteristics and forest inventory, MLS technology enables more precise planning and
management of harvesting activities. This can minimize unnecessary tree removal, re-
duce habitat disturbance, and decrease the risk of soil erosion and other environmental
degradation associated with forest operations.

• Enhanced resource utilization: MLS technology facilitates efficient tree selection and har-
vesting processes, leading to optimized utilization of timber resources. By accurately
identifying trees with defects such as crooks and curves, MLS can help maximize
the utilization of merchantable timber while minimizing waste. This contributes to
sustainable forestry practices by ensuring the efficient use of available resources.

• Improved operational efficiency: MLS technology enables faster and more accurate data
collection compared to traditional manual methods. These efficiency gains in data
collection translate to more efficient forest operations overall, reducing the time and
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resources required for field surveys and inventory assessments. By streamlining
operations, MLS can help the forest industries reduce costs and improve productivity,
contributing to long-term sustainability.

However, it is important to acknowledge that poorly implemented MLS technology
could potentially detract from sustainability objectives. For example, if MLS data is not
properly analyzed or interpreted, it may lead to inaccurate decision-making, resulting in
unsustainable harvesting practices or environmental damage. Additionally, the reliance
solely on technology without considering broader ecological and social factors could lead
to negative consequences for forest ecosystems and local communities.

Therefore, while MLS technology offers significant potential benefits for sustainability
in forestry operations, its implementation must be carefully planned and monitored to
ensure that it aligns with broader sustainability goals and considers the complex interplay
of environmental, economic, and social factors. Through responsible use and integration
with existing forestry practices, MLS technology can contribute to more sustainable and
environmentally sound forest management strategies. Challenges in achieving universal
tree stem detection highlighted the critical need for tailored algorithm development and
the adaptation of sensor technologies to diverse environmental conditions. Furthermore,
the study revealed the potential and limitations of synthetic data in simulating real-world
forest scenarios, emphasizing the importance of comprehensive data sets that represent a
broad range of forest types and conditions.

The challenges posed by steep and varied terrain were not the focus of the present
research but are areas left for subsequent studies. Nevertheless, certain strategies can be
employed to address these challenges. For instance, slopes aligned with the harvester’s
driving direction can be scanned by adjusting the tilt of the LiDAR unit accordingly.
Additionally, slopes perpendicular to the driving direction can be navigated by adjusting
the harvester’s trajectory accordingly. It is important to note that the simulated terrain in
our study included perspective effects (cf. Figure 2), resulting in the appearance of trees
at varying elevations. While our current system is optimized for relatively flat terrain,
we maintain optimism regarding its adaptability to the dynamic changes inherent in real-
world terrains.

The efficiency of the laser sensor in assessing log quality in the upper parts of the
stem primarily relies on its ability to accurately capture and analyze key attributes such
as diameter, taper, and defects. By emitting laser pulses and measuring the time it takes
for the light to return, the sensor can precisely determine the distance to various points on
the stem, even in challenging upper regions. This enables the generation of detailed 3D
models of the stem, facilitating thorough quality assessment.

It is acknowledged that the efficacy of the laser sensor may be influenced by forest
stand characteristics. Monocultural stands with uniform tree spacing and canopy structure
provide optimal conditions for laser-based measurements, as they minimize interference
and ensure consistent data acquisition. In such stands, the laser sensor can effectively
penetrate the canopy and capture accurate measurements throughout the stem. However,
in more complex stand structures or mixed-species forests, the performance of the sensor
may be compromised due to increased variability and occlusion.

Addressing this limitation, future research could explore adaptations or enhance-
ments to the sensor technology to accommodate a broader range of forest stand types
and configurations. By refining the sensor’s capabilities and expanding its applicability
beyond single-story monocultural stands, we can enhance its utility and contribute to more
comprehensive forestry assessment practices.

While our proposal advocates for leveraging advanced sensor technologies such as
MLS to assist in forest operations, it is important to recognize the nuanced role of foresters
in decision-making. The intention is not to entirely replace the forester’s expertise but
rather to enhance their capabilities and streamline tasks through technological assistance.
The effectiveness of MLS-based systems in selecting stems to leave or cut may indeed vary
depending on forest types and stand characteristics. While such systems may show promise
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in conifer plantations where uniformity and visibility are favorable, their applicability in
natural stands, particularly hardwood forests, may present challenges.

In natural forest stands, the complexity of vegetation structure, diverse species compo-
sition, and variable terrain pose unique challenges to automated decision-support systems.
Human expertise remains invaluable in assessing the ecological context, identifying de-
sirable and undesirable trees, and considering broader management objectives such as
biodiversity conservation and ecosystem resilience [26–28]. Therefore, it is essential to
acknowledge that MLS-assisted decision-making may be more feasible and effective in
certain contexts, such as managed plantations, where stand characteristics are relatively
homogeneous. In natural stands, a more nuanced approach that integrates MLS data with
forester expertise and local knowledge may be necessary to achieve optimal outcomes.

Compared to state-of-the-art technologies in the forestry sector, our results corroborate
the findings in general, and particularly the findings on near-field LiDAR’s effectiveness in
extracting tree structural details. The studies highlight the necessity for additional software
for data preprocessing and post-processing. These findings underline the challenges
in achieving universal LiDAR-based tree detection due to variations in sensor systems
and environmental factors [6]. Liang et al. [40] highlighted significant advancements in
close-range remote sensing over the past two decades, noting reductions in sensor costs
and size, and improvements in mobility, reliability, and computational power. These
changes have transformed traditional forest data collection, transitioning from expensive
manual methods to more cost-effective and efficient automated processes. This comparative
analysis not only underlines the novelty of our approach but also illuminates the path for
future investigations aimed at overcoming the identified challenges.

5. Conclusions

Acknowledging identified challenges, this study underscored the necessity for further
R&D to refine LiDAR-based tree stem and defect detection methods. Future work should
enhance data collection and analysis, expand LiDAR’s application in varied forests, and
evaluate different sensor models for accuracy, with multiple units potentially yielding
superior insights. A key objective is real-time data processing to aid harvester opera-
tors. Successfully integrating LiDAR sensors onto CTL machines has demonstrated their
value, though challenges like managing the vast data volume and ensuring sensor dura-
bility and optimal placement remain. Despite reduced costs, LiDAR sensors are still a
significant investment.

While MLS technology holds promise for streamlining forestry tasks, including stem
selection, its implementation should be approached with caution and tailored to the specific
characteristics and objectives of the forest management context. The findings suggest
potential for supporting foresters in their work, aiming to assist rather than replace them,
thereby enhancing the efficiency of their tasks. However, realizing these prospects necessi-
tates additional research addressing challenges such as rough terrain and varying weather
conditions is needed.

This research used two data sets that may not fully represent all forest conditions,
highlighting the need for broader scenario coverage in future work. While synthetic data
provided controlled environments for testing, real-world data revealed the complexity of
the practical application, suggesting automation of certain processes to improve future
research efficacy. This groundwork paves the way for advancing LiDAR applications
in forestry, aiming to overcome current limitations and unlock new efficiencies in forest
management. Future research will include broader experimentation in virtual settings,
such as simulations, enhanced field testing across different forest types, and denser dataset
compilation through point cloud registration to boost algorithmic efficiency in tree stem
and defect identification. In conclusion, we have developed two processes for tree stem
and defect identification based on LiDAR technology and analyzed the challenges and
advantages. The testing of the processes gave promising results and pointed directions for
further development.
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