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Abstract: Hepatitis B virus (HBV) is a major driver of chronic hepatic inflammation, which regularly
leads to liver cirrhosis or hepatocellular carcinoma. Immediate innate immune cell response is crucial
for the rapid clearance of the infection. Here, natural killer (NK) cells play a pivotal role in direct
cytotoxicity and the secretion of antiviral cytokines as well as regulatory function. The aim of this
study was to further elucidate NK cell responses triggered by an HBV infection. Therefore, we
optimized HBV in vitro models that reliably stimulate NK cells using hepatocyte-like HepG2 cells
expressing the Na+-taurocholate co-transporting polypeptide (NTCP) and HepaRG cells. Immune
cells were acquired from healthy platelet donors. Initially, HepG2-NTCP cells demonstrated higher
viral replication compared to HepaRG cells. Co-cultures with immune cells revealed increased
production of interferon-γ and tumor necrosis factor-α by NK cells, which was no longer evident in
isolated NK cells. Likewise, the depletion of monocytes and spatial separation from target cells led to
the absence of the antiviral cytokine production of NK cells. Eventually, the combined co-culture
of isolated NK cells and monocytes led to a sufficient cytokine response of NK cells, which was
also apparent when communication between the two immune cell subpopulations was restricted to
soluble factors. In summary, our study demonstrates antiviral cytokine production by NK cells in
response to HBV+ HepG2-NTCP cells, which is dependent on monocyte bystander activation.

Keywords: hepatitis B virus; HBV; natural killer cells; NK cells; monocytes; bystander activation;
HepG2; HepaRG; NTCP

1. Introduction

Hepatitis B virus (HBV) infection is currently one of the leading causes of acute as
well as chronic viral hepatitis and is a major driver of liver cirrhosis and liver cancer, which
contributes significantly to liver-related mortality globally. Frequently, liver transplantation
becomes necessary. Therefore, HBV infections represent a serious burden for healthcare
systems worldwide [1,2].

HBV primarily replicates in hepatocytes and can persist for a long time despite con-
stantly improving treatment options. The interplay of innate and adaptive immune re-
sponses plays a key role in the defense against HBV and is decisive for the course of the
infection [3,4]. Viral infection usually leads to a rapid immune response of the innate
immune system in order to prevent the persistence of the virus and to stimulate further
antiviral mechanisms [5,6]. The control of HBV infection is therefore often successful, but
the complete elimination of the virus remains a major challenge [7].

Natural killer (NK) cells are a key element of the first line of defense. Through a
rapid immune response, they are substantially involved in HBV infection, not only through
direct cytotoxicity against infected cells but also through the massive release of antiviral
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cytokines [8]. The main cytokines in the immune response of NK cells to viral pathogens
are interferon (IFN)-γ and tumor necrosis factor (TNF)-α, with IFN-γ in particular playing
a key role in the control of HBV infections [7,8]. Furthermore, NK cells are involved in
the coordination and priming of other immune cell populations. In chronic HBV-infected
patients, the production of cytokines by NK cells is impaired [8].

Various NK cell subpopulations have been identified. NK cells are most frequently
classified according to the expression of CD56 and CD16. CD56dim/CD16+ NK cells
normally exhibit cytotoxic functions, while CD56bright/CD16− NK cells are primarily
relevant for regulatory functions and the production of cytokines [9].

The production of cytokines by NK cells regularly follows a stimulation by further
immune cell populations, for example, with interleukin (IL)-12, IL-15, and IL-18, which is
commonly adapted in ex vivo/in vitro studies to detect reasonable cytokine responses by
NK cells [9,10].

In this study, we investigated the role of NK cells in the acute phase of an in vitro HBV
infection and focused on further immune cell populations that are necessary for NK cells to
exert their full antiviral capacity.

2. Materials and Methods
2.1. HBV Culture Systems

For this study, the two human hepatoma cell lines HepG2-NTCP (Prof. Ulrike
Protzer, Munich, Germany) and HepaRG (Biopredic International, Saint-Grégoire, France)
were used. Both express the Na+-taurocholate co-transporting polypeptide (NTCP),
which is one receptor of HBV to enter hepatocytes by endocytosis [7]. The cells were
cultivated in T75 flasks and for experiments in 12-well plates (both TPP, Trasadingen,
Switzerland) at 2 × 105 cells/mL in William’s E medium (Fisher Scientific, Hampton,
NH, USA), supplemented with 10% HyClone FetalClone II Serum (Fisher Scientific), 1%
penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), 1% L-glutamine (Sigma-
Aldrich), 0.023 IE/mL insulin (Sanofi, Paris, France), 4.7 µg/mL hydrocortisone (Pfizer,
New York, NY, USA), and 80 µg/mL gentamicin (Ratiopharm, Ulm, Germany). The
medium for HepG2-NTCP cells included 10 µg/mL Blasticidin S (Invitrogen, Waltham,
MA, USA). All cultures were performed at 37 ◦C and 5% CO2. HepG2-NTCP cells were
cultured 72 h before inoculation and had 1.8% dimethyl sulfoxide (DMSO, AppliChem,
Darmstadt, Germany) supplemented during the last 48 h, whereas HepaRG had to
follow a differentiation protocol for four weeks with 1.8% DMSO added during the last
two weeks to express the NTCP receptor [10,11]. The medium was renewed twice a
week. Inoculation with a highly purified HBV (genotype D, serotype ayw) [12] was then
performed at a multiplicity of infection (MOI) of 200 with a growth medium containing
4% polyethylene glycol 8000 (Promega, Madison, WI, USA).

2.2. Co-Culture with Immune Cells

Mononuclear cells of the peripheral blood (PBMCs) were obtained from healthy
platelet donors as a byproduct of apheresis and then isolated by density gradient cen-
trifugation. The PBMCs from one donor were then processed individually. Each donor
was tested negative for HBV by serology and NAT. For co-culture, PBMCs were added
at an effector-to-target ratio of 1:1 in RPMI 1640 + GlutaMAX (Fisher Scientific), supple-
mented with 10% HyClone FetalClone II Serum (Fisher Scientific), 1% sodium pyruvate
(Fisher Scientific), 1% MEM nonessential amino acids (Fisher Scientific), 7.5% sodium
bicarbonate (Fisher Scientific), 1% penicillin/streptomycin (Sigma-Aldrich), and 50 µM
2-mercaptoethanol (Sigma-Aldrich). The proportion of NK cells within the PBMCs of each
donor was assessed by flow cytometry before performing experiments using isolated NK
cells to determine the optimal cell count for the co-culture. Finally, the absolute NK cell
count was equal for every condition of each donor. Co-culture was performed for 24 h on
day 14 after infection, as it was demonstrated that the proportion of infected target cells
reached roughly 40% at this time point [13]. Where indicated, transwells (0.4 µm, Corning,
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Corning, NY, USA) were used to achieve spatial separation between the cell populations,
only allowing for the exchange of diluted factors.

To isolate or deplete unlabeled immune cell subpopulations, PBMCs were treated with
NK Cell or Pan Monocyte Isolation Kits (Miltenyi Biotec, Bergisch Gladbach, Germany) or
the corresponding CD56 or CD14 MicroBeads (Miltenyi Biotec) followed by separation with
the autoMACS Pro Separator (Miltenyi Biotec) according to the manufacturer’s protocol.

2.3. HBV DNA Quantification

Nucleic acid was extracted on an EZ1 Advanced XL workstation using the EZ1 Virus
Mini Kit v2.0 (Qiagen, Hilden, Germany) with 100 µL elution. A 5 µL aliquot of the
eluate was used for quantitative PCR (qPCR) using 2× TaqMan Universal PCR Master Mix,
no UNG (Applied Biosystems, Darmstadt, Germany). Two replicates were analyzed in
30 µL reactions including specific primers and a TaqMan hydrolysis probe located in the
S region of the HBV genome (sAg-F: 5′-caa cct cca atc act cac caa c-3′, sAg-R: 5′-ata tga
taa aac gcc gca gac ac-3′, and sAg-So: FAM-5′-tcc tcc aay ttg tcc tgg tta tcg ct-3′-TAMRA).
Thermal cycling was carried out on a StepOnePlus instrument (Applied Biosystems) and
comprised an initial 10 min 95 ◦C step, followed by 45 cycles of 95 ◦C for 15 s and 60 ◦C for
60 s. The number of cellular genomes in each sample was estimated by qPCR targeting a
noncoding chromosomal region upstream of the PDHB gene (human genome assembly
hg38, chromosome 3, amplicon position: 58,436,139–58,436,218, 80 bp; PDH-F: 5′-tcg atc ggg
act gct ttc c-3′; PDH-R: 5′-ccc aca acc tag cac caa aag a-3′; and PDH-So: FAM-5′-cat ctc ctt
ttg ctt ggc aaa tct gat cc-3′-TAMRA). Quantitative HBV PCR results were then expressed as
genome copies per million cells (c/106 cells). In order to achieve this, qPCR standard curves
were obtained by amplification of a series of defined amounts of pre-characterized, assay-
specific recombinant HBV-DNA plasmid standards. The specific target concentrations in
the specimens were obtained by comparing the respective quantification cycles (Ct-values)
to these standard curves. The number of cellular genomes in each sample was determined
in a similar way by a PDHB assay and used to calculate the HBV genome numbers in a
standardized way per million cells in each specimen.

2.4. HBeAg Detection

Hepatitis B e antigen (HBeAg) was detected from cell culture supernatants on an
Architect i1000sr instrument (Abbott, Wiesbaden, Germany) using a diagnostic qualitative
chemiluminescent microparticle immunoassay (CMIA, Architect HBeAg Assay, off-label,
Abbott, Green Oaks, IL, USA). Qualitative results (detected/not detected) and signal-to-
cutoff ratios (S/CO) were recorded for each measurement.

2.5. Stimulation of PBMCs Prior to Staining

Immune cells were stimulated prior to flow cytometry staining. As recently de-
scribed [10], a combination of IL-12 and IL-15 (both R&D Systems, Minneapolis, MN, USA)
was used for 24 h at concentrations of 0.5 ng/mL and 20 ng/mL, respectively. During
the last 4 h, protein transport inhibitors containing brefeldin A and monensin (both BD
Biosciences, Franklin Lakes, NJ, USA) were added.

2.6. Flow Cytometry

All analyses were performed on a FACSCanto II flow cytometer using FACSDiva
software v6 and FlowJo v10 (all BD Biosciences).

First, dead cells were excluded by staining with ethidium monoazide bromide (Sigma-
Aldrich) for 10 min on ice under direct light. NK cells were then identified after the
exclusion of monocytes and B cells by CD14 and CD19 as CD56+/CD3− lymphocytes (see
Supplementary Figure S1). Surface staining and intracellular staining were each performed
for 30 min at 4 ◦C in the dark. Before the intracellular staining, cells were fixed and
permeabilized with the Cytofix/Cytoperm kit (BD Biosciences).
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The following antibodies were used for flow cytometry staining: anti-CD14-PerCP-
Cy5.5 (BD Biosciences), anti-CD19-PerCP-Cy5.5 (BD Biosciences), anti-CD3-APC-Cy7 (Bi-
oLegend, San Diego, CA, USA), anti-CD56-PE-Cy7 (BD Biosciences), anti-IFN-γ-APC (BD
Biosciences), and anti-TNF-α-V450 (BD Biosciences).

2.7. Statistics

Analyses were performed using GraphPad Prism v10 (GraphPad Software, La
Jolla, CA, USA). Statistical tests were used as indicated in the respective figure legends;
p-values < 0.05 were considered statistically significant.

3. Results
3.1. Comparison of Different Cell Lines on HBV Replication and the Effect of Co-Culture
with PBMCs

To establish the optimal conditions for HBV replication, we compared two of the
most commonly used hepatoma cell lines [14] concerning viral replication and HBeAg
production. Here, HepG2-NTCP cells, compared to HepaRG cells, showed higher con-
centrations of HBV DNA (2.4 × 107 compared to 3.3 × 106 c/106 cells and 4.3 × 107

compared to 8.0 × 106 c/106 cells) and HBeAg in the culture supernatants (23.49 com-
pared to 4.91 S/CO and 25.10 compared to 3.74 S/CO) 13 and 19 days after inoculation,
respectively (see Figure 1A).
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Figure 1. Verification of HBV replication: (A) the progression of HBV DNA and HBeAg in the cell
culture supernatants of HepG2-NTCP and HepaRG cells as a median of two independent experiments;
(B) the effect of PBMCs and isolated NK cells on HBeAg after 24 h of co-culture (n = 18). Appearance:
median with interquartile range (whiskers min to max); statistical analysis: Friedman test with
Dunn’s multiple-comparison test.

As shown in Figure 1B, the addition of PBMCs to the HBV culture system led to a
decrease in HBeAg in the culture supernatants (6.38 compared to 4.92 S/CO, p = 0.0230).
The co-culture of isolated CD56+ NK cells led to a similar HBeAg level to that obtained
without the addition of any immune cells (6.38 compared to 6.32 S/CO, p > 0.9999).

3.2. Production of Antiviral Cytokines by NK Cells after Contact with HBV

After 24 h of the co-culture of PBMCs with HepG2-NTCP cells, as shown in Figure 2A,B,
HBV+ target cells led to an increase in IFN-γ production in NK cells (median 11.17
[IQR 7.46–21.02] compared to 9.86% [IQR 2.66–15.12] IFN-γ+ NK cells, p < 0.0001; MFI
4472 [IQR 736–7651] compared to 3431 [IQR 714–6472], p = 0.0002). When comparing
CD56bright to CD56dim NK cells (see Figure 2C), the mainly cytokine-producing CD56bright

NK cells revealed a larger increase (9.81 compared to 2.62% change in IFN-γ+ NK cells,
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p = 0.0015). Cultivation with HBV without target cells did not reveal any stimulation (see
Supplementary Figure S2).
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Figure 2. Antiviral cytokine response by NK cells after contact with HBV+/− HepG2-NTCP cells
for 24 h: (A) the frequency of IFN-γ+ NK cells and (B) the respective MFI values (n = 15); (C) the
change in frequency (HBV+ – HBV−) of IFN-γ+ NK cells comparing CD56bright and CD56dim NK
cells (n = 15); (D) the frequency of TNF-α+ NK cells and (E) the respective MFI values (n = 12); (F) the
change in frequency (HBV+ – HBV−) of TNF-α+ NK cells comparing CD56bright and CD56dim NK
cells (n = 12). Appearance: median with interquartile range (C,F); statistical analysis: Wilcoxon
matched-pair signed-rank test.

As seen in Figure 2D,E, after contact with HBV+ HepG2-NTCP cells, the production of
TNF-α was also increased (median 1.44 [IQR 0.80–3.94] compared to 0.98% [IQR 0.64–3.73]
TNF-α+ NK cells, p = 0.0005; MFI 623 [IQR 252–1244] compared to 459 [IQR 173–877],
p = 0.0015). Here, CD56bright and CD56dim NK cells showed a similar increase in TNF-α
production (see Figure 2F).

3.3. The Antiviral Capacity of Isolated NK Cells

To assess whether NK cells can perform antiviral cytokine production as an isolated
cell population without the concomitant stimulation of other immune cell populations,
changes in NK cell cytokine production were compared as part of all PBMCs and after
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magnetic isolation, as shown in Figure 3. After co-culture and compared to NK cells as part
of PBMCs, isolated NK cells showed an unaltered level of IFN-γ production as a response to
HBV+ target cells compared to mock-infected HepG2-NTCP cells (2.84 compared to −1.32%
change in IFN-γ+ NK cells, p = 0.0002). This was also evident after the breakdown into
CD56bright (9.81 compared to −5.40% change in IFN-γ+ NK cells, p = 0.0003) and CD56dim

NK cells (2.62 compared to −2.69% change in IFN-γ+ NK cells, p = 0.0012).
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Figure 3. Loss of antiviral cytokine response after isolation of CD56+ NK cells; co-culture with
HBV+/− HepG2-NTCP cells for 24 h: (A) the change in frequency (HBV+ – HBV−) of isolated
IFN-γ+ NK cells compared to NK cells within PBMCs, also separated in (B) CD56bright NK cells
and (C) CD56dim NK cells (n = 15 and 10); (D) the change in frequency (HBV+ – HBV−) of isolated
TNF-α+ NK cells compared to NK cells within PBMCs, also separated in (E) CD56bright NK cells and
(F) CD56dim NK cells (n = 12 and 10). Appearance: median with interquartile range (whiskers min to
max); statistical analysis: Wilcoxon matched-pair signed-rank test.

Similar results were evident when analyzing the TNF-α production of isolated NK cells
(0.28 compared to −0.02% change in TNF-α+ NK cells, p = 0.0015), also after separation in
CD56bright (0.27 compared to −0.55% change in TNF-α+ NK cells, p = 0.0020) and CD56dim

NK cells (0.30 compared to 0.01% change in TNF-α+ NK cells, p = 0.0037).
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3.4. The Role of Monocytes and Spatial Conditions in NK Cell Stimulation

Compared to the co-culture as part of the total PBMC population (24.52% IFN-γ+

NK cells and 3.83% TNF-α+ NK cells), as shown in Figure 4A,B, the depletion of CD14+

monocytes abolished the antiviral effect of NK cells following contact with HBV+ HepG2-
NTCP cells (13.70 to 6.40% IFN-γ+ NK cells, p = 0.3629; 1.08 to 0.79% TNF-α+ NK cells,
p = 0.8454).
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IFN-γ+ NK cells following the depletion of CD14+ monocytes and (B) the respective frequency
of TNF-α+ NK cells; (C) the frequency of IFN-γ+ NK cells following spatial separation by tran-
swells and (D) the respective frequency of TNF-α+ NK cells (n = 7). Appearance: median with
interquartile range (whiskers min to max); statistical analysis: Friedman test with Dunn’s multiple-
comparison test.

As shown in Figure 4C,D, compared to the co-culture with direct contact with the
target cells (23.17% IFN-γ+ NK cells and 6.19% TNF-α+ NK cells), the spatial separation
of the PBMCs using transwells abolished the antiviral effect of NK cells following contact
with HBV+ target cells (4.05 to 6.64% IFN-γ+ NK cells, p = 0.8454; 1.22 to 0.79% TNF-α+ NK
cells, p > 0.9999).

3.5. Direct Contact between Monocytes, NK Cells, and HBV+ Target Cells

Next, as our data showed a contact- and monocyte-dependent antiviral cytokine
response of NK cells, we proceeded to further elucidate the significance of the spatial
combination of NK cells and monocytes in relation to the HBV+ HepG2-NTCP cells.

Here, as shown in Figure 5, the combination of isolated NK cells and isolated mono-
cytes, both separated from the target cells by transwells, revealed no antiviral cytokine
response by NK cells (−0.34% change in IFN-γ+ NK cells, p = 0.6875; −0.02% change in
TNF-α+ NK cells, p = 0.6875). When monocytes were cultured in direct contact with the
target cells with NK cells separated by transwells from both monocytes and target cells, a
diminished antiviral cytokine response was observed (1.40% change in IFN-γ+ NK cells,
p = 0.0156; 0.22% change in TNF-α+ NK cells, p = 0.0156). Without the restriction of cell
contact between monocytes, NK cells, and their target cells, NK cells revealed the highest
level of antiviral cytokine production (4.77% change in IFN-γ+ NK cells, p = 0.0469; 0.70%
change in TNF-α+ NK cells, p = 0.0156).
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4. Discussion

Chronic HBV infection is one of the main causes of liver cirrhosis worldwide. While
rapid NK cell response is crucial in the early stages of an HBV infection [15], studies in
chronically HBV-infected patients demonstrate exhausted NK cell function that contributes
to impaired HBV clearance [16]. In peripheral blood, NK cells account for around 10% of
all mononuclear cells [17]; however, the frequency within the liver can rise to 50% [15].
It is important to emphasize that a pronounced NK cell response, in addition to the
early clearance of the virus, may contribute to significant liver damage if HBV infection
persists [6,18–20]. Notably, patients with chronic HBV infections show an altered NK cell
phenotype with an impaired antiviral cytokine response, maintained cytotoxicity, and an
elevated frequency of TRAIL-expressing CD56bright NK cells [8].

Therefore, a rapid and coordinated response of NK cells is important in order to strive
for timely viral clearance and regulatory functionality while preventing cellular exhaustion
or excessive immunity with the risk of significant liver damage [8,21,22].

Thus, we optimized an in vitro HBV model with the HepG2-NTCP cell line to reliably
stimulate NK cells and investigate the immediate immune response. Here, in accordance
with the existing data [7,23], NK cells increased the production of antiviral cytokines
IFN-γ and TNF-α. In particular, CD56bright NK cells, which are the predominant cytokine-
producing subpopulation [24], showed a sharp increase in IFN-γ in our study. Notably,
our data demonstrate that the direct cell contact of PBMCs to the target cells was essential,
and isolated NK cells showed no cytokine response to HBV. In the end, monocytes were
the responsible bystander population, which led to an unrestricted cytokine response
of NK cells. Joint contact with the infected target cells was necessary for the full effect.
Interestingly, contact of the monocytes with the target cell was enough to stimulate NK
cells in an attenuated form via the cell culture supernatant.

The importance of a pronounced interaction between monocytes and NK cells has
been emphasized by previous studies [25–31], but evidence in the field of HBV infection is
still scarce. Li et al. [32] demonstrated an immunosuppressive cascade in which suppressive
monocytes generated by HBV initiate the differentiation of regulatory NK cells, which in
the end results in T-cell inhibition. Further knowledge about the NK cell–monocyte axis
in viral hepatitis was primarily gained in the field of HCV infections, and the findings of
our study are consistent with these. Serti et al. [33] demonstrated that an attenuated IFN-γ
response by NK cells in chronically HCV-infected patients was not caused by an intrinsic
mechanism but rather by a suboptimal co-stimulation by monocytes. The role of accessory
cells and the necessity of monocytes for maximal IFN-γ production by NK cells in HCV
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infection was highlighted by Zhang et al. [34], and a mechanism following a direct cell–cell
contact was demonstrated by Pollmann et al. [35]. According to their study, monocytes
were necessary to achieve NK cell antiviral functionality in HCV infection. Nishio et al. [36]
revealed a monocyte-driven increase in NK cell cytotoxicity in HCV infection, which could
eventually contribute to liver injury and the persistence of the infection. Generally, the
majority of the studies address the influence of monocytes on NK cells. However, Klöss
et al. [37] demonstrated that NK cells affect the response of monocytes in HCV infection,
indicating a mutual interaction. The study by Askenase et al. [38] could also prove that NK
cells are directly involved in the priming of monocytes during infections.

Limitations of our study are that the HBV infection model is only based on the well-
established highly HBV-replicating HepG2-NTCP cell line, and NK cell function was solely
assessed by flow cytometry. Additionally, only extracellular viral detection was performed.
Further experiments have to confirm our findings in primary human hepatocytes and
investigate the exact mechanism by which monocytes stimulate NK cells in the acute
setting of an HBV infection and how this interplay suppresses HBV replication to assess
the clinical applications of our findings.

5. Conclusions

In summary, our in vitro study reveals a contact-dependent stimulation of NK cells
by HBV+ HepG2-NTCP cells with increased production of antiviral cytokines IFN-γ and
TNF-α. For this, monocyte bystander activation is necessary.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v16050741/s1, Figure S1: Exemplary gating strategy to analyze the
cytokine response of CD56+/CD3- natural killer cells; Figure S2: Antiviral cytokine response by NK
cells after contact with HBV without target cells for 24 h.
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