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Abstract: Breast cancer has a high prevalence in the world and creates a substantial socio-economic
impact. Polymer micelles used as nano-sized polymer therapeutics have shown great advantages in
treating breast cancer. Here, we aim to develop a dual-targeted pH-sensitive hybrid polymer (HPPF)
micelles for improving the stability, controlled-release ability and targeting ability of the breast
cancer treatment options. The HPPF micelles were constructed using the hyaluronic acid modified
polyhistidine (HA-PHis) and folic acid modified Plannick (PF127-FA), which were characterized
via 1H NMR. The optimized mixing ratio (HA-PHis:PF127-FA) was 8:2 according to the change of
particle size and zeta potential. The stability of HPPF micelles were enhanced with the higher zeta
potential and lower critical micelle concentration compared with HA-PHis and PF127-FA. The drug
release percents significantly increased from 45% to 90% with the decrease in pH, which illustrated
that HPPF micelles were pH-sensitive owing to the protonation of PHis. The cytotoxicity, in vitro
cellular uptake and in vivo fluorescence imaging experiments showed that HPPF micelles had the
highest targeting ability utilizing FA and HA, compared with HA-PHis and PF127-FA. Thus, this
study constructs an innovative nano-scaled drug delivery system, which provides a new strategy for
the treatment of breast cancer.

Keywords: dual-targeted; pH-sensitive; hybrid polymer micelles; stability; breast cancer

1. Introduction

Breast cancer has become the most commonly diagnosed cancer in 2020, and the
incidence is rising year after year. According to a report, the numbers of new breast cancer
cases and deaths in the United States in 2021 were 284,200 and 43,600, respectively [1].
Breast cancer is mainly caused by malignant changes in the epithelium of breast ducts,
which seriously affects the physical and mental health of female patients [2]. At present,
there are a variety of treatment methods, such as surgery, radiotherapy, chemotherapy, and
molecular targeted therapy. Among them, chemotherapy is an active treatment for all stages
of breast cancer, which significantly prolongs the median survival of patients [3]. However,
chemotherapeutic drugs along with killing the cancer cells, bring serious damages to the
normal cells as well, thereby causing systemic toxicity [4]. Therefore, the development of a
novel drug delivery system for targeted and controlled release of chemotherapeutic drugs
to tumor sites has attracted widespread attention.

Nanocarriers are often applied for treating breast cancer [5]. An enzymatically trans-
formable polymer-based nanotherapeutic approach containing colchicine and marimastat
is developed to prevent malignant progression of metastatic breast cancer [6]. The exosome
membrane coated nanoparticles containing cationic bovine serum albumin conjugated
siS100A4 are designed, which significantly inhibits the growth of malignant breast cancer
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cells [7]. The active tumor targeting nanoparticles containing ferritin and a pH-sensitive
molecular is developed to inhibit tumor cell growth and metastasis based on the combina-
tion of tumor immunity activation and ferritinophagy-cascade ferroptosis [8].

Polymer micelles are formed by the self-assembly of amphiphilic polymers, which
have become one of the most attractive carriers of anticancer drugs [9] because polymeric
micelles improve the solubility of insoluble drugs, reduce the toxicity of chemotherapeutic
drugs, and improve the stability of drugs in biological media without losing activity [10,11].
However, maintaining the integrity of the polymer micelles in the circulation and for
the drug release at the action site remain challenging [12]. The bloodstream causes the
dilution of polymer micelles, thereby facilitating the premature release of the payload in
the bloodstream [13]. When the temperature of the system is elevated above the glass
transition temperature of the polymer micelles, the critical micelle concentration value
is increased, which contributes to a liquid-like state of the micellar core and reduces
stability [14]. Therefore, it is particularly important to design a safe and efficient polymer
micelle for enhancing the stability, controlled release ability and targeting ability. A previous
study showed that changing the surface charge of micelles with isomaltodextrin can
improve stability [15]. Another study constructed the pH-sensitive polymeric micelles
assembled for drug delivery by stereo complexation between PLLA-b-PLys and PDLA-
b-mPEG [16]. To improve the targeting of micelles, yet another study devised a targeted
polyelectrolyte complex micelle to deliver therapeutic nucleotides to inflamed endothelium
in vitro by displaying the peptide VHPKQHR targeting VCAM-1 [17]. The obtained results
highlight the urgent need to scientifically design efficient polymeric micelles for achieving
the aforementioned three goals, that is, improved stability, controlled release ability and
targeting ability.

This study aims to develop the dual-targeted pH-sensitive hybrid polymer micelles
for improving the stability, controlled-release ability and targeting ability. A previous study
demonstrated that hybrid micelles formed by mixing of two or more kinds of polymers
exhibited higher stability than single-component polymer micelle [18,19]. Additionally,
polyhistidine (PHis) was designed and synthesized for pH-sensitive controlled release [20].
In contrast, this study uses folic acid (FA) and hyaluronic acid (HA) to construct the dual-
targeted polymer micelle. In a previous study, magnetic carbon nanospheres modified by
FA were developed for the targeted delivery of adriamycin [21]. Sun constructed an HA-
targeting drug delivery system based on a metal-organic skeleton for efficient antitumor
therapy [22]. Taking these into account, this study prepared the mixed polymer micelles
(HPPF) via HA-PHis and Plannick-FA (PF127-FA), which were shown in Figure 1. The
anticancer activity of docetaxel (DTX) was five times higher than that of paclitaxel, but its
water solubility was still poor, which did not achieve the concentration requirements of
clinical application [23]. Therefore, it is expected to increase the solubility of DTX utilizing
hybrid polymer micelles.
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2. Materials and Methods
2.1. Materials, Cell Lines, and Animals
2.1.1. Materials

HA (Mw = 10,000), thionyl chloride, tetrahydrofuran, isopropylamine, N, N-Dimethy
lformamide (DMF), N, N′-Carbonyldiimidazole (CDI), ethylenediamine and FA were
obtained from Macklin Biochemical Co., Ltd. (Shanghai, China). Nα-CBZ-Nim-DNP-L-
histidine, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-Hydroxysuccinimide
(NHS) and N, N′-Dicyclohexylcarbodiimide (DCC) were obtained from GL Biochem Ltd.
(Shanghai, China). PF127 was obtained from the BASF (Shanghai, China). DTX was
obtained from the Jinhe Biotechnology Co., Ltd. (Shanghai, China). 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), coumarin 6 (Cou-6) and 4′,6-diamidino-
2-phenylindole (DAPI) were obtained from Sigma (St. Louis, MO, USA).

2.1.2. Cell Lines and Animals

HepG2 (human liver cancer cells) and MCF-7 (human breast cancer cells) were pur-
chased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). All
cells were cultured in DMEM medium (Gibco, Thermal Fisher, Lenexa, TX, USA) sup-
plemented with 8% fetal bovine serum (Gibco, Thermal Fisher, Lenexa, TX, USA) and
1% penicillin-streptomycin in a humidified atmosphere of 95% air and 5% CO2 at 37 ◦C,
respectively.

Female BALB/c mice (18 ± 2 g) were purchased from the laboratory animal center
of Shantou University Medical College (Shantou, China). All operational processes were
carried out according to the NIH Guidelines for the Care and Use of Laboratory Animals
and were approved by the Animal Ethics Committee of Shantou University Medical College
(SUMC2022-152).

2.2. Synthesis and Characterization of HA-PHis
2.2.1. Synthesis and Characterization of Nim-DNP-L-Histidine

Briefly, Nα-CBZ-Nim-DNP-L-histidine was dissolved in anhydrous tetrahydrofuran,
then thionyl chloride was added to react for 5 h. Finally, the products were obtained by
filtration and recrystallization, and the structure was characterized using 1H NMR.
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2.2.2. Synthesis and Characterization of Poly (Nim-DNP-L-Histidine)

Nim-DNP-L-histidine was dissolved in DMF containing isopropylamine, and the solu-
tion was reacted under N2 at room temperature for 4 days. Next, the solution precipitated
in the cold diethyl ether. Finally, the poly (Nim-DNP-L-histidine) was obtained by solvent
evaporation and characterized using 1H NMR.

2.2.3. Synthesis and Characterization of HA-PHis

HA was dissolved in anhydrous formamide at 55 ◦C, then cooled to room temperature,
then NHS and EDC were added to react for 2 h on ice. Subsequently, poly (Nim-DNP-
L-histidine) was dissolved in DMF and added to HA solution to react for 48 h at room
temperature. The mixture was dialyzed with distilled water for 3 days and lyophilized
under vacuum. Next, the mixture was dissolved in anhydrous formamide containing
mercaptoethanol to react for 48 h at room temperature for removing 2, 4-dinitrophenyl
from poly (Nim-DNP-L-histidine). Finally, the HA-PHis were dialyzed with distilled water
for 3 days and lyophilized. The structure of HA-PHis was characterized using 1H NMR.

2.3. Synthesis and Characterization of PF127-FA
2.3.1. Synthesis and Characterization of CDI-PF127

An appropriate amount of PF127 was dissolved in acetone and precipitated by pre-
cooled n-hexane. The purified PF127 was obtained by vacuum drying, then dissolved in
anhydrous acetonitrile. In addition, the CDI was dissolved in anhydrous acetonitrile, then
slowly dripped into PF127 anhydrous acetonitrile solution within 2 h under nitrogen, for
4 h. Afterwards, it was concentrated by rotary evaporation and washed three times with
precooled ether. The CDI-PF127 was collected by vacuum drying, and characterized using
1H NMR.

2.3.2. Synthesis and Characterization of NH2-PF127

CDI-PF127 was dissolved in anhydrous acetonitrile. The ethylenediamine was slowly
dripped into the above solution within 3 h and stirred overnight at room temperature. The
excess ethylenediamine was removed by rotary evaporation and washed with precooled
ether three times. The white crystalline powder (NH2-PF127) was obtained by vacuum
drying, and characterized using 1H NMR.

2.3.3. Synthesis and Characterization of PF127-FA

NH2-PF127 was dissolved in anhydrous DMSO, then added to triethylamine as the
liquid A. FA, NHS and DCC were dissolved in DMSO, and triethylamine was added and
reacted for 10 h under magnetic stirring at room temperature (liquid B). Liquid B was
slowly added to liquid A under the protection of nitrogen and stirred overnight at room
temperature. The deionized water was slowly dripped into the reaction solution to remove
the unreacted FA. The supernatant was dialyzed with deionized water for 3 days. The
yellowish solid powder (PF127-FA) was obtained by freeze-drying, and characterized using
1H NMR.

2.4. Preparation and Characterization of Micelles

HPPF micelles were prepared using the film dispersion method [24]. The copolymers
were dissolved in acetonitrile, then dried. The mixing ratios of HA-PHis and PF127-FA were
shown in Table 1. The optimized prescription of HPPF micelles was determined according
to particle size and zeta potential. The particle size and zeta potential of HPPF micelles
were determined via the Malvern particle size analyzer (Malvern, UK). The morphology of
micelles was observed using transmission electron microscope (TEM).
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Table 1. The mixing ratios of HA-PHis and PF127-FA.

Sample HA-PHis:PF127-FA

A 9:1
B 8:2
C 7:3
D 6:4
E 5:5

The entrapment efficiency (EE%) and drug loading (DL%) of HPPF micelles were
determined according to Formulas (1) and (2).

EE% = (1− Cfree
Ctotal

)× 100% (1)

DL% =
Wdrug

Wlipid
× 100% (2)

where, Cfree was the concentration of free DTX (µg/mL); Ctotal was the total concentration
of DTX in the suspension (µg/mL); Wdrug was the amount of drugs encapsulated in HPPF
micelles (mg); and Wlipid was the weight of mixed carrier material in the prescription (mg).

Pyrene was used to determine the critical micelle concentration (CMC) of HPPF
micelles. When the polymer concentration was greater than a certain value, the excitation
wavelength shifted from 334 nm to 336 nm. The different volumes of polymer solution
were added to the pyrene, and the polymer concentration range was 10−4−10−1 g/L.

2.5. In Vitro Drug Release

The drug-loaded micelles were added into the dialysis bag (interception of molecular
weight: 12,000 Da), then placed in the PBS release medium. The medium was removed and
the equal amount of fresh-release medium was replenished. The drug content in the release
medium was determined via HPLC, and the cumulative release percent was calculated
according to the Formula (3).

Er =
Ve∑n−1

i−1 Ci + V0Cn

mdrug
(3)

where, Er was cumulative drug release amount (%); Ve was replacement volume of PBS
(mL); V0 was total volume of release medium (mL); Ci was concentration of release solution
during the i h displacement sampling (µg/mL); mdrug was total mass of drugs carried (mg);
and n was number of replacement PBS.

2.6. Cytotoxicity

HepG2 and MCF-7 cells were chosen to evaluate cell cytotoxicity of blank HPPF and
HPPF/DTX. The cell inoculation density was 6 × 104 cells·mL−1, and the blank control
group was the serum-containing medium group. The blank HA-PHis, blank PF127-FA, and
blank HPPF (8:2) were added, and the concentration was 80, 40, 20, 10, and 5 µg·mL−1,
respectively. The HA-PHis/DTX, PF127-FA/DTX, and HPPF/DTX were added, and
the concentration was 20, 15, 10, 5, 2, and 1 µg·mL−1, respectively. The absorbance of
wavelength 492 nm was determined using the enzyme-labeling instrument. The cell
survival rate was calculated according to the Formula (4).

Cell survival rate% =
ODexperimenta group

ODcontrol group
(4)

where, OD was optical density.
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2.7. In Vitro Cellular Uptake

HepG2 and MCF-7 cells in the logarithmic phase were inoculated at a concentration
of 1 × 105 cells·mL−1. Next, 100 µg·mL−1 of HA-PHis, PF127-FA, and HPPF containing
coumarin-6 were added. DAPI was added for nucleus staining, and the cell uptake was
observed using the laser confocal microscope.

2.8. In Vivo Fluorescence Imaging and Tissue Distribution

MCF-7/ADR tumor-bearing mice were injected with 200 µL HA-PHis, HPPF, and Dir
fluorescence markers, respectively. At 0.5, 6, 12, 24, and 48 h, the fluorescence intensity of
tumor site in mice was monitored using fluorescence imaging. After 48 h, the mice were
killed and main organs (heart, liver, spleen, lung, kidney, and tumor) were washed with
normal saline three times. Then, the fluorescence intensity of organ was measured.

2.9. Statistical Analysis

Results were expressed as mean± S.D. The data were subjected to analysis of variance
(ANOVA) using SPSS 21.0 software. p < 0.05 was taken as a significant level.

3. Results and Discussion
3.1. Characterization of HA-PHis and PF127-FA

According to the characteristic peaks in Figure 2a, δD = 9.18 ppm (-N=CH), δE =
7.71 ppm (-N-CH=C-), δG = 4.83 ppm (-CH-), and δF = 3.20 ppm (-CH2-); thus indicating
that NCA was synthesized successfully [25]. By comparing Figure 2a,b the appearance of
isopropyl characteristic peak (δH = 0.79 ppm) indicated that PHis-DNP was formed [26].
The characteristic peaks in Figure 2c, δC 2.02 ppm (-COCH3-), δD 1.30–1.39 ppm (-C-
CH3-), δB 7.34 ppm (-N-CH=C-) and δA 8.64 ppm (-N=CH-) indicated that HA-PHis was
successfully synthesized [27].
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The 1H-NMR spectrum of PF127, FA, physical mixture of PF127 and FA, and PF127-FA
were shown in Figure 3. The characteristic peaks of PF127 were δA 3.38 ppm (CH2CH(CH3)O),
and δB 3.51 ppm (CH2CH(CH3)O). The characteristic peak shift of FA was δA 11.48 ppm
(OH) [28]. The characteristic peak shift of physical mixture of PF127 and FA was 11.61 ppm,
which illustrated that FA was covalently bound to PF127 [28]. In addition, the characteristic
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peak shift of OH (FA) disappeared, which proved that the COOH of FA interacted with the
PF127 through the covalent bond. It proved that PF127-FA was synthesized.
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3.2. Characterization of Micelles
3.2.1. Particle Size and Zeta Potential

The HPPF micelles were prepared using HA-PHis and PF127-FA, and particle size var-
ied with the mass ratio of two block copolymers (Table 2). When the mass ratio was 5:5 and
6:4, two block polymers existed separately as single-component micelles. It demonstrated
that they were not well assembled into hybrid polymer micelles [29]. When the mass ratio
was 8:2 and 9:1, the hybrid polymer micelles with uniform particle size and good dispersion
were formed. When the mass ratio was 9:1, the value of zeta potential was lower than that
of 8:2. When the absolute value of zeta potential was higher, the electrostatic repulsive
force between the particles was greater [30]. Therefore, the mixed micelles with a mass
ratio of 8:2 was selected as the optimized prescription for next studies (PDI: 0.19 ± 0.06).
In addition, the stability of HPPF (−17.4 ± 0.9 mV) was significantly enhanced compared
with HA-PHis (−13.2 ± 7.8 mV) and PF127-FA (−8.5 ± 1.1 mV) (p < 0.05), which proved
that the strategy using hybrid polymer micelles was successful.

Table 2. Particle size and zeta potential of polymer micelles (n = 3).

Sample Particle Size (nm) Zeta Potential (mV) Single/Double Peak

HA-PHis 119.1 ± 7.7 −13.2 ± 7.8 Single peak
PF127-FA 40.0 ± 1.2 −8.5 ± 1.1 Single peak

A (9:1) 115.3 ± 6.1 −16.2 ± 0.8 Single peak
B (8:2) 119.6 ± 6.3 −17.4 ± 0.9 Single peak
C (7:3) 143.0 ± 6.3 −17.1 ± 3.2 Irregular single peak
D (6:4) 131.7 ± 7.0 −21.0 ± 2.5 Double peak
E (5:5) 122.3 ± 8.4 −19.2 ± 3.1 Double peak

3.2.2. Morphological Observation

The shape of HPPF/DTX and HA-PHis was observed using TEM and shown in
Figure 4. The shape of HPPF/DTX was spherical and the distribution was uniform. The
particle size of HPPF micelles was slightly larger than that of HA-PHis micelle. The reason
was that PF127-FA and HA-PHis were self-assembled into HPPF micelles in an embedded
form. The hydrophilic chain of HA-PHis was exposed owing to the long chain of PF127-FA,
which caused the larger particle size [31].
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3.2.3. Entrapment Efficiency and Drug Loading

The entrapment efficiency and drug loading of HPPF micelles were 87.2 ± 1.9% and
6.0 ± 0.1%, respectively, which were higher than HA-PHis (84.8 ± 2.1% and 4.2 ± 0.1%).
The PF127-FA increased the proportion of hydrophobic blocks of the micelle core, which
was beneficial to the loading of hydrophobic drugs (DTX). This study showed that the
length of the hydrophobic blocks was closely related to drug loading [32]. Thus, HPPF
micelles improved the poor solubility of DTX.

3.2.4. Determination of Critical Micelle Concentration

The aggregation behavior of HPPF micelles was investigated by measuring the fluo-
rescence spectral curve of pyrene (Figure 5a). The critical micelle concentration of HPPF
micelles was 0.04 mg·mL−1. The lower critical micelle concentration was beneficial for the
stability of micelles in vivo [33]. This study showed that the CMC value of micelles was an
important factor that signified the stability, and that a lower CMC value provided greater
solubilization of loaded payload [34].
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3.2.5. In Vitro Drug Release

The in vitro drug release experiments were performed to investigate the pH-sensitive
release of HPPF micelles in phosphate buffers with different pH values (7.4 and 5.0). As
expected, more than 90% of the free drugs were released from DTX solution within 8 h at
pH 7.4 (Figure 5b). However, within 72 h, only 45% of DTX was released from the HPPF
micelles, which indicated that HPPF micelles ensured long-term stability in the bloodstream
and prolonged the circulation time [35]. At pH 5.0, nearly 90% of DTX was liberated from
the HPPF micelles within 8 h of incubation, which was in good agreement with previous
studies [36]. The pKa value of histidine was close to the tumor site acidic environment,
which caused protonation and soluble transformation [37]. Hence, the pH sensitivity of
PHis in HPPF micelles was confirmed. In addition, in vitro drug release behaviors were all
consistent with the Higuchi model (r = 0.9545, r = 0.9573, and r = 0.9521), indicating that
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drugs were released through diffusion from the micelles [38]. In summary, the experiments
proved the pH-sensitive behavior of the HPPF micelles.

3.3. Cytotoxicity

The effects of blank HA-PHis, PF127-FA and HPPF on the growth of HepG2 and MCF-
7 cells were determined via MTT (Figure 6a,b). With the increase in the concentration, the
survival rates of HepG2 and MCF-7 cells did not change significantly (p > 0.05), indicating
that blank HA-PHis, PF127-FA and HPPF had no obvious cytotoxic effect on HepG2 and
MCF-7 cells.
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Then, effects of micelles containing DTX on the cell survival rate in HepG2 and MCF-7
cells were evaluated and results were shown in Figure 6c,d. It was found that toxic effects
were dependent on the concentration of micelles. For the HepG2 cells, the cytotoxicity of
the micelles was ranked as follows: HPPF/DTX (IC50: 1.7 µg/mL) > PF127-FA/DTX (IC50:
2.5 µg/mL) > HA-PHis/DTX (IC50: 4.6 µg/mL). This is because FA was specifically targeted
on the surface of tumor cells, and FA receptor was highly expressed on the surface of tumor
cells [39,40]. However, HA-PHis had no targeting ability to HepG2 cells owing to low
expression of the CD44 receptor [41]. For the MCF-7 cells, the cytotoxicity of the micelles
was ranked as follows: HPPF/DTX (IC50: 4.2 µg/mL) > HA-PHis/DTX (IC50: 7.7 µg/mL) >
PF127-FA/DTX (IC50: 10.3 µg/mL). HA-PHis had targeting ability to MCF-7 cells, because
the CD44 receptor were overexpressed on the surface of the MCF-7 tumor [42]. Hence, the
HPPF owned the highest targeting ability utilizing the FA and HA, which formed more
DTX and killed tumor cells.

3.4. In Vitro Cellular Uptake

Cellular uptake of HPPF micelles were observed via laser confocal localization using
HepG2 and MCF-7 cells. Coumarin-6 carrier was chosen as the probe. After incubation
for 2 h, the fluorescence intensity of HepG2 cells was very dark, and the HPPF micelles
were distributed in the cytoplasm of the cells, but not in the nucleus (Figure 7a). It was
suggested that HPPF was swallowed into the cytoplasm by cells, but the uptake was very
small [43]. The fluorescence intensity of MCF-7 cells was much stronger than that of HepG2
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cells (Figure 7b). The HPPF micelles was mainly distributed in the cytoplasm, but not in the
nucleus. The results showed that HPPF micelles were effectively swallowed endocytosis
into the cytoplasm by MCF-7 cells. Additionally, the uptake was significantly higher than
that of HepG2, which was in good agreement with the results of cytotoxicity. It also proved
that only FA did not ensure that the prepared micelles were targeted to the tumor site. The
previous study also proved that the conjugation of mesoporous silica nanoparticles with
FA increased the efficiency of nanoparticles entering the cell and localization in the close
vicinity of the nucleus [44]. The results of confocal microscopy proved that the HA-receptor
mediated cellular uptake of redox-sensitive chitosan-based nanoparticle [45].
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3.5. In Vivo Fluorescence Imaging and Tissue Distribution

The targeting ability of HPPF micelles to tumors in mice was observed via in vivo
fluorescence imaging. The HPPF micelles were distributed all over the body after injection
for 0.5 h (Figure 7c). With the extension of time, the Dir fluorescence were transferred
to the liver, spleen, and other organs. Additionally, the enhancement of fluorescence
intensity indicated the accumulation of HPPF. After 12 h, the fluorescence intensity of
tumor reached the peak, which was significantly higher than other tissues and organs. In
addition, the HPPF fluorescence intensity of the tumor site was significantly higher than
that in other organs, indicating good tumor targeting (Figure 7d). Compared with HPPF,
the fluorescence intensity of HA-PHis was significantly weakened, indicating that HPPF
increased the drug accumulation in tumor site and prolonged the accumulation time of
drug in the tumor site. This is mainly attributed to the dual-targeted action of HA and FA,
which effectively solved the off-target phenomenon. For example, the study developed
high-efficiency dual-targeted nanoflowers containing ferroferric oxide and HA, which
improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand HA
and magnetic nanoparticles guided by magnetic force [46].

4. Conclusions

In this study, a novel dual-target pH-sensitive HPPF hybrid micelle was successfully
constructed. The optimal mixing ratio (HA-PHis: PF127-FA = 8:2) was obtained according
to particle size and zeta potential. The HPPF micelles improved the stability with higher
zeta potential and lower critical micelle concentration. The pH-sensitive release of HPPF
micelles was demonstrated owing to histidine protonation. In vivo image demonstrated
that the targeting ability of HPPF micelles was higher than FA and HA. In conclusion, this
study provided a new strategy for the development of polymer micelle, which reduced the
side effects of chemotherapeutic drugs and improved the treatment of breast cancer.
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