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Abstract: Norovirus is recognised as a major cause of epidemic and sporadic acute gastroenteritis
(AGE) in all age groups. Information on the genetic diversity of the noroviruses circulating in the
1980s and 1990s, before the development and adoption of dedicated molecular assays, is limited
compared with the last decades. Between 1986 and 2020, uninterrupted viral surveillance was
conducted in symptomatic children hospitalized with AGE in Palermo, Italy, providing a unique time
capsule for exploring the epidemiological and evolutionary dynamics of enteric viruses. A total of
8433 stool samples were tested using real-time RT-PCR. All samples were stored at −20 or −80 ◦C
until processing. In this 35-year long time span, noroviruses of genogroup II (GII) were detected in
15.6% of AGE requiring hospitalization, whilst GI noroviruses were detected in 1.4% of AGE. Overall,
the predominant norovirus capsid (Cap) genotype was GII.4 (60.8%), followed by GII.3 (13.3%) and
GII.2 (12.4%). Temporal replacement of the GII.4 Cap variants associated with different polymerase
(Pol) types were observed over the study period. The chronology of emergence and circulation of
the different GII.4 variants were consistent with data available in the literature. Also, for GII.3 and
GII.2 NoVs, the circulation of different lineages/strains, differing in either the Cap or Pol genes or in
both, was observed. This long-term study revealed the ability of noroviruses to continuously and
rapidly modify their genomic makeup and highlights the importance of surveillance activities in
vaccine design.
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1. Introduction

Noroviruses are a major cause of acute gastroenteritis (AGE) worldwide. Noroviruses
belong to the family Caliciviridae and are non-enveloped viruses with a positive-sense
single-stranded RNA genome (7.3–7.5 kb) organized into three open reading frames (ORFs).
ORF1 encodes a large non-structural polyprotein that includes the viral RNA-dependent
RNA polymerase (RdRp), whilst ORF2 encodes the major capsid protein (VP1) and ORF3
encodes the minor capsid protein (VP2) [1]. Noroviruses were first identified upon electron
microscopy observation of stool samples from patients involved in an outbreak of AGE
at an elementary school in Norwalk, OH, USA in 1968, and the causative agent was there-
fore named Norwalk virus [2]. With the development of specific molecular assays in the
1990s, the role of norovirus as a causative agent of AGE has been clarified [3]. Noroviruses
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are responsible for more than 90% of non-bacterial AGE epidemics worldwide and are
considered the first or second most important cause of diarrhoea in children, along with
rotaviruses [4,5]. Noroviruses have been estimated to cause around 1.1 million hospital-
izations and up to 200,000 deaths per year, mostly in children less than 5 years of age in
developing countries [4,5]. The genetic diversity of noroviruses is a challenge for diagnos-
tics, classification, and the development of vaccines. Based on the complete amino acid (aa)
sequence of VP1, noroviruses are classified into ten genogroups (GI–GX) and 49 capsid
(Cap) genotypes. A total of 60 confirmed polymerase (Pol) types have also been described
based on partial nucleotide (nt) sequences of the polymerase region [6]. The majority of
norovirus strains associated with diseases in humans belong to genogroups GI and GII and
are further classified into more than 40 human genotypes [7]. Multiple norovirus genotypes
co-circulate in human populations, but GII genotype 4 (GII.4) has been associated with most
outbreaks (>80%) and sporadic cases of gastroenteritis in both developed and developing
countries [8–10]. Since the mid-1990s, six global epidemics of norovirus GII.4 have been
documented and each has been associated with periodic emergence of novel GII.4 variants
at intervals of 3–4 years. The pandemic GII.4 variants include US95_96, which emerged
in the late 1990s [11,12], followed by Farmington_Hills_2002 in 2002 [13,14], Hunter_2004
in 2004 [15], Den Haag_2006b in 2007 [16,17], NewOrleans_2009 in 2009 [18] and finally
Sydney_2012 in 2011–2012 [19,20]. It has been proposed that new pandemic GII.4 NoV
variants generally evolve through the acquisition of residue substitutions in the capsid
protein VP1 that alter antigenicity, enabling evasion of host immunity [19,21–26] and/or by
modifying affinity to histo-blood group antigen (HBGA) receptors [27]. In addition to the
pandemic GII.4 variants of global relevance, minor GII.4 variants have been described in
epidemics restricted to specific geographical regions, namely the variants Asia_2003 [28],
Yerseke_2006a [16], Osaka_2007 [29] and Apeldoorn_2008 [30]. Norovirus genotyping has
been complicated by the emergence of recombinant strains that have polymerase and capsid
regions derived from separate ancestral strains [20]. The global molecular epidemiology of
emerging GII.4 strains is largely based on data from outbreak surveillance programmes
that were enacted worldwide in the 2000s and 2010s. Improvements in diagnostics, with
the development and large adoption of molecular assays for noroviruses, have provided
valuable information on norovirus epidemiology in the last two decades, but information
on the diversity of noroviruses in the 1980s and 1990s is limited. Uninterrupted surveil-
lance for AGE in hospitalized children has been carried out in Palermo, Italy, since the
mid-1980s, providing a unique collection spanning more than 35 consecutive years that can
be used as a time machine to investigate retrospectively the genetic evolution of enteric
viruses. The present study summarises a more than three-decades-long surveillance, offer-
ing a useful temporal observatory of molecular epidemiology based on sequence data on
norovirus strains circulating in the local paediatric population of Palermo since the end of
the last century.

2. Material and Methods

Over 35 consecutive years, from 1986 to 2020, uninterrupted norovirus surveillance
was conducted in Palermo, South of Italy. A total of 8433 stool samples were collected
from paediatric patients (<5 years old) hospitalized with AGE at the “G. Di Cristina”
Children’s Hospital. AGE was defined by at least 3 watery stools with or without bouts
of vomiting over 24 h and lasting less than 7 days, with no identifiable symptoms other
than those associated with infective gastroenteritis. Stool samples were collected within
12 h of admission to the hospital to avoid inclusion of nosocomial cases and stored at −20
or −80 ◦C until processing. Viral RNA was extracted from stool samples collected from
1986 to 2000 using the ELITE InGenius automated extraction platform (ELITechGroup,
Inc., Bothell, WA, USA). For samples collected from 2001 to 2020, viral RNA was extracted
from 140 µL of a 10% stool suspension using a QIAamp Viral RNA Mini Kit (QIAGEN,
Hilden, Germany), according to the manufacturer’s instructions. Undiluted (pure) and
diluted (1:10) RNA samples were used to reduce the effect of the possible presence of PCR
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inhibitors in stool samples. Random hexamers were used for reverse transcription reaction
to obtain complementary DNA (cDNA) using MMLV reverse transcriptase (Invitrogen,
Carlsbad, CA, USA). A quantitative reverse transcription (RT)-PCR assay (qRT-PCR) able to
differentiate between GI and GII norovirus-positive samples was used to detect norovirus
RNA [31]. Norovirus-positive specimens were genotyped using a multi-target strategy,
generating sequence data for diagnostic region A (spanning the ORF1 region coding for the
polymerase) and region C (encompassing the initial part of ORF2 and coding for the capsid),
using primers JV12/JV13 and COG2F/G2SKR, respectively [31–35]. The hypervariable
capsid P2 domain was tested in a selection of 40 samples representative of different GII.4
norovirus variants observed during the study period using primer EVP2F and EVP2R, as
previously described [36].

Sequence alignment was performed using CLUSTAL W [37]. Phylogenetic anal-
ysis was carried out using the MEGA X software [38], with the Kimura 2-parameter
model as the substitution method. Phylogenetic trees of partial sequences of Pol and
Cap were constructed using the Maximum-likelihood method, with 1000 bootstrap repli-
cates. Genotype assignment was performed using the Noronet automated genotyping tool
(https://www.rivm.nl/en/noronet/databases; accessed on 1 April 2023) and the CDC
calicivirus typing tool (https://calicivirustypingtool.cdc.gov; accessed on 1 April 2023).

3. Results
3.1. Prevalence and Typing of Noroviruses

Out of 8433 stool samples collected from symptomatic children hospitalized with AGE,
GII norovirus was detected in 15.6% (1317/8433) of the patients, whilst GI norovirus was
detected in 1.4% (117/8433) of the patients. The temporal distribution of norovirus GI and
GII infections is shown in Figure 1. Seasonality could be calculated starting from 2002
since the sampling date was not available for older samples. However, sampling was less
abundant and homogeneous until 2011, making estimates of seasonality for these years
less reliable compared with the latest decade. Figure 2 shows the seasonality of norovirus
circulation in Palermo from 2002 to 2020.
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Figure 1. Prevalences of norovirus GI and GII infections in children hospitalized with AGE in
Palermo, Italy, over the study period.
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Figure 2. Monthly distributions and rates of norovirus positivity in samples collected from January
2002 to December 2020. Overall monthly collection of samples studied over the 19 years, from January
2002 to December 2020 (a) and cumulative monthly rates of norovirus positivity (b).

Genotyping of the Cap and Pol regions of norovirus GII was performed in 64.3%
(847/1317) and 61.6% (812/1317) of the norovirus GII-positive samples, respectively. The
most prevalent Cap genotype was GII.4 (60.8%), followed by GII.3 (13.3%), GII.2 (12.4%),
GII.6 (4.7%), GII.17 (2%) and GII.1 (1.9%). Overall, 49.5% (652/1317) of the norovirus
GII-positive samples were fully typed, providing the Cap/Pol combination. GII.4[P4]
accounted for 28.3% of the fully typed strains, followed by GII.4[P16] (19.9%), GII.4[P31]
(15.3%), GII.2[P16] (8.2%), GII.2[P2] (5.3%), GII.3[P21] (3.5%), GII.6[P7] (3%), GII.3[P12]
(2.9%), GII.17[P17] (2.4%), GII.3[P3] (1.8%), GII.13[P16] (1.7%) and GII.3[P30](Pc) (1.4%).
The other cap/pol combinations were detected in <1% of the samples. The temporal
distribution of Cap and Pol genotypes and fully typed Cap/Pol strains are shown in
Figure 3a, Figure 3b and Figure 3c, respectively.
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3.2. Focus on the Early Stages of Norovirus Circulation

Norovirus RNA was not detected in the 191 available stool samples collected from 1986
to 1988. Noroviruses were first detected in Palermo in 1989 stool samples and circulated at
low frequency (up to 5.4%) until 1994, with a high genotype diversity in ORF2 (Figure 1). In
particular, GII.4 and GII.6 Cap genotypes were detected in 1989 but were replaced by GII.2
in 1990 and GII.6 in 1993. In 1994, the most prevalent genotype was GII.3 (47.4%), followed
by GII.2 and GII.8 (15.8%), GII.5 (10.5%) and GII.4 and GII.13 (5.3%). The GII.4 genotype
was predominant from 1995, with the exception of the years 2003, 2004 and 2016 (Figure 3a).
Based on sequence analysis of region A (ORF1), the GII.P4 Pol type was predominant from
1989 to 2011, with the exception of 1994, when GII.P3 (64.3%), GII.P5 (21.4%) and GII.P8
(14.3%) co-circulated (Figure 3b).

3.3. Genetic Evolution and Diversification of Norovirus Genotypes

Phylogenetic analyses based on sequences generated from the diagnostic region C
(ORF2) were performed in order to decipher the genetic diversification of the three pre-
dominant norovirus Cap types, i.e., GII.4, GII.3 and GII.2, over time.

3.3.1. Analyses of GII.3 and GII.2 Noroviruses

Phylogenetic analysis showed that the Cap gene sequences of the Italian GII.3
noroviruses segregated into three different clusters (II–IV) that were previously defined
by Boon et al. [39]. The GII.3 strains circulating from 1994 to 1997 segregated within Cap
cluster II together with GII.3[P3] strains, which emerged in the 1980s and 1990s in Japan,
USA and Mexico, and were all characterized by a P3 Pol gene. The GII.3 strains detected
from 2003 onward segregated within Cap clusters III and IV and showed different Cap/Pol
combinations. In particular, all the Italian GII.3 strains circulating from 2004 to 2006 and
from 2014 to 2016 contained a GII.P21 Pol gene and segregated in cluster III, whilst the
GII.3 noroviruses detected in 2012 and 2019 segregated within cluster IV in association
with different Pol types, as follows: in 2012 they were associated with P4_2006b, P12, P16
and P21 Pol types, whilst in 2019 they were associated with P12, P16 and P30 Pol types
(Figure 4b).

The Italian GII.2 strains detected over the whole study period segregated into five
different Cap lineages (a–e) in the GII.2 phylogenetic tree. GII.2 lineages generally included
strains isolated in consecutive years and showing the same Pol type, except for lineage a
and c where two different Pol types were included, with P2 being replaced by P16 and P34,
respectively (Figure 4c).

3.3.2. Analysis of the GII.4 Norovirus Variants

The first GII.4 strain was detected in Palermo in a faecal sample collected in 1989 and
was characterised as a Lordsdale variant, displaying 99.8% nt identity to the reference strain
(X86557) detected in the UK four years later, in 1993. Significant heterogeneity (97.4–100%
nt identity) was observed among the 39 GII.4 noroviruses detected in Palermo from 1994
to 1997, segregating into different branches of the GII.4 US95_96 variant sub-tree together
with contemporary noroviruses circulating in Europe and the USA in the same period
(Figure 4a). In 2002, the GII.4 variant Farmington_Hills_2002 became predominant, whilst
the GII.4 variant Hunter_2004 was predominant from 2004 to 2006. In 2006, the variant Den
Haag_2006b emerged and co-circulated with the variant Yerseke_2006a in 2007 and with
the GII.4 variant Apeldoorn_2007 in 2008. From 2009, the GII.4 variant NewOrleans_2009
became predominant for a couple of years, before being replaced by the GII.4 variant Syd-
ney_2012, which emerged in 2011 in Palermo [40]. The GII.4 variant Sydney_2012 circulated
stably until 2020 (Figure 4a). However, while the Cap Sydney_2012 was initially associated
with a P31 (Pe) Pol-type, recombinant strains emerged with the NewOrleans_2009 Pol gene
from 2013 onwards, followed, from 2017 onwards, by recombinant strains with a GII.P16
Pol gene (Figure 4a).
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3.4. Antigenic Variation in the Hypervariable P2 Domain of GII.4 Variants

Analysis of the aa sequences of the hypervariable P2 domain of the reference strains
of GII.4 norovirus variants showed high aa identity between the ancestral GII.4 norovirus
strain Camberwell and the older GII.4 variants (Lordsdale and US95_96) (94.9–98.1% id),
whilst several aa substitutions have accumulated since 2002, with the later emergence
of GII.4 norovirus variants (Figure 5). In particular, an insertion at position 394, located
in the D hypervariable domain, appeared in 2002 in the Farmington_Hills_2002 variant
together with several conserved aa substitutions (D298N/E, L333M/V, Q376E/D and
N407S/D) in the hypervariable domains. Additional aa mutations were observed in the
Den Haag_2006b and Apeldoorn GII.4 norovirus variants, emerging in 2006 and 2007
in the A epitope of the P2 domain (i.e., T368A, N372D). When the aa sequences of the
Italian GII.4 strains collected over the study period were compared with the reference
sequences, the Italian Lordsdale strain differed from the prototype X86557 at two residues
located in the A (N372D) and E (D393E) hypervariable domains, whilst the Italian GII.4
US95_96 strain differed from the prototype AJ004864 at three residues (S309N, E340G and
N393S). The sequences of the Italian GII.4 Farmington_Hills_2002, Yerseke_2006a, Den
Haag_2006b and NewOrleans_2009 strains were conserved with respect to the prototype
sequences (AY502023, EF126963, EF126965 and GU445325, respectively), whilst several
polymorphisms were observed in the P2 epitopes of the Italian GII.P31-GII.4 Sydney_2012
and GII.P4New_Orleans/GII.4 Sydney_2012 strains, which circulated over a longer time
frame (Figure 5).
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4. Discussion

Noroviruses were first identified—using electron microscopy—as the cause of AGE in
symptomatic children in 1970 [2] but remained underestimated until the development and
adoption of molecular assays specific for routine diagnostics in the 1990s. In parallel, the
literature on noroviruses has increased significantly since the year 2000, with an average of
30 manuscripts per year versus less than 4 manuscripts per year in the second half of the
1990s (https://pubmed.ncbi.nlm.nih.gov/?term=norovirus, searched on 1 January 2023).
However, information on the epidemiology of noroviruses circulating before the 2000s is
limited and fragmented [39,41,42].

In this archival retrospective study, the molecular epidemiology of noroviruses was
investigated over 35 consecutive years, from 1986 to 2020. This archive of stool specimens
and/or genetic material extracted from faecal samples derives from one of the longest
enteric virus surveillances conducted in the European continent, providing an essential
tool for investigating the evolution of noroviruses.

Over the study period, norovirus infection was detected in 17% of paediatric patients
(<5 years old) hospitalized in Palermo, Italy. GII noroviruses, first detected in Palermo
in 1989, represented the most prevalent genogroup, accounting for 15.6% of paediatric
gastroenteritis and reaching the highest rate (30%) in 2006 (Figure 1). GI noroviruses
were first detected in Palermo in 1994 and were found occasionally and scattered over the
remaining study period; however, they were responsible for 3.2–7% of AGEs in 2002–2004
and 2011. The absence of noroviruses in the first years of surveillance in Sicily—from 1986
to 1988—could be ascribed to the low number of samples tested in 1986 and 1987; however,
in 1988, a considerable number of faecal samples (182) tested negative for noroviruses.
Although climate variations can affect the seasonal circulation of noroviruses, and long-term
storage of samples can affect the stability of nucleic acids due to progressive degradation
of viral RNA, our results could simply reflect the local viral epidemiology of that period,
suggesting the introduction of noroviruses in Palermo only at the very end of the 1980s and
their limited circulation until the mid-1990s. Alternatively, mutations in the primer/probe
binding sites could have hindered the detection of the earliest norovirus strains using the
molecular assays employed in this study.

In this study, seasonal circulation was reliably calculated from 2012 onwards, when the
number of samples collected was more abundant and homogeneous. Analysing the distri-
bution of positive norovirus samples has shown a clear winter seasonality since 2011–2012,
with peaks of norovirus circulation in November–January. Additional unexpected increases
in positive norovirus samples were found in May of 2016 and 2019. A sudden reduction in
the number of samples collected was observed from February 2020, with only occasional
detection of noroviruses. Lower circulation of noroviruses was correlated with the COVID-
19 pandemic and the consequent social distancing measures and use of personal protective
equipment [43].

In order to investigate the genetic variability in GII noroviruses over time, Cap (ORF2)
sequence analysis was performed, unveiling high genotype diversity until 1994, followed
by the predominance of the GII.4 genotype from 1995 to 2020, with sporadic peaks of GII.3
and GII.2 genotypes in 2003–2004 and 2016, respectively (Figure 3a). The persisting epi-
demiological relevance of the GII.4 genotype in Palermo was characterized by a fast rate of
evolution due to the accumulation of punctate mutations within the protruding (P) domain
of the capsid (10−3 nt substitutions/site/year), coupled with intra- and inter-genotype
recombination at the ORF1–ORF2 overlap in more recent years, starting with the Sydney
strain in 2012. These mechanisms have been proposed for the effective selection of strains
with improved fitness and the ability to evade the immune response [20,44]. As previously
observed worldwide, nine pandemic variants of GII.4 noroviruses (Lordsdale, US95_96,
Farmington_Hills_2002, Hunter_2004, Yerseke_2006a, Den Haag_2006b, Apeldoorn_2007,
NewOrleans 2009 and Sydney_2012) emerged consecutively in Palermo [5,8,22,45,46], com-
pletely replacing each other every 2–3 years over the study period (Figure 4a). The first
norovirus detected in this study (in 1989) was a GII.4 with a Cap gene genetically related
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to the Lordsdale genotype (99.8% nt identity) identified in the UK in 1993 (X86557) [47].
Lindesmith et al. hypothesized that pre-1995 Camberwell-like strains typically resulted
in low-level endemic diseases in human populations, whereas since the mid-1990s, the
accumulation of point mutations has promoted the spread of post-1996 Lordsdale/Grimsby
strains [23]. However, the limited availability of norovirus sequences from the 1980s makes
it difficult to date back the emergence of such an ancient genotype [48]. Recombination
events were rarely detected in the older Italian strains, which usually carried their canonical
GII.P4 polymerase, with the exception of a single GII.4_US95_96[GII.P2] strain detected in
1994. Conversely, in the last decade, sequential recombination events repeatedly affected
the GII.4 Sydney_2012 variant. As already reported, this variant emerged in Italy in 2011 as
a pre-epidemic strain containing the original GII.P31 polymerase, preceding the Australian
and global circulation [19,40].

Thereafter, local circulation of the Sydney_2012 variant was sustained by the acqui-
sition of a GII.P4 NewOrleans_2009 polymerase in 2013 and a GII.P16 polymerase in
2017 [35,49–51]. The sequential acquisition of such Pol genes may have been the key to the
success of the Sydney variant and boosted its global emergence and spread.

The protruding P2 domain of the Cap protein possesses the epitopes involved in
binding to the host cell and is responsible for virus antigenicity [21,52]. The P2 domain
was sequenced to better understand the evolution of GII.4 norovirus strains over time. The
aa alignment of 22 GII.4 Italian norovirus strains selected over the study period showed
punctate mutations accumulating over time and were associated with the sequential emer-
gence of GII.4 variants every 2–3 years. In particular, a conserved aa insertion at position
394 in Epitope D (amino acids 393–395), which is mostly a threonine residue, has been
observed in all GII.4 strains since the emergence of the GII.4 Farmington_Hills_2002 variant
in 2002 [53]. A change in residue 395 has been shown to alter the GII.4 norovirus antigenic
profile [23]. Crystal structures of the putative Epitope D have shown its strategic position
on the surface of the capsid, since this epitope interacts with the histo-blood group antigen
(HBGA) binding site, suggesting the role of such mutations in both receptor switching
and escaping herd immunity [54,55]. It was previously shown that the older GII.4 variants
(i.e., Camberwell, Bristol, Lordsdale and US95_96) bound strongly only to antigen H of
HBGA, while the new GII.4 variants extended their capability to also bind A and B anti-
gens [55]. No aa changes were observed in epitopes A and E among the older Italian
GII.4 strains with respect to the ancestral GII.4_Camberwell 1987 strain; however, since the
detection of the GII.4_US95_96 variant, several aa changes have been observed in epitopes
B, C and D. Interestingly, majority of the aa substitutions have accumulated since 2002,
with emerging strain Farmington_Hills and mutation H395T representing key shifts in the
antigenic milieu of GII.4 noroviruses. Since 2006, additional amino acid mutations have
also been observed in Epitope A, located on the surface ridge of the capsid and probably
involved in the evolution and adaptation of novel GII.4 variants [56]. The direct role of the
escape phenotype of epitope A was further demonstrated by the Den Haag_2006b variant,
which carries amino acid changes at positions 294, 296–298, 368 and 372 [9].

GII.3 noroviruses represented the second most relevant genotype detected in Palermo
over the 35 years of surveillance, as also reported in other epidemiological studies [57,58].
Phylogenetic analysis of the Cap gene identified four different clusters (I–IV) of GII.3
strains [39]. Clusters I and II contained the oldest GII.3 strains, detected in the 1970s,
1980s and 1990s, while clusters III and IV included the strains circulating since the 2000s.
In Palermo, GII.3 strains belonging to the four clusters described in the literature were
detected over the study period, with clusters III and IV temporally overlapping from 2012
to 2016 and exclusive circulation of cluster IV thereafter. Italian GII.3 strains circulating
from 1994 to 1997 in Palermo contained a P3 Pol gene. GII.3[P3] strains emerged globally
in the 1980s and 1990s [59]. After 5 years of apparent absence from circulation (from
1998 to 2002), a succession of recombination events affecting GII.3 strains were detected
in Palermo beginning in 2003, with the acquisition of P21, P12 and P16 Pol genes. The
GII.3[P21] Cap/Pol combination represented one of the most successful GII.3 variants, being
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associated with symptomatic infections in children worldwide from 2000 to 2009 [60–62].
The increased mutation rate observed in the recombinant GII.3[P21] strains probably
improved viral fitness [63]. As observed in Palermo, the progressive substitution of strains
belonging to different Cap clusters and the acquisition of Pol genes due to recombination
events possibly allowed the persistent detection of GII.3 strains. Recombinant GII.3[P21]
strains were detected from 2003 to 2006 and then from 2013 to 2016 and in 2018, while
GII.3[P12] strains circulated in 2012 and 2019 and GII.3[P16] strains circulated in 2011–
2013. The latter strains were closely related to noroviruses detected in Parma (Italy) and
Bangladesh in the same period [64,65].

GII.2 noroviruses represented the third most relevant genotype detected over the
study period, with different Cap lineages and Cap/Pol combinations (Figure 4c). In
particular, the strain GII.2[P2] circulated from 1990 to 1994 and again in 2011, whilst
recombinant strains with polymerase GII.P34, GII.P4_2006b and GII.P16 appeared in 1996,
2009 and 2016, respectively. GII.2 noroviruses usually account for <1–1.5% of infections
globally, with sporadic peaks in circulation [66–70]. Analysis of the Cap gene showed that
the GII.2[P2] Italian strains collected in 2011–2016 were closely related to the GII.2[P16]
Nashville strain (KY865307), which is supposed to be the donor of the polymerase for
recombinant GII.4[P16] viruses [71,72]. Starting from 2011, the circulation of the GII.2
genotype in Palermo was sustained by a variety of strains containing two different Cap
lineages and Cap/Pol combinations.

5. Conclusions

In conclusion, a unique 35-year collection of specimens was used to explore long-
term trends in norovirus genetic diversity and evolution. Despite the large number of
norovirus genotypes co-circulating in human populations, specific genotypes, GII.4 and
GII.3, have predominated over time [9,39]. As already shown in previous studies, our
findings confirm the predominant role of GII.4 Cap type starting from 1995; however,
GII.3 and GII.2 retained a relevant epidemiological role over long periods, emerging and
re-emerging over time with different Cap and Pol determinants. Noroviruses continuously
and rapidly change, likely in order to escape the immunity elicited in a settled population,
albeit in an intricate balance with host genetic resistance factors. GII.4 noroviruses also
evolved to increase their binding affinities to HBGA receptors, with new epidemic strains
exhibiting stronger binding intensities [27]. Although the GII.4 genotype is possibly the
most successful norovirus strain due to its evolution ability, in this study, GII.3 and GII.2
noroviruses also persisted over time in a settled population through genetic evolution via
accumulation of point mutations and Cap/Pol recombination. Studying the evolutionary
dynamics of noroviruses can not only help to predict the emergence of new epidemic
strains but is also pivotal to conceiving effective vaccines against noroviruses.
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