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Abstract: Fibroblast activation protein (FAP) is a serine protease characterized by its high expression
in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions.
This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radio-
diagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize
cancer management. Among various types of FAP ligands, peptides and antibodies have shown
advantages over small molecules, exemplifying prolonged tumor retention in human volunteers.
Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuti-
cals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates
insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted
radiopharmaceuticals.
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1. Introduction

Cancer is a heterogeneous disease that develops in an incredibly complex microen-
vironment [1–6]. This microenvironment encompasses not only cancerous cells but also
vital constituents like the extracellular matrix [7–10], stromal cells [11–13], and immune
cells [14–16], forming the tumor microenvironment (TME) [17–20]. The TME, an intri-
cate milieu unique to tumors, exerts profound influences on tumor progression, immune
evasion, metastasis, and therapeutic resistance [4,21–26].

Among the various types of fibroblasts implicated in cancer, cancer-associated fi-
broblasts (CAFs) stand out prominently [27–34]. These CAFs constitute a staggering 80%
of all fibroblasts within the TME, assuming a pivotal role as oncogenic regulators with
far-reaching effects on tumor cell proliferation, migration, extracellular matrix remodeling,
and immunosuppression [35–41]. Originating from fibroblasts in normal tissues [42–45],
these cells undergo a reversible transformation akin to myofibroblasts after injury, actively
participating in wound healing [27,46–49]. Myofibroblasts transition from their initial pres-
ence in granulation tissue to become the predominant cell type in the proliferative phase,
ultimately diminishing as the wound healing process concludes [50–52]. In the context
of cancer, fibroblasts and other stromal cells orchestrate this transformation into CAFs by
secreting transforming growth factors in the TME [27,46,53,54]. Notably, CAFs, in contrast
to cancer cells, exhibit remarkable stability and resistance to drug resistance, underscoring
their viability as a pivotal biological target for cancer diagnosis and therapy [55–58].
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Identification of specific biomarkers on the surface of CAFs offers a strategic avenue
for targeted radiological diagnostics and therapeutics [59–64]. Among these biomarkers,
fibroblast activation protein (FAP) has gained widespread attention for its potential in CAF
identification and targeting [65–71]. FAP, a member of the dipeptidyl peptidase 4 (DPP4)
family, boasts a molecular weight of 170 kDa [72–76]. It assumes the guise of a type II trans-
membrane serine protease, typically existing as a homodimer [77–79]. Functionally, FAP
exhibits dipeptidyl peptidase and endopeptidase activities [65,80–82], and its significance
extends to normal embryonic development and tissue modeling [83–85]. Remarkably, FAP
remains scarcely noticeable or entirely absent in normal adult tissues [86,87]. However, it
undergoes marked upregulation during processes such as wound healing, atherosclerotic
plaque formation, and fibrosis [88–91], and prominently features in over 90% of human
epithelial carcinomas [72,80,92–98]. The consistent presence and overexpression of FAP
in CAFs across numerous epithelial tumors, including colon, pancreatic, hepatic, and
ovarian cancers, have paved the way for targeted FAP approaches in tumor imaging and
therapy [99–104].

As an extensively explored target, especially in conjunction with positron emission
tomography/computerized tomography (PET/CT) [105,106], various strategies including
small molecules, peptides, and antibodies have emerged to harness FAP for tumor imaging
and treatment [107–111]. Small molecule FAP inhibitors (FAPIs) have entered a new
milestone since UAMC-1110 developed by Jansen et al., 2014 [112]. Numerous reviews on
small molecule FAPIs have been summarized, such as the comprehensive review by Lan
and Cai et al., 2022 [113]. While small molecule FAPIs have shown remarkable efficacy in
tumor imaging, their therapeutic potential for tumors is limited by their short retention
period in tumor tissues. In contrast, antibodies and peptides have longer half-lives in vivo
and they can extend tumor retention time, thereby increasing tumor imaging signals. They
also have better tissue permeability, which makes it easier for them to penetrate tumor
tissue and generate stronger signals inside the tumor. In addition, antibodies and peptides
are larger than small molecules, bind to targets more specifically, and generally have lower
cytotoxicity and side effects. Therefore, the longer half-life, better tissue permeability,
and lower toxicity of FAP-targeted peptides and antibodies relative to small molecule
tracers make them a more effective choice for tumor imaging and treatment [114–116]. This
focused review discusses the development and application of antibody- and peptide-based
radiopharmaceuticals targeting FAP.

2. Antibody-Based Radiopharmaceuticals Targeting FAP
2.1. Iodine-131-Labeled Monoclonal Antibody F19

The discovery of FAP, a type II transmembrane serine protease, can be traced back to
1986 when it was initially identified as the F19 antigen during studies involving cultured
fibroblasts and the monoclonal antibody (mAb) F19 [117–119]. Subsequently, in 1994,
the surface antigen expressed by F19 cells was officially named FAP [86,120]. In 1990,
Garin-Chesa et al. proposed that in the context of cancer, epithelial cancer, F19+ fibroblasts,
colloquially referred to as FAP, emerged as a consistent molecular trait of the reactive
stroma. The role of mAbF19 in their identification was pivotal [94]. Human FAP, discerned
through mAbF19, became a prominent cell surface antigen [121]. Due to its abundant
presence within the tumor mesenchyme, FAP can serve as a target for radionuclide antibody
conjugates in cancer patients [121–123]. Various radionuclide-labeled antibodies, designed
for FAP-targeted imaging and therapy, have been developed (Table 1).
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Table 1. Results of an investigation of nuclide-labeled FAP-targeting antibodies.

Developer Name In Vitro
Assessment Tumor Model Indication Phase Reference

Boehringer
Ingelheim

F19 (BIBH-1) and
131I-BIBH-1 NA 1 Colorectal Cancer

Metastatic Cancer SPECT/CT Completed

[124]
ClinicalTrials.gov

Identifier:
NCT00005616

Boehringer
Ingelheim

131I-
Sibrotuzumab

Radiochemical
purity: ≥95%

Patients of colorectal
carcinoma and
non-small-cell

lung cancer

SPECT Terminated

[125]
ClinicalTrials.gov

Identifier:
NCT02209727

Eliane
Fischer

177Lu-ESC11/ESC14
Kd: 10 nM/

210 nM
Melanoma xenograft

nude mouse SPECT/CT Preclinical [126]

Darpan N.
Pandya [89Zr]Zr-Df-Bz-F19

Radiochemical
purity: ≥99.5%

U87MG tumor bearing
mice PET/CT Preclinical [127]

Hallie M.
Hintz

[89Zr]Zr-
B12-IgG NA 1 Mice bearing intratibial

CWR-R1FAP PET/CT Preclinical [128]

1 “NA” means “Not Applicable”.

In 1988, Old et al. conducted a comprehensive examination of six human cell surface
glycoproteins, each defined by mAb, with the intention of characterizing the surface phe-
notype of cultivated mesenchymal cells [92]. Among these antibodies, mAbF19 effectively
identified glycoproteins with molecular weights of 120,000 and 95,000, expressed on culti-
vated fibroblasts and a proportion of sarcoma cell lines, respectively. This discovery marked
mAbF19 as a superior antibody for these purposes compared with other candidates, such
as mAbF24, G171, G253, and K117. Another antibody, S5, exhibited expression patterns
similar to mAbF19 but had limited in vivo expression [92]. It became evident that the
fibroblasts surrounding tumor cells offer effective targets for cancer immunolocalization or
immunotherapy, owing to their recognition by mAbF19 [129–131].

The pioneering clinical study involving FAP-targeting radiopharmaceuticals utilized
131I-labeled mAbF19 for tumor imaging in patients with liver metastases from colon can-
cer [132]. Welt et al. conducted this study in 1994, wherein 17 patients scheduled for
resection of localized metastases or regional chemotherapy received intravenous admin-
istration of 131I-mAbF19. Imaging results from this series of studies revealed that the
tumor-to-normal tissue ratio reached its peak after 3–5 days of administration, enabling
the visualization of lesions as small as 1 cm in diameter. Notably, colon cancer studies
demonstrated specific localization of tumors and metastatic lesions. However, SPECT/CT
results revealed slow kidney clearance, necessitating 3–5 days to achieve optimal imaging
outcomes. This delayed renal clearance has implications for the imaging capabilities of
131I-mAbF19 (Figure 1) [132].
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2.2. Iodine-131-Labeled Sibrotuzumab

mAbF19 stands out for its FAP-specific targeting capabilities, and scientists have
endeavored to enhance its imaging potential as a radiopharmaceutical [135]. A study
by Welt et al. established the positive expression of FAP in all 17 patients studied, and
SPECT/CT imaging effectively facilitated precise tumor identification in humans [132].
This encouraged further investigation into the pharmacokinetic (PK) of sibrotuzumab,
a humanized version of the murine anti-FAP mAbF19. A phase I and II clinical trial
(NCT02198274) involving sibrotuzumab sought to assess its PK without radiolabeling
in patients with FAP-positive malignancies, particularly advanced metastatic colorectal
cancer patients. However, among the 17 patients enrolled who had undergone rigorous
pretreatment, only two exhibited stable disease status, a count insufficient to meet the phase
II trial criteria, which typically necessitate four patients in a stable condition or at least one
patient in complete or partial remission. Consequently, the trial did not progress beyond
phase II [136]. The PK study unveiled pertinent findings, including a mean clearance
rate of 39.8 ± 19.8 mL/h and a terminal half-life of 5.3 ± 2.3 days for sibrotuzumab.
Comparatively, mAbF19 displayed a mean clearance rate of 109 mL/h and a terminal
half-life of 38 h. Sibutuzumab’s lower clearance rate and significantly protracted half-life
rendered it a more amenable candidate for radioimmunotherapy. However, this study
underscored the inadequacy of unlabeled sibrotuzumab in the treatment of advanced solid
tumors, instigating investigations into sibrotuzumab radioisotope conjugates [136].

One such avenue of exploration encompassed a clinical phase I dose-escalation study
of sibrotuzumab in patients with colorectal or non-small cell lung cancer (NCT02209727).
This study, conducted in parallel with the aforementioned phase I/II trials, sought to evalu-
ate biodistribution, PKs, immunogenicity, and safety profiles by incrementally administer-
ing sibrotuzumab intravenously to 26 patients. In tandem, two antecedent phase I studies
employed 131I-mAbF19, with a focus on patients with hepatic metastases from colorectal
cancer or soft tissue sarcoma [137]. These investigations delved into the PK parameters
of the therapeutic mouse monoclonal antibody 131I-mAbF19, elucidating principles of
selective tumor accumulation and stromal targeting in tumors through biodistribution
imaging studies and biopsy analyses. These pivotal insights provided the foundation for
the inaugural human clinical evaluation of sibrotuzumab.

In this human trial, patients received 8–10 mCi of 131I-labeled sibrotuzumab, adminis-
tered concomitantly at weeks 1, 5, and 9 in a 12-week dosing cycle, with a focus on PK as-
sessments. The ensuing analysis divulged that the mean clearance rate of 131I-sibrotuzumab
amounted to 41.9 ± 16 mL/h, accompanied by a half-life of 4.9 days. Following a single
cycle of 131I-sibrotuzumab treatment, two out of the 26 patients manifested stable dis-
ease conditions. The relatively abbreviated half-life of sibrotuzumab held promise for
radioimmunotherapy. Regrettably, the trial did not yield definitive efficacy results for sibro-
tuzumab, prompting the discontinuation of further clinical development (Figure 1) [133].
Furthermore, it is noteworthy that despite considerations of alternative targets, the com-
mercial viability of 131I-sibrotuzumab waned, ultimately leading to its discontinuation in
2014 [125].

2.3. 177Lu-ESC11/ESC14

The clinical application of 131I-mAbF19 and its humanized derivative, sibrotuzumab,
has been hindered by their prolonged blood clearance and suboptimal therapeutic efficacy.
To enhance the therapeutic potential of FAP-targeted antibodies, it is imperative to develop
antibodies with enhanced attributes and utilize radiolabeling with more suitable radionu-
clides [138–141]. In addressing these considerations, Fischer et al. introduced a significant
advancement with the development of 177Lu-ESC11 and 177Lu-ESC14 [126].

From the perspective of antibody discovery, ESC11 and ESC14, two antibodies noted
for their selective accumulation within xenografted FAP-positive human melanoma and
their capacity to impede tumor growth in vivo, were identified in the human FAP antibody
library using the phage display technique. Subsequently, these antibodies underwent a
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transformation into IgG1 antibodies [126]. The phage display technique is a new technique
predicated on specific affinity interactions, enabling the identification of proteins or peptides
that exhibit particular binding properties. This technique is especially adept at discovering
antibodies targeting challenging and intriguing molecules, making it a cornerstone in the
quest for antibodies with precise attributes [142–146]. It enjoys widespread utilization
in the quest for human antibody fragments boasting specific binding activity [146–148].
This technique facilitates the evolution and optimization of FAP-targeting antibodies,
culminating in the selection of antibodies exhibiting robust affinity, rapid internalization,
and propensity for tumor accumulation. Following their identification, ESC11 and ESC14
obtained by screening were labeled with lutetium-177 (177Lu), leading to a comprehensive
investigation into their in vivo targeting capabilities. The outcomes of these investigations
substantiated that both modified mAbs can selectively bind to human and mouse FAP,
featuring affinities of 10 nM and 210 nM, respectively (Figure 1) [126].

From a radionuclide perspective, radiolabeling with iodine-131 is relatively straightfor-
ward for mAbs [149]. However, in the context of radioimmunotherapy, iodine-131 proves to
be suboptimal due to its propensity for facile release from tumor sites after internalization
of mAbs within cells [150,151]. A related drawback lies in the emission of high-energy
(364 keV) γ-photons, accounting for a substantial 82% of its radiation output, thus posing
concerns for radiation safety [105,152]. In stark contrast, the radioactive lanthanide 177Lu
presents a more favorable profile, with a shorter emission range of 2 mm as opposed to
iodine-131’s 3 mm. Additionally, 177Lu exhibits markedly improved physical radiation
characteristics, featuring the emission of 208 keV γ-photons at a much lower abundance
(11%) [126]. As a result of these considerations, Fischer et al. chose 177Lu for antibody
labeling. This decision culminated in the successful radiolabeling of ESC11 and ESC14
through their conjugation with CHX-A′′-DTPA.

These radiolabeled antibodies were subsequently administered to mice harboring
SK-Mel-187 and SK-Mel-16 xenograft tumors to assess their tumor uptake. In this investiga-
tion, 177Lu-CHX-A′′-DTPA-vF19 and 177Lu-CHX-A′′-DTPA-A33 were included as control
groups. Notably, SPECT/CT imaging conducted 72 h post-injection revealed a higher
specific uptake of 177Lu-ESC11 in SK-MEL-187 tumors, whereas SK-MEL-16 xenografts
exhibited lower uptake compared with the control group. This study, involving a com-
parative analysis of the in vivo targeting attributes of human–mouse chimeric antibodies,
established that in mouse models characterized by higher levels of antigen expression, the
cumulative tumor uptake of the nuclide-labeled antibody could reach levels correspond-
ing to 50% of the administered dose per gram. Conclusive in vivo experiments in mice
further corroborated that the ratio of tumor-to-organ uptake pertaining to 177Lu-labeled
FAP mAbs ESC11 and ESC14 surpassed that of their first-generation radionuclide-labeled
FAP-targeted antibodies [126]. The novel antibodies, ESC11 and ESC14, exhibited efficient
internalization into FAP-expressing cells, thereby manifesting highly satisfactory in vivo
targeting capabilities.

2.4. 89Zr-Labeled F19 and B12 IgG

Clinical investigations involving first-generation FAP-targeting antibodies have pro-
vided novel insights by demonstrating the feasibility of modifying FAP-specific cancer tar-
geting through the conjugation of toxins or chelators with FAP-specific antibodies [153,154].
As an illustrative example, Pandya et al. prepared the radiopharmaceutical antibody con-
jugate [89Zr]Zr-Df-Bz-F19 mAb for PET imaging by employing the bifunctional chelator
Df-Bz-NCS to securely bind zirconium-89 (89Zr) (Figure 1) [127].

89Zr, a radionuclide, emits β+ particles at 902 keV with an abundance of 23% and
possesses a half-life of 78.4 h [105,155]. Its attributes, characterized by high-resolution
imaging, specific tissue binding, and strong signal contrast, render it a promising candidate
for PET imaging applications [156,157]. Nonetheless, certain challenges persist, primarily
the susceptibility to covalent bond breakage between the chelator and the protein, which
can compromise stability [158]. To mitigate this concern, comprehensive in vitro characteri-
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zation of [89Zr]Zr-Df-Bz-F19 mAb was conducted. The radiolabel displayed a remarkable
radioactive purity exceeding 99.5% upon synthesis completion and retained its purity at
levels greater than 99.1% in human serum after 7 days of incubation at 36–37 ◦C. These
findings affirm the robust stability of nucleoporin labeling and underscore the ability of
[89Zr]Zr-Df-Bz-F19 to maintain its structural integrity following in vivo administration.

In vivo experiments in U87MG tumor-bearing mice unveiled the rapid clearance of
[89Zr]Zr-Df-Bz-F19 from the bloodstream, with 51% of the radioactive drug eliminated
from the blood within the timeframe spanning 2 to 72 h. Notably, 89Zr was observed to
accumulate in bone tissues. Furthermore, the study revealed an increase in the average
tumor-to-kidney (T/K) and tumor-to-blood uptake ratios over time, specifically at 2, 24, 48,
and 72 h. After 72 h, the metabolism of the 89Zr labeled through bifunctional chelation of F19
became apparent. The exceptional radioactive purity, in vivo stability, and favorable tumor-
to-tissue uptake ratio collectively position [89Zr]Zr-Df-Bz-F19 as a promising candidate for
PET/CT imaging [127].

FAP expression is documented in multiple solid cancers, yet limited knowledge exists
regarding its prevalence in metastatic castration-resistant prostate cancer (mCRPC) [159–162].
The evolving landscape of precision treatment strategies for prostate cancer was highlighted
in the European Society of Medical Oncology 2022 report [163,164]. Advancements in CRPC
therapies hinge on accurate imaging modalities, lesion visualization, disease staging, and
informed therapeutic decision-making [105]. These findings underscore the ongoing demand
for selective and sensitive imaging probes applicable to mCRPC patients.

To address the specific context of mCRPC, Hallie et al. employed a humanized
antibody, initially identified by phage display, and labeled it with 89Zr. This antibody serves
as a FAP-expressing tumor-selective imaging probe for PET/CT imaging in a preclinical
prostate cancer xenograft model [128]. The investigative process commenced with genomic
and immunohistochemistry assessments to determine the expression of FAP in prostate
cancer [128,165,166]. Specifically, FAP localization in tissues and cells was determined via
antigen–antibody binding reactions. Genomic analysis was predicated on RNA sequencing
derived from primary prostate cancer patient samples or mCRPC bone and soft tissue tumor
biopsies [167,168]. Concurrently, immunohistochemistry analyses were performed on
cancer samples from a biological materials repository [128]. These comprehensive genomic
and immunohistochemistry investigations unequivocally demonstrated FAP expression
across transgenomic subtypes of metastatic disease and metastatic sites. Importantly, this
affirmed FAP’s utility as a target imaging and therapeutic intervention within the prostate
cancer tumor microenvironment [128,169].

Further validation entailed assessing the designed probe’s specificity for FAP-expressing
tumors using near-infrared (NIR) dye-labeled B12 IgG. The outcomes affirmed that B12 IgG
effectively and specifically detects cells expressing FAP by NIR fluorescence imaging [170].
This critical step established the foundation for the prospective development of B12 IgG as a
contrast agent for PET imaging.

Subsequent PET/CT imaging evaluations were conducted in a mouse model estab-
lished through the subcutaneous injection of CWR-R1FAP cells. Notably, [89Zr]Zr-B12 IgG
demonstrated significantly enhanced tumor uptake in FAP-positive cells in mice bearing
CWR-R1FAP relative to the control group injected with [89Zr]Zr-IC IgG. This heightened
tumor accumulation is attributed to improved permeability and retention efficiency, leading
to a sustained presence of the [89Zr]Zr-IC IgG probe within the tumor tissue, unlike the
control probe, which exhibited rapid clearance and near-invisibility at 72 h. Compared
with that in the control group, there was a heightened accumulation of [89Zr]Zr-B12 IgG in
FAP-positive tumor cells (Figure 1) [128].

In a critical extension of this work, mice were subcutaneously injected with hPrCSC-44
(an immortalized human prostate cancer stromal cell line) in combination with DU145
(a FAP-null prostate cancer cell line) to establish a xenograft mouse model. Subsequent
administration of [89Zr]Zr-B12 IgG or control [89Zr]Zr-IC IgG in mice bearing subcutaneous
hPrCSC-44/DU145 xenografts, followed by serial imaging was performed at 24, 48, 72, 96,
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120, and 144 h post-injection, allowed for comprehensive PET imaging evaluation. The
results showed maximum tumor uptake of [89Zr]Zr-B12 IgG at 24 h, which surpassed
control levels by 4–5 times. Additionally, pronounced [89Zr]Zr-B12 IgG uptake in the
liver was observed. Over time, tumor and liver uptake exhibited parallel reductions, with
diminished tumor uptake evident at 144 h after injection [128].

[89Zr]Zr-B12 IgG has the potential for noninvasive PET/CT imaging applications
in mCRPC, serving as a specific imaging probe for FAP-expressing tumors. Notably,
B12 IgG can be internalized by FAP-expressing cells, as evidenced by its robust tumor
accumulation. Furthermore, it demonstrates an adeptness for preserving imaging signals
and holds promise for immunoconjugate-based therapies. Importantly, B12 IgG facilitates
facile nuclide exchange through chelator conjugation, rendering it a promising candidate
for radioimmunotherapy applications [128].

2.5. Bispecific Antibodies

In the realm of tumor-targeting antibodies, an exciting development involves Hoff-
mann LaRoche’s bispecific antibodies RG7386 (FAP-DR5) and RO7300490 (FAP-CD40)
(Figure 1) [134,171,172]. Currently in phase I clinical trials (NCT02558140,
NCT04857138) [173,174], these antibodies represent a novel approach. One of these anti-
bodies is engineered to target FAP for precise localization, while the other is designed to
interact with molecules influencing tumor apoptosis or necrosis. These bispecific antibodies
work in tandem, obstructing different signaling pathways simultaneously. Compared with
monoclonal antibodies, bispecific antibodies possess two specific antigen-binding sites,
which endow them with stronger specificity. Consequently, they precisely target tumor
cells, minimize off-target toxicity, and can orchestrate immune cell-mediated tumor eradica-
tion through dual-target signal blockade [175–182]. This special structure confers a unique
advantage to bispecific antibodies in the field of tumor therapy. Notably, LaRoche’s bispe-
cific antibody, approved in 2017, achieved a revenue of USD 3.5 billion in 2021, establishing
biphasic drugs as a prominent topic of interest following the success of PD-1 inhibitors.

The concept of bispecific antibodies also opens up new possibilities for radionuclide
labeling. While no specific studies have explored the radionuclide labeling of bispecific
antibodies targeting FAP, research into combination therapies involving radionuclides and
bispecific antibodies targeting other antigens has been conducted [183,184]. For instance,
Morris’ team combined radionuclides with bispecific antibodies (anti-CTLA-4 and anti-PD-
L1). In a mouse model, this approach resulted in complete and enduring tumor remission,
outperforming combinations involving monoclonal antibodies [185]. The potential to
combine or label FAP-targeted bispecific antibodies is a promising avenue that introduces
a fresh dimension to radiotherapy nuclide markers for FAP-targeted tumor therapy. Such
innovations hold significant potential for advancing clinical FAP-targeted tumor therapy.

3. Peptide-Based FAPIs
3.1. Peptide-Based FAP Radiopharmaceuticals

While radiolabeled antibodies against highly expressed FAPs on fibroblasts exhibit
high affinity and specificity, their clinical utility in molecular imaging is hindered by
prolonged circulation in the bloodstream and limited tumor penetration potential [186].
In contrast, small peptides typically exhibit favorable PK profiles characterized by rapid
clearance from tissues and efficient tumor penetration [105,187–192]. As such, peptide-
based radiopharmaceuticals have emerged as the most promising candidates for molecular
imaging in the clinical setting [193–206]. Cyclic peptides, in particular, offer enhanced
structural stability and resistance to enzymatic degradation compared with linear peptides,
greatly enhancing their efficacy in radiological diagnosis and therapy [207–215]. FAP-
targeted cyclic peptides have shown encouraging outcomes across numerous clinical trials.

For instance, 3B Pharmaceuticals introduced 263 different FAP-targeted peptide struc-
tures and identified peptides suitable for radiolabeling (Table 2). Notably, 3BP-3320,
3BP-3321, 3BP-3407, and 3BP-3554 exhibited exceptional radioactive purity. The selected
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polypeptides were labeled with indium-111 and subsequently injected into mice to eval-
uate the tissue-specific radioactive uptake. The findings highlighted that 111In-3BP-3554
displayed the highest tumor/tissue radioactivity uptake rate. Consequently, this tracer un-
derwent in-depth in vivo PK evaluation in mice. Representative SPECT/CT imaging was
performed three hours after injection of 111In-3BP-3554 in four different mouse sarcoma
tumor models, consistently revealing significant radioactive uptake in all tumor types.
Dose–response evaluations of 177Lu-3BP-3554 were further conducted in the Sarc4809
model. Compared with natLu-3BP-3554, 177Lu-3BP-3554 demonstrated marked inhibitory
effects on tumors, with increasing doses amplifying this effect [216]. On 21 September 2019,
Clovis Oncology secured an upfront payment of USD 12 million for exclusive rights to
FAP-targeted radiolabeled peptidomimetics (FAP-2286) developed by 3B Pharmaceuticals,
with the exception of Europe [217].

Table 2. HPLC analysis of the radiopurity for 177Lu-labeled compounds in a formulation buffer
containing 100 mg/mL ascorbic acid and 5 mg/mL methionine [216].

Name Structural Unit HPLC Retention
Time (min)

HPLC Area% Day 0
Post End of Synthesis

HPLC Area% Day 6
Post End of Synthesis

177Lu-3BP-3407
Hex-[C(tMeBn(DOTA-

PP))-P-P-T-Q-F-C]-D-NH2
7.5 95.7 94.0

177Lu-3BP-3554
Hex-[C(tMeBn(DOTA-

AET))-P-P-T-Q-F-C]-OH 7.6 97.2 95.6

3.2. Structure of the Selective and Specific Peptide FAPI

In their patent, 3B Pharmaceuticals has cataloged a range of peptide structures
amenable to radiolabeling with radionuclides (Table 3 and Figure 2). Among these struc-
tures, 3BP-3554 emerged as a potential clinical candidate and was renamed FAP-2286.

Table 3. Structurally akin compounds to FAP-2286. (HEK-FAP Intake (Time) (%ID/g), ++++: 20–25,
+++: 15–20, ++: 10–15, +: 6–10, -: <6, C (Cysteine, Cys), D (Aspartic acid, Asp), E (Glutamine Acid), F
(Phenylalanine, Phe), G (Glycine, Gly), H (Histidine, His), K (Lysine, Lys), P (Proline, Pro), Q (Glu-
tamine, Gln), R (Arginase, Arg), T (Threonine, Thr), and the dot-circle structure represents, DOTA).

Name Molecular
Formula

Molecular
Weight Structural Unit Structures

(Simple)

HPLC
Retention

Time (min)

HEK-FAP
Intake (Time)

in %ID/g

3BP-
3105 C114H169N25O33S2 2481.171

Hex-[C(3MeBn)-P-P-T-E-
F-C]-D-H-F-R-D-Ttds-

K(DOTA)-NH2
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Table 3. Cont.

Name Molecular
Formula

Molecular
Weight Structural Unit Structures

(Simple)

HPLC
Retention

Time (min)

HEK-FAP
Intake (Time)

in %ID/g

3BP-
3275 C110H165N25O30S2 2379.820

Hex-[C(3MeBn)-P-P-T-E-
F-C]-D-H-Nmf-R-Ttds-

K(DOTA)-NH2
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Figure 2. Cyclic peptide compounds of 3B Pharmaceuticals [216].

Distinguishing features between FAP-2286 and other peptides within the same series
manifest chiefly in the following facets. Firstly, the placement of the chelator dramatically
affects both the radiopurity of the nuclide-labeled compound and its tumor uptake rate.
When the chelator is linked to the tMeBn structure, which is instrumental in cyclization, it
enhances radiopurity and results in a higher tumor uptake rate compared to compounds
where the chelator is linked to the polypeptide chain. Moreover, different modifications of
cyclic peptides can affect the compound’s specific affinity and polarity. For instance, altering
only the cysteine substituent at the C-terminus of the cyclic peptide leads to corresponding
changes in specific affinity. Moreover, extending the length of the chain segment impacts
the compound’s polarity. In the absence of substituents, longer chain segments decrease
molecule polarity, thereby diminishing polarity [216,218].

FAP-2286 demonstrates highly effective and specific binding to FAP of human and
mouse origin, along with a pronounced inhibitory effect. The equilibrium dissociation
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constant (KD) values were 1.1 and 4.7 nM, and the half maximal inhibitory concentration
(IC50) values were 3.2 and 22.1 nM for human and mouse FAP, respectively. The metal
complexes of FAP-2286 exhibited potent binding to human and mouse FAP, featuring KD
values of 0.2–1.4 nM and 1.9–7.7 nM, respectively. Importantly, these metal complexes
did not compromise the inhibitory activity against FAP, affirming their exceptional FAP
specificity. Mean IC50 values for FAP from human and murine sources were determined as
1.3–2.2 nM and 8.4–16.3 nM, respectively [216,219].

Furthermore, FAP-2286 has favorable stability, high radioactive purity after radionu-
clide labeling, and outstanding specific affinity. Consequently, Clovis Oncology and 3B
Pharmaceuticals have embarked on collaborative initiatives to conduct preclinical imaging
and therapeutic evaluation of FAP-2286. Concurrently, Clovis Oncology has initiated plans
for clinical trials involving FAP-2286 [220,221].

3.3. 68Ga-FAP-2286 and 111In-FAP-2286 for Nuclear Imaging

Gallium-68-labeled FAP-2286 demonstrates remarkable efficacy in tumor imaging.
Consequently, 3B Pharmaceuticals directed their attention toward FAP-2286 and its chela-
tion with natural nonradioactive metals (natGa-FAP-2286, natLu-FAP-2286, and natIn-FAP-
2286), and proceeded to evaluate three radiotracers for their in vitro affinity and selectiv-
ity [216].

The excellent affinity, precision in targeting, and inherent stability of FAP-2286 and its
complexes have been conclusively established, facilitating the coordination of gallium-68
and indium-111 radionuclides with FAP-2286 for use as PET or SPECT imaging agents,
respectively [216]. In vivo SPECT imaging employing 111In-FAP-2286 in HEK-FAP tumor-
bearing mice showcased stable accumulation within tumor tissues, accompanied by mini-
mal uptake in non-tumor regions. Notably, the kidney displayed the highest nontargeted
uptake, albeit the T/K ratio gradually declined over time, reaching its zenith at 48 h after
treatment [216,219].

Compared with the small molecule FAPI series, cyclic peptide FAPIs manifested supe-
rior biological properties [222], including stronger receptor selectivity and binding affinity
and longer tumor retention. Remarkably, 68Ga-FAP-2286 exhibited the same rapid renal
clearance as 68Ga-FAPI-46, with no noticeable differences in tumor distribution between the
two tracers [220]. Chen et al. performed a comparative uptake analysis of 68Ga-FAPI-46 and
68Ga-FAP-2286 in cancer patients to delineate the in vivo distribution patterns of different
inhibitors [223]. 68Ga-FAP-2286 exhibited lower physiological uptake in muscles, salivary
glands, thyroid, and pancreas than 68Ga-FAPI-46. Conversely, 68Ga-FAP-2286 displayed
heightened uptake in the heart, kidneys, and liver relative to 68Ga-FAPI-46. Despite 68Ga-
FAPI-46 undergoing clinical imaging investigations for diverse tumor models, its rapid
blood clearance and limited tumor retention pose substantial limitations for diagnostic
and therapeutic applications [224]. In preclinical studies, FAP-2286 demonstrated longer
tumor retention and stronger antitumor activity over time than FAPI-46, maintaining con-
sistent tumor uptake at 3 h post-injection. Key advantages inherent to FAP-2286 encompass
elevated affinity for FAP binding, improved tumor accumulation, and prolonged tumor
retention [223].

With its introduction into clinical practice, Clovis Oncology embarked on the radiola-
beling of FAP-2286 with gallium-68 for clinical tumor imaging. In a phase I clinical trial
(NCT04939610), 68Ga-FAP-2286 was used as a contrast agent for pretreatment PET scans
in 30 patients with solid tumors. This approach will persist as a guide for pretreatment
imaging and posttreatment evaluation in an ensuing phase II trial. Furthermore, Clovis
Oncology has initiated a clinical evaluation of 68Ga-FAP-2286 (NCT04621435), which, as
of June 2022, encompassed 48 patients with cancers of the breast, bladder, prostate, colon,
head/neck, pancreas, sarcoma, cholangiocarcinoma, and lung [225]. Patients were sub-
jected to 68Ga-FAP-2286 administration and imaged 64 ± 7 min after injection. Notably,
cholangiocarcinoma exhibited the highest tumor uptake. PET imaging conducted on a
72-year-old patient with cholangiocarcinoma revealed peak tumor uptake at 120 min, with
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the tumor-to-background ratio progressively augmenting from 30 to 120 min. 68Ga-FAP-
2286 PET emerges as a pivotal tool for staging patients across cancer types characterized by
robust tumor uptake, renal metabolism, and negligible renal accumulation. Its application
prospects are indeed promising [225].

3.4. 177Lu-FAP-2286 for Radionuclide Therapy

FAP-2286 can be radiolabeled with the radionuclide 177Lu for the treatment of clinical
solid tumors. Prior to clinical trials, the therapeutic efficacy and specificity of this approach
were evaluated in murine models. Notably, the administration of 177Lu-FAP-2286 to
HEK293-FAP tumor-bearing mice and FAP-expressing xenografts mice from sarcoma
patients did not result in significant weight loss. Furthermore, the tumor retention of
177Lu-FAP-2286 exceeded that of 177Lu-FAPI-46. Over the 24–72 h timeframe, the T/K ratio
for 177Lu-FAP-2286 consistently increased, in contrast to the T/K ratio for 177Lu-FAPI-46,
which peaked at 24 h. Importantly, 177Lu-FAP-2286 exhibited commendable properties as
an active targeting agent, characterized by potent and specific FAP binding, resulting in
high tumor uptake, accumulation, and demonstrable therapeutic effects [220].

Furthermore, clinical trials of FAP-2286 revealed prolonged tumor retention and su-
perior tumor suppression compared with FAPI-46 [220]. Clovis Oncology initiated the
LuMIERE phase I and II clinical trials of FAP-2286 (NCT04939610), enrolling patients
with advanced solid tumors. Phase I focused on evaluating the safety and tolerability
of 177Lu-FAP-2286, while phase II aims to determine the recommended dose of 177Lu-
FAP-2286 and assess the objective response rate in patients. Phase I entails fixed-dose
intravenous administration of 177Lu-FAP-2286 at six-week intervals, up to a maximum of
six doses for patients exhibiting positive uptake of 68Ga-FAP-2286. The dose-escalation
range, guided by Bayesian optimal interval design, spans between 3.7 and 9.25 GBq, en-
compassing four distinct doses (3.70 GBq/100 mCi, 5.55 GBq/150 mCi, 7.40 GBq/200 mCi,
9.25 GBq/250 mCi). Phase II involves intravenous administration of the recommended
dose of FAP-2286 to a cohort of up to 40 patients with advanced solid tumors. As of
October 2022, 177Lu-FAP-2286 is being examined with a 7.40 GBq metering regimen, with
the LuMIERE study projected to conclude by 1 June 2026 [226].

The LuMIERE study has yielded noteworthy findings. In the phase I dose study,
11 patients underwent 68Ga-FAP-2286 imaging and received treatment with 177Lu-FAP-2286
across cohorts. Among these patients, three individuals with peritoneal pseudomucinous
tumors or colorectal cancer received 3.70 GBq, while six patients with different solid
tumors received 5.55 GBq, and two patients were administered 7.40 GBq of 177Lu-FAP-
2286. Encouraging treatment outcomes were observed, with eight patients discontinuing
treatment, and one patient, after completing six doses of 3.7 GBq 177Lu-FAP-2286 for more
than 12 months, demonstrated stable disease without the requirement for subsequent
anticancer interventions. Another with gallbladder adenocarcinoma, from the 5.55 GBq
cohort, exhibited stable disease upon four doses. Notably, 177Lu-FAP-2286 exhibited a
manageable safety profile with some preliminary evidence of antitumor activity [225].

Prof. Richard P. Baum released findings pertaining to the biodistribution and pre-
liminary dosimetry from the first human trial of FAP-2286 in March 2022. Intravenous
injection of 177Lu-FAP-2286, completed within 5–10 min, was performed on 11 patients
with advanced adenocarcinoma, all of whom had undergone 68Ga-FAP-2286 or 68Ga-
FAPI-04 PET/CT imaging. SPECT/CT imaging after treatment illustrated a significant
uptake of 177Lu-FAP-2286 within the tumor lesions. Notably, Patient 4 with pancreatic
cancer and liver, peripancreatic lymph node, and bone metastases, underwent PET/CT
imaging before the intravenous injection of 177Lu-FAP-2286. The patient’s anterior and
posterior SPECT/CT images 48 h post-injection illustrated a significant liver uptake of
177Lu-FAP-2286 (Figure 3a). Patient 6 with breast cancer, characterized by diffuse FAP-
positive bone and bone marrow metastases and lymph node metastases in 68Ga-FAP-2286
PET/CT imaging, displayed regression of bone and bone marrow lesions within 10 days
(Figure 3b) [221].
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Coincidentally, in November 2022, Rao et al. administered [177Lu]Lu-FAP-2286 to a
patient with systemic metastases from squamous cell carcinoma of the right lung [227].
This intervention was followed by meticulous pre- and post-treatment assessments through
[68Ga]Ga-FAP-2286 PET/CT imaging. The MIP image revealed systemic metastases from
the patient’s squamous cell carcinoma of the right lung, supraclavicular lymph nodes,
irregular thickening on the right side, hypodense hepatic nodules, and osteolytic lesions in
the left scapula. Following nine weeks of injection with [177Lu]Lu-FAP-2286 at a dose of
7.0 GBq, [68Ga]Ga-FAP-2286 PET/CT scans exhibited a reduction in the affected regions
within the MIP images [227]. The above two investigations have provided clinical sub-
stantiation of FAP-2286’s efficacy in treating FAP-positive tumors, thereby implying its
potential utility in addressing a spectrum of advanced primary tumors and metastases.
However, both studies have certain limitations. Firstly, the patient cohort in these studies
was relatively small and displayed heterogeneity. Secondly, the administration of 177Lu-
FAP-2286 was performed as the last-line treatment, precluding a dose-escalation regimen.
Finally, the assessment of the safety and efficacy of 177Lu-FAP-2286 hinged primarily on
observational data. Therefore, it is imperative that comprehensive clinical trials are under-
taken to thoroughly investigate the PK, safety profile, dosimetry, and therapeutic efficacy
of 177Lu-FAP-2286 in patients with advanced solid tumors [105].

177Lu-FAP-2286 has demonstrated substantial therapeutic promise, with 177Lu serving
as the radiolabeled nuclide pivotal in this therapeutic paradigm. Various 177Lu-labeled
drugs targeting diverse molecular entities have received regulatory approval from the
U.S. Food and Drug Administration (FDA) [228]. For example, 177Lu-PSMA-617, desig-
nated for treating male patients with PSMA-positive mCRPC, exhibited a noteworthy
effective systemic half-life of 40 h and entailed a mean absorbed red marrow dose of
0.03 GBq [228,229]. Similarly, 177Lu-DOTATATE, tailored for managing neuroendocrine
tumors, boasted a prolonged effective systemic half-life of 55 h, accompanied by a mean ab-
sorbed red marrow dose of 0.04 GBq [228,230]. Comparatively, 177Lu-FAP-2286 manifested
an effective systemic half-life of 35 h, coupled with a mean absorbed red marrow dose
of 0.05 GBq. Importantly, the effective absorbed dose of 177Lu-FAP-2286 aligned closely
with that of 177Lu-DOTATATE and 177Lu-PSMA-617, underscoring its compatibility for
therapeutic application across a broad spectrum of malignancies. In addition, peptide-
targeted radionuclide therapy with 177Lu-FAP-2286 relieves pain symptoms in invasive
adenocarcinoma cases. Encouragingly, 177Lu-FAP-2286 also showed considerable potential
in tumor remission and inhibition, shedding new light on FAP-targeted peptide-based
radionuclide therapy. In the quest for improved efficacy, modifying the radionuclide pay-
load holds promise. For instance, while 177Lu emits gamma (γ) rays and β-particles and
alternative radionuclides such as actinium-225 (225Ac) and radium-223 (223Re) emit α-rays
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capable of inducing DNA double-strand breaks, rendering them potentially more lethal
than β-particles [105]. Presently, multiple enterprises are engaged in clinical investigations
into FAP-2286, further underscoring its burgeoning status as an emerging therapeutic agent
poised for future market introduction.

4. Conclusions

Since the seminal discovery by Garin-Chesa et al., 1990, which revealed the high ex-
pression of FAP in most epithelial tumor cells [94], significant strides have been made in the
realm of FAP-targeted therapeutics encompassing antibodies and peptides. Radiolabeled
antibodies have long stood as exemplars of high targeting affinity and specificity. Their
high molecular weight translates to protracted circulation in the bloodstream and tumor
retention time, but correspondingly sluggish clearance [231–233]. Peptide drugs are charac-
terized by relatively low molecular weight and can offer better blood circulation and tumor
retention. Peptides, owing to their potential for heightened receptor selectivity, binding
affinity, and tumor retention, may outstrip other FAP inhibitors in the realms of diagnostic
and therapeutic efficacy [234–239]. At present, FAP tracers have great prospects in clinical
application. Li et al. reported the efficacy evaluation of a 73-year-old male patient with
recurrent bladder tumor after receiving 177Lu-FAP-2286 [240]. PET/CT results showed a
decrease in the number and degree of uptake at the lesion sites. In addition, there are many
clinical trials underway for FAP-2286, which involve solid tumors such as breast, pancreas,
sarcoma, prostate cancer (NCT04621435) [241], and pathologic fibrosis such as idiopathic
pulmonary fibrosis, cirrhosis, and cardiac fibrosis (NCT05180162) [242]. In conclusion, FAP
has emerged as a prominent target in the pursuit of tumor-specific interventions, demon-
strating promising outcomes in tumor imaging and therapy research. Nonetheless, the
present study’s limitations, including a relatively small sample size and abbreviated follow-
up duration, underscore the imperative for extensive future investigations and clinical
trials to explore the diagnostic or therapeutic properties of FAP-targeted applications.
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Abbreviations

CAF Cancer-associated Fibroblast
CT Computerized Tomography
DPP Dipeptidyl Peptidase
FAP Fibroblast Activation Protein
FAPI FAP Inhibitor
FDA Food and Drug Administration
IC50 Half Maximal Inhibitory Concentration
ID/g Injected Dose/Gram
MAb Monoclonal Antibody
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mCRPC Metastatic Castration-resistant Prostate Cancer
MIP Maximum Intensity Projection
NIR Near-infrared
PET Positron Emission Tomography
PK Pharmacokinetic
SPECT Single Photon Emission Computed Tomography
TME Tumor Microenvironment
T/K Tumor-to-kidney Ratio
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