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Abstract: This systematic review investigates the immunosuppressive environment in HBV-associated
hepatocellular carcinoma (HCC), characterized by dysfunctional and exhausted HBV-specific T
cells alongside an increased infiltration of HBV-specific CD4+ T cells, particularly regulatory T
cells (Tregs). Heightened expression of checkpoint inhibitors, notably PD-1, is linked with disease
progression and recurrence, indicating its potential as both a prognostic indicator and a target for
immunotherapy. Nevertheless, using PD-1 inhibitors has shown limited effectiveness. In a future
perspective, understanding the intricate interplay between innate and adaptive immune responses
holds promise for pinpointing predictive biomarkers and crafting novel treatment approaches for
HBV-associated HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally [1,2],
with 55–80% of the cases linked to chronic hepatitis B virus (CHB) [3], which affects
approximately 296 million individuals worldwide [4]. The natural history of CHB varies
widely among patients, with some entering a phase of low viral replication and limited
inflammation, while others may have persistent inflammation leading to tumorigenesis.
Although the precise mechanisms determining disease outcomes remain unclear, there is
growing evidence indicating that the prognosis of CHB relies on the interplay between
the virus and the host immune response. The adaptive immune response is crucial for
viral clearance, but the destruction of virus-infected cells also induces inflammation and
liver damage.

During viral infections, CD4+ T cells primarily differentiate into T helper (Th1) effector
cells, which induce the activation of cytotoxic CD8+ T cells, and into T follicular (Tfh) helper
cells which activate B cells [5,6]. Additionally, CD4+ T cells can differentiate into regulatory
T cells (Tregs), a specialized population that suppresses the activation, proliferation, and
effector functions of multiple immune cells, including T cells, B cells, natural killer cells
and dendritic cells [7]. This regulatory function is essential for maintaining self-tolerance.
However, an expanded population of Tregs can inhibit the antiviral immune response,
leading to persistent inflammation, and even suppress anti-cancer immunity and protective
immune surveillance [8].

During acute HBV infection, the HBV-specific CD8+ T-cell response is usually strong
and polyclonal, characterized by the production of pro-inflammatory cytokines such as INF-
γ and TNF-α, and cytotoxic molecules such as granzyme and perforin, which are essential
for controlling HBV infection [9]. Although levels of HBV-specific CD8+ T cells usually
decline and become undetectable during the acute phase [10], these cells persistently remain
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detectable in CHB, albeit usually at low levels [9]. Previous research has suggested that the
persistence of HBV-specific CD8+ T cells may contribute to HBV-induced carcinogenesis
by maintaining inflammation and accelerating hepatocyte turnover, thereby promoting
fibrosis and cirrhosis [10–14].

Moreover, in CHB, the adaptive immune response is characterized by a dysfunctional
and exhausted T-cell response marked by the expression of multiple inhibitory receptors, in-
cluding programmed cell death-1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), and
T-cell immunoreceptor with Ig and ITIM domains (TIGIT). This induces an immunosup-
pressive microenvironment leading to persistent inflammation and ultimately contributes
to tumorigenesis [8,15–18]. Characterization of the immune response and complex interac-
tions within the tumor microenvironment is essential for understanding the mechanisms of
disease progression and for the future development of new targeted therapies. This review
aims to explore the role of the adaptive immune response in HBV-associated HCC and to
discuss the mechanisms involved in the immunosuppressive tumor microenvironment.

2. Materials and Methods
2.1. Search Strategy

This systematic review was conducted and reported according to the Preferred Re-
porting Items for Systematic Reviews (PRISMA) 2020 statement [19]. The PRISMA 2020
replaces the PRISMA 2009 guideline with an expanded 27-item checklist. The study was
registered at the international prospective register of systematic reviews (PROSPERO)
as recommended by the Cochrane Collaboration (registration ID: CRD42023493591). A
search strategy was developed and the PubMed/Medline, Cochrane Library, and Embase
databases were systematically searched on 1 December 2023 for original studies investigat-
ing T-cell activity in patients with HBV-related HCC. We used the following search string:
hepatitis B virus OR HBV AND hepatocellular carcinoma OR carcinoma OR cancer OR
tumor OR HCC AND T cell OR CD4 OR CD8 OR Treg OR regulatory T cell.

We also manually searched reference lists of relevant articles for additional studies.
Assessment of abstracts and inclusion of studies was performed independently by two
reviewers (M.B. and A.S.M). Any differences were settled through discussion.

2.2. Eligibility Criteria

All study types were eligible for inclusion except for reviews and meta-analyses. It
was not obligatory for the studies to include control groups.

Inclusion criteria were as follows:

• Age of study population ≥ 18 years;
• Studies in English language;
• Only studies including humans;
• Studies including patients with HBV-associated HCC;

Exclusion criteria were as follows:

• Pediatric patients < 18 years of age;
• Studies only performed on animals;
• Reviews or meta-analyses;
• Studies on individuals with HBV infection without a group of individuals with HBV-

related HCC;
• Studies including CHB patients coinfected with other hepatitis viruses and/or human

immunodeficiency virus (HIV).

2.3. Comparison Groups

We divided comparison groups into three groups: (1) a group of CHB patients, which
were defined as chronic HBV infection with or without liver cirrhosis, but without HCC;
(2) a group of patients with non-HBV HCC involving patients with HCC with HCV infection
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and/or non-viral etiologies; (3) the healthy comparison group was defined as patients
without hepatitis infection, HCC, alcohol abuse, or other liver diseases.

3. Results

Our search strategy resulted in 1411 studies of which 52 were included in this system-
atic review, collectively involving a total of 6931 participants. The study participants were
categorized into four groups of patients as follows: (1) HBV-associated HCC (n = 3660),
(2) CHB without HCC (n = 740), (3) non-HBV HCC (n = 1627), and (4) healthy comparison
(n = 650). Among the included studies, 47 conducted a comparative analysis. Studies were
clinical translational studies, with 36 studies focusing on local biomarkers in formalin-fixed
paraffin-embedded (FFPE) or fresh–frozen tissue samples, and 38 studies investigating
systemic biomarkers in peripheral blood mononuclear cells (PBMCs). Furthermore, 21 stud-
ies conducted combined analysis of local and systemic biomarkers (Table 1). The study
selection process is shown in Figure 1.
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Figure 1. PRISMA 2020 flow diagram of the study selection process. Reason 1: studies without
inclusion of human individuals ≥ 18 years of age; Reason 2: not eligible outcome; Reason 3: study
without original data; Reason 4: not reported in English.
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Table 1. Overview of 52 studies included in the review.

Author Publication
Year

Patients,
Total (n) HBV HCC CHB Non-HBV

HCC HC Tissue
Samples

Blood
Samples

You et al. [20] 2023 58 43 0 11 4 Yes Yes

Sun et al. [21] 2023 106 26 31 0 49 No Yes

Liu et al. [22] 2023 25 16 0 9 0 Yes No

Chang et al. [23] 2023 147 147 0 0 0 No Yes

Li et al. [24] 2023 34 6 0 22 6 Yes No

Gao et al. [25] 2022 14 7 0 7 0 Yes No

Lu et al. [26] 2022 142 87 0 55 0 Yes No

Li et al. [27] 2022 293 293 0 0 0 Yes Yes

Zhang et al. [28] 2022 86 42 27 0 17 Yes Yes

Ho et al. [29] 2021 8 29 22 0 0 Yes No

Cheng et al. [30] 2021 46 30 0 16 0 Yes Yes

Xin et al. [31] 2021 220 220 0 0 0 Yes No

Zhang et al. [32] 2021 60 22 27 0 11 Yes Yes

Liu et al. [33] 2021 152 31 78 0 43 No Yes

Zhao et al. [34] 2020 38 19 0 0 19 Yes Yes

Li et al. [35] 2020 60 30 0 30 0 Yes No

Zhang et al. [36] 2020 92 49 21 0 22 Yes No

Lim et al. [37] 2019 241 135 0 106 0 Yes Yes

Liu et al. [38] 2019 204 122 47 0 35 No Yes

Wang et al. [39] 2019 9 3 3 0 3 Yes Yes

Hsiao et al. [40] 2019 1328 313 0 1015 0 Yes No

Shen et al. [41] 2018 79 24 34 0 21 No Yes

Liu et al. [42] 2018 90 90 0 0 0 Yes Yes

Ou et al. [43] 2018 88 30 58 0 0 Yes Yes

Wu et al. [44] 2018 85 18 47 0 20 Yes Yes

Li et al. [45] 2018 8 7 0 1 0 Yes No

Meng er al. [46] 2017 11 11 0 0 0 Yes Yes

Huang et al. [47] 2017 411 362 0 49 0 Yes No

Lan et al. [48] 2017 93 51 0 0 42 No Yes

Jiang et al. [49] 2017 42 14 14 0 14 No Yes

Liu et al. [50] 2017 160 73 87 0 0 No Yes

Li et al. [51] 2017 32 32 0 0 0 Yes Yes

Li et al. [52] 2017 296 * 0 0 0 0 No Yes

Xue et al. [53] 2016 28 15 0 0 13 Yes Yes

Liu et al. [54] 2016 815 574 0 141 100 No Yes

Zhou et al. [55] 2016 44 20 12 0 12 Yes Yes

Jia et al. [56] 2015 85 85 0 0 0 Yes Yes

Duan et al. [57] 2015 33 21 0 0 11 No Yes

Liu et al. [58] 2015 60 15 0 15 30 Yes Yes
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Table 1. Cont.

Author Publication
Year

Patients,
Total (n) HBV HCC CHB Non-HBV

HCC HC Tissue
Samples

Blood
Samples

Dinney et al. [59] 2015 45 15 30 0 0 No Yes

Sharma et al. [60] 2015 49 17 10 22 0 Yes Yes

Xu et al. [61] 2014 88 16 52 0 20 No Yes

Chen et al. [62] 2014 94 30 64 0 0 No Yes

Li et al. [63] 2013 89 60 0 0 29 Yes Yes

Li et al. [64] 2012 150 99 0 51 0 Yes No

Shi et al. [65] 2011 102 56 20 0 26 Yes Yes

Zhang et al. [66] 2010 89 49 1,5 0 25 Yes Yes

Gehring et al. [67] 2009 30 10 20 0 0 No Yes

Gao et al. [68] 2009 50 40 0 0 10 Yes No

Fu et al. [69] 2007 191 123 21 0 47 Yes Yes

Ormandy et al. [70] 2005 105 17 0 67 21 No Yes

Total (n) 6931 3660 740 1627 650 36 38

HBV HCC = hepatitis B virus-associated hepatocellular carcinoma; CBH = chronic hepatitis B; non-HBV
HCC = hepatocellular carcinoma with other/additional etiologies than hepatitis B virus; HC = healthy comparison
group without CHB. * No patients were diagnosed with HCC at inclusion; however, patients were followed to
evaluate risk of HCC development.

3.1. Patient Characteristics

The included patients were chronically infected with HBV, defined as persistence of
HBsAg in serum > 6 months. In 22 studies, a control group of CHB patients (n = 740)
was included, 18 studies included a group of patients with non-HBV HCC (n = 1627),
and 26 studies included a healthy comparison group without HBV infection. The study
populations were dominated by male patients, and several studies also included subgroups
based on different clinical stages of CHB and/or HCC.

3.1.1. HBV-Specific CD8+ T Cells

A total of 36 studies analyzed HBV-specific CD8+T cells in patients with HBV-associated
HCC, of which 24 studies included circulating CD8+ T cells in PBMCs, and 26 studies
analyzed infiltrating CD8+ T cells in liver tissue samples.

3.1.2. Phenotypes of Circulating CD8+ T Cells in Patients with HBV-Related HCC

Total levels of global circulating CD8+ T cells were significantly higher in patients with
HBV-associated HCC compared with healthy comparisons [41,54], and levels of terminally
differentiated effector CD8+ T cells were higher in HBV-associated HCC [21] with the
majority being effector CD8+ T cells and memory CD8+ T cells [21,34]. The HBV-specific
CD8+ T cells were characterized by exhausted phenotypes with high expression levels of
inhibitory markers. In contrast to the comparison group, patients with HBV-associated
HCC had markedly higher levels of exhaustion markers, including PD-1 [33,38,61,65],
TIGIT [21,38,39], and CTLA-4 expression [39].

In most of the studies, circulating HBV-specific CD8+ T-cell levels were similar between
CHB patients and patients with HBV-associated HCC [21,32,41,59,61], whereas one study
showed lower levels in HBV-associated HCC [50]. Interestingly, HBV-specific CD8+ T
cells showed stronger cytotoxicity in CHB patients [32] and a more exhausted functional
phenotype in patients with HBV-associated HCC [67]. Additionally, increased levels of
HLA-DR were seen in HBV-associated HCC which indicates highly activated CD8+ T
cells [67].
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Studies reported significantly higher expression of exhaustion markers, such as PD-
1 [38,59,61,65,67], TIGIT [38], and T-cell immunoglobin and mucin domain 3 (TIM-3) [59]
in patients with HBV-associated HCC compared with CHB. A study reported that PD-1
expression especially was seen in central memory and effector memory CD8+ T cells [38].
Furthermore, a study found elevated expression of lymphocyte activation gene 3 (LAG-3),
CTLA-4, and TIM-3 on PD-1+CD8+ T cells in patients with HBV-associated HCC compared
with CHB [59]. Expression of INF-γ decreased in HBV-associated HCC [59] and HBV-
specific CD8+ T cells showed impaired capacity for TNF-α secretion [67] in comparison
with CHB patients.

Total levels of global circulating CD8+ T cells were elevated in HBV-associated HCC
compared with non-HBV HCC [30], and a study reported lower levels of INF-γ, TNF-α,
and granzyme B secretion in patients with HBV-associated HCC compared with non-HBV
HCC [37], indicating impaired effector function of CD8+ T cells.

3.1.3. Prognostic Value of PD-1 Expression on Circulating CD8+ T Cells

Expression of PD-1 on CD8+ T cells was highly correlated with disease progre
ssion [38,61,65] and the association was shown to be stronger in CD8+ T cells than in
CD4+ T cells [38]. In addition, high levels of PD-1 were related to higher recurrence rates
of HCC [38]. Finally, PD-1 levels were positively correlated with HBV DNA, alanine
aminotransferase (ALT), and aspartate aminotransferase (AST) [61].

3.1.4. Tumor-Infiltrating HBV-Specific CD8+ T-Cell Phenotypes in HBV-Associated HCC

The infiltration of CD8+ T cells was markedly lower in the tumor tissue of HBV-
associated HCC compared with healthy comparisons or paired non-tumor tissue [40,69,71].
Furthermore, one study reported significantly elevated levels of PD-1 expression in HBV-
associated HCC compared with the normal comparison group [65], and a second study
reported increased expression of LAG-3 followed by decreasing levels of INF-γ, which
reduces the effector function of CD8+ T cells [63]. In addition, a study demonstrated low
levels of granzyme A, granzyme B, and perforin in patients with HBV-associated HCC
compared with healthy comparisons [69].

The CD8+ T-cell infiltration in HBV-associated HCC was compared within liver tissue
from CHB patients in two studies, which reported higher levels of PD-1 on CD8+ T cells
in HBV-associated HCC in one study [65], while no difference was found in the second
study [29]. Additionally, high expression of TIGIT and CTLA-4 was comparable in the two
groups [29].

When comparing tumor tissue from HBV-associated HCC with non-HBV HCC, studies
reported higher levels of CD8+ T cells in HBV-associated HCC [47,71]. Tumor-infiltrating
CD8+ T cells in HBV-associated HCC were characterized by marked clonal expansion and
an immunosuppressive and exhausted tumor microenvironment. Studies demonstrated
higher levels of PD-1 [22,24,30,37,47,71], TIGIT [22], CTLA-4 [20,37,71], TIM-3 [30,37], LAG-
3 [22], and TOX [22,30] in HBV-associated HCC compared with non-HBV HCC.

3.1.5. Impaired Effector CD8+ T Cell Function in HBV-Associated HCC

The HBV-specific CD8+ T cells are crucial in controlling HBV infection and tumor-
infiltrating CD8+ T cells in HBV-associated HCC were positively correlated with sur-
vival [30,31,47]. The CD8+ T cells were primarily effector cells and memory cells, and one
study reported that effector cells in HBV-associated HCC were characterized by increased
levels of CTLA-4, ICOS, and TOX expression [20]. In addition, PD-1 and TIM-3 levels
proved to be correlated with poor prognosis [47,65], and PD-1 levels increased with severity
of liver fibrosis [27]. Cytotoxic CD8+ T cells in HBV-associated HCC secreted lower levels
of INF-γ, TNFα, and granzyme B, compared with non-HBV HCC [37,47]. However, a study
reported that inhibition of TIM-3 and PD-1 restored CD8+ T cell function with increasing
INF-γ and TNF-α levels, indicating a potential therapeutic target [42]. Finally, a study
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found decreasing INF-γ levels with increasing LAG-3 expression, suggesting that LAG-3
reduces the effector function of CD8+ T cells [63].

3.2. HBV-Specific CD4+ T Cells

A total of 35 studies investigated CD4+ T cells in HBV-associated HCC, of which
25 studies included circulating CD4+ T cells in PBMCs and 24 studies included infiltrating
CD4+ T cells in liver tissue samples.

3.2.1. Circulating CD4+ T Cells in HBV-HCC

A study reported decreased levels of total global circulating CD4+ T cells in patients with
HBV-associated HCC (n = 715) compared with healthy controls (n = 100) [54]. In addition,
a study showed lower levels of naïve CD4+ T cells compared with a healthy comparison
group [21], whereas another study reported increased levels of cytotoxic CD4+ T cells, charac-
terized by granzyme A and B expression [53]. Furthermore, studies found increased levels of
PD-1 [33,61] and TIM-3 [21] expression compared with healthy comparisons.

In comparison with CHB patients, total levels of global circulating CD4+ T cells [50]
and naïve CD4+ T cells [21] were lower in HBV-associated HCC. The studies found varying
results regarding exhaustion markers on circulating CD4+ T cells in patients with CHB
compared with HBV-associated HCC. A study found increased expression of TIGIT and
TIM-3 in HBV-associated HCC [21]. Expression of PD-1 levels was analyzed in one study
and reported similar PD-1 expression between the two groups [61]. It was demonstrated
that PD-1 expression on circulating CD4+ T cells was correlated with HBV DNA and ALT
levels [61], whereas a second study only found a correlation between PD-1 expression and
HBV DNA in CHB patients, but not in patients with HBV-associated HCC [33]. In addition,
a study showed elevated HLA-DR in HBV-associated HCC compared with CHB indicating
a higher T-cell activation [50].

Only a single study compared total levels of circulating CD4+ T cells in patients with
HBV-associated HCC (n = 22) and non-HBV HCC (n = 17) and found no difference [60].
A second study demonstrated that levels of CD4+ memory T cells were an independent
predictor for survival in patients with HBV-associated HCC [23].

3.2.2. Tumor-Infiltrating CD4+ T Cells

Levels of infiltrating CD4 T cells in HBV-associated HCC compared with healthy
controls were investigated in two studies finding elevated total CD4+ T cells [68], but
decreased cytotoxic CD4+ T cells in HBV-associated HCC [53].

The total levels of infiltrating CD4+ T cells in CHB were not reported across the
included studies, and a single study found that total CD4+ T-cell levels were higher in
HBV-associated HCC compared with non-HBV HCC [71]. Furthermore, exhausted states
of CD4+ T cells were markedly higher in HBV-associated HCC than non-HBV HCC, with
increased CTLA-4 and PD-1 expression levels [20,71].

A study including 1328 patients showed that CD4+ T-cell subsets were more enriched
in HBV-associated HCC tissue than CD8+ T cells [40]. Among CD4+ T-cell populations,
Tregs were the predominant subset and highly enriched in the tumor microenvironment of
HBV-associated HCC [25,71], with the highest accessibility at the forkhead box P3 (FOXP3)
loci [25].

3.2.3. Circulating Regulatory T Cells in HBV-Associated HCC

Circulating Tregs were primarily characterized as CD4+CD25+ T cells and studies
found significantly elevated levels in HBV-associated HCC compared with healthy con-
trols [20,36,41,48,58,66,69,70]. In addition, studies found markedly elevated expression
levels of FOXP3 [20,41,66,69,70], PD-1 [21], and TIGIT [21].

Levels of Tregs in HBV-associated HCC compared with CHB showed varying re-
sults, as two studies found no difference [41,66] and one study found elevated levels
in HBV-associated HCC [69]. In comparison with non-HBV HCC, levels of circulating
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Tregs were significantly increased in HBV-associated HCC [25,37,60] and expression lev-
els of FOXP3 [25,37], CTLA-4, LAG-3, and PD-1 [37] increased in patients with HBV-
associated HCC.

3.2.4. Tumor-Infiltrating Regulatory T Cells in HBV-Associated HCC

Levels of infiltrating Tregs in HBV-associated HCC compared with control tissue
were analyzed in three studies and in all cases markedly increased levels of Tregs were
demonstrated in HBV-related HCC tumor tissue [36,69,70]. Increased levels of Tregs were
also found in HBV-associated HCC in comparison with liver tissue from patients with CHB
without HCC [60,69].

In three studies, higher levels of Tregs were documented in HBV-associated HCC com-
pared with HBV-non-associated HCC [26,37,60]. Analyses of Tregs in the HBV-associated
HCC tumor microenvironment showed a more immunosuppressive and effective sta-
tus [20], with increased expression levels of FOXP3 [20,26,37], PD-1 [20,25,37], CTLA-
4 [20,25], ICOS [20], and LAG-3 [37] compared with non-HBV HCC.

3.2.5. Role of Regulatory T Cells HBV-Associated HCC

It was demonstrated that levels of circulating Tregs increased with advancing stages of
HBV-associated HCC, thus being a predicter for prognosis [69]. A study isolated circulating
Tregs from patients with HBV-associated HCC to analyze the function of this cell subset
and found that Tregs significantly inhibit proliferation [66]. Additionally, a study showed
that Tregs in HBV-associated HCC were more suppressive than in non-HBV HCC, through
high IL-10 and TGF-β secretion [60]. Moreover, Tregs suppressed CD8+ T-cell proliferation
through the inhibition of INF-γ, TNF-α, and reduced HLA-DR [69]. Another interesting
finding was that the CD4+ T and CD8+ T-cell interactions were increasingly replaced with
rising Treg level in HBV-associated HCC. Spatial proteomics demonstrated increasing
cell–cell connections between CD4+ T cells and Tregs in the tumor microenvironment,
and distances between these cells became significantly shorter in the mid tumor regions
compared to non-tumor regions [24]. Furthermore, spatial proteomics visualized that
PD-1+CD8+ T cells also connected with Tregs [24]. Finally, a study demonstrated that the
Treg/CD8+ ratio was strongly associated with prognosis [20].

3.2.6. Role of T Helper 17 Cells

Circulating T helper 17 (Th17) cells were analyzed in three studies. One study found
higher levels of circulating Th17 cells in HBV-associated HCC compared with CHB [62];
however, a second study found no difference among the two groups [28]. Additionally,
a third study found the Th17/Treg ratio to be an independent risk factor of HCC devel-
opment [52], and that levels of Th17 were associated with degree of liver damage. An
interesting finding was that levels of PD-1 increased in patients who progressed from CHB
to HCC [62].

Infiltrating Th17 cells were investigated in two studies. The first study showed
lower levels of infiltrating Th17 cells in HBV-associated HCC compared with a healthy
comparisons group and CHB patients [28]. The second study found that infiltrating Th17
secreted increasing levels of IL-17 along with severity of liver disease and that IL-17
promoted liver fibrosis and tumorigenesis [36].

3.2.7. Role of Follicular Helper T Cells

Studies have found that levels of follicular helper T cells in HBV-associated HCC were
similar compared with the CHB group and healthy comparison group [44,55,57]. However,
higher expression levels of PD-1 have been shown [55] along with decreased levels of IL-21
secretion, suggesting poorer viability [57].
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4. Discussion

This systematic review revealed that HBV-associated HCC is marked by an immuno-
suppressive tumor microenvironment, characterized by dysfunctional and exhausted T-
cell populations. Circulating CD8+ T-cell levels were elevated in HBV-associated HCC
patients compared with non-HBV HCC and healthy comparisons [30,41,54], mainly com-
posed of terminally differentiated effector and memory CD8+ T cells [21,34]. Conversely,
infiltrating CD8+ T-cell levels in the tumor microenvironment were lower in patients
with HBV-associated HCC compared with liver tissue from non-HBV HCC patients and
healthy comparisons [40,47,69,71]. Tumor-infiltrating CD8+ T cells in HBV-associated HCC
were highly activated but dysfunctional, showing impaired cytotoxicity and exhaustion,
with significantly increased expression of immune checkpoint molecules, such as PD-1,
CTLA-4, LAG-3, and TIGIT. On the contrary, tumor-infiltrating HBV-specific CD4+ T
cells were significantly elevated compared with all control groups (non-HBV HCC, CHB,
and HC) [40,53,68,71], with Tregs being the predominant CD4+ T-cell subset [25,71]. The
CD4+ T-cell populations, including Tregs, also exhibited high expression levels of immune
checkpoint molecules, predominantly PD-1 and CTLA-4. Additionally, Tregs displayed
high expression of the transcription factor FOXP3 [25], which plays a suppressive role in
the immune system [72]. Interestingly, levels of circulating and infiltrating HBV-specific
CD8+ T cells were largely similar in HBV-associated HCC compared with CHB, whereas
infiltrating CD4+ T cells and Tregs were significantly elevated in HBV-associated HCC,
indicating that CD4+ T-cell populations may be a dominant factor in the progression of
CHB to HBV-associated HCC. A limited number of studies have investigated the role
of T helper 17 cells and follicular helper T cells and found that T helper 17 cells may be
associated with poor prognosis. However, no conclusions should be made based on these
findings and further studies are needed to elucidate the role of these cell subsets.

The cytotoxic effects of CD8+ T cells are crucial in controlling viral HBV infection
and cancer [16]. Decreasing levels of CD8+ T cells in CHB, leading towards dysfunction
and exhaustion, are fundamental mechanisms in disease progression. Hepatitis B surface
antigen (HBsAg) and hepatitis B core-related antigen (HBcrAg) are considered crucial
factors in HBV specific immune responses and thought to be a hallmark in T-cell dysfunc-
tion. However, recent evidence has shown that the phenotypical and functional profiles
of CD8+ T cells were unaffected by HBsAg levels [73]. Conversely lower HBcrAg levels
correlated with higher HBV-specific CD4+ T-cell responses, indicating that HBcrAg may be
a more significant viral biomarker [73]. These findings are important for the development
of novel immune-based therapies. The increased enrichment of CD4+ T cells and their
differentiation into Tregs have dual effects. Firstly, CD4+ T cells activate CD8+ T cells to a
lesser extent. Secondly, Tregs inhibit the proliferation of CD8+ T cells. Furthermore, the
expression of immune checkpoint molecules contributes to immunosuppression in the
tumor microenvironment.

This systematic review highlights PD-1 expression’s crucial role in the development of
HCC. Elevated PD-1 expression in circulating CD8+ and CD4+ T cells strongly correlates
with disease progression and higher recurrence rates in HBV-HCC patients. PD-1 levels
are notably high on exhausted CD8+ T cells in the tumor microenvironment, indicating
immune dysfunction and tumor evasion mechanisms (Figure 2). Moreover, PD-1 expres-
sion correlates positively with HBV DNA levels, ALT, and AST, which is an interesting
finding as HBV DNA integration in infected hepatocytes is a major driver in HCC devel-
opment [74]. A study demonstrated that the blocking of TIM-3 and PD-1 restored CD8+
T-cell effector functions [42], suggesting their potential as therapeutic targets for immune
checkpoint blockade strategies. The PD-1/PD-L1 axis leads to negative feedback of the
immune response by blocking the T-cell receptor. Tumor cells expresses PD-L1 to avoid
immunosurveillance. Immune escape is a fundamental Hallmark of cancer [75,76] and the
development of PD-1 inhibitors has gained a fundamental role in the treatment of several
cancers. However, the response rate to the checkpoint inhibitor nivolumab (PD-1 mono-
clonal antibody) for HCC is 15–20% [77], and a randomized controlled multicenter trial
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found no difference in treatment with nivolumab compared with sorafenib (recommended
first-line chemotherapeutic drug for HCC) [78]. Monotherapy with PD-1 inhibition has
thus far demonstrated questionable efficacy [79], and should be used in a personalized
approach. Studies have demonstrated a higher response rate of PD-L1 inhibition in patients
with low levels of HBsAg and HBcrAg [73].
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Figure 2. Illustration of the role of PD-1 in T-cell inactivation. PD-1 is a receptor found in T cells, which
regulates immune responses by binding to its ligands, PD-L1 or PD-L2, on other cells. This interaction
triggers inhibitory signals that dampen T-cell activation and effector function. This mechanism helps
maintain immune tolerance but can also be exploited by pathogens and cancer cells to evade immune
surveillance. Blocking the PD-1/PD-L1 or PD-L2 interaction with immune checkpoint inhibitors
enhances anti-tumor immune responses, making it a potential target in cancer immunotherapy.

The tumor microenvironment in HCC is multifactorial and complex involving HBV
DNA integration, chronic inflammation, and a dysfunctional adaptive immune response,
and a multi-target treatment strategy may be a potential approach in the future. Efficient
preventive and curative treatment for HBV-associated HCC is lacking, and the mechanisms
driving the transition towards exhausted T lymphocytes and carcinogenesis is not fully
elucidated. Another important aspect is the interplay between the innate and adaptive
immune responses, which is also an important driver in the persistent inflammation in
CHB. Tumor-promoting inflammation is a fundamental hallmark of cancer [75,76,80,81]
and it may be of great importance to characterize the inflammatory phenotypes in CHB
and HBV-associated HCC to fully understand the mechanisms, and in a future perspective,
identify predictive biomarkers and ultimately develop efficient treatment strategies.

Strengths and Limitations

This systematic review included studies with general similarity regarding eligibility
criteria for included study participants. Conditions other than HBV and CHB that may
affect the liver and/or immune system led to exclusion across all studies, which is a strength
in this review. Additionally, this review included a relatively high number of studies
which collectively included 6931 participants and translational analysis was performed
on biological samples with similar preparation, including PBMCs, FFPE, or fresh–frozen
liver samples. Although all studies used validated platforms and demonstrated consistent
results overall, a limitation of this review is the variety of methods employed to analyze
T-cell activity. Differences in proteomic panels, gene expression platforms, and proliferation
assays could contribute to certain discrepancies observed.

5. Conclusions

This systematic review highlights the immunosuppressive tumor microenvironment
in HBV-associated HCC, characterized by dysfunctional and exhausted HBV-specific T cells
and increased infiltration of HBV-specific CD4+ T cells, particularly Tregs. The elevated
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expression of checkpoint inhibitors, notably PD-1, correlates with disease progression and
recurrence, suggesting its potential as a prognostic marker and therapeutic target. However,
monotherapy with PD-1 inhibitors has demonstrated limited efficacy. Moving forward,
a characterization of the complex interplay between the innate and adaptive immune
responses holds promise for the identification of predictive biomarkers and development
of new treatment strategies in HBV-associated HCC.
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