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Abstract: We report two cases of pancytopenia in patients after recovering from a mild COVID-19,
now presenting as paroxysmal nocturnal hemoglobinuria (PNH) and aplastic anemia. These cases
illustrate a common pathway whereby a viral trigger causes the clonal expansion of a hematological
disorder. Although the association of both cases with COVID-19 is temporal and COVID-19 may
be an incidental diagnosis, the growing evidence related to the hematological effects of SARS-CoV-
2 infection highlights the need for further investigation into the hematological consequences of
COVID-19, particularly in the post-pandemic era.
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1. Introduction

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has caused more than 6.8 million deaths globally as of 22 March 2023 [1]. There
are known associations of hematological disorders with other viruses from the Coron-
aviridae family, such as SARS-CoV-1 and Middle East Respiratory Syndrome coronavirus
(MERS-CoV) [2]. Similarly, SARS-CoV-2 has been linked to a broad spectrum of hemato-
logical abnormalities, ranging from mild leukopenia to fulminant bone marrow failure.
More recently, acquired bone marrow failure syndromes, including aplastic anemia and
paroxysmal nocturnal hemoglobinuria, have been reported in the literature as a sequela of
COVID-19 infection [3–6].

Aplastic anemia is a rare hematologic disorder characterized by pancytopenia due
to marrow aplasia. The most common etiology of aplastic anemia is immune mediated,
and 80% of these cases respond remarkably well to immunosuppressive therapy [7]. The
mechanism behind immune-mediated aplastic anemia is not fully understood; however,
there are culminating evidence points on the role of viral infections that lead to dysregulated
immune responses and the destruction of hematopoietic stem cells (HSCs) [7].

PNH is an acquired disorder of HSCs characterized by somatic mutations in
the glycosylphosphatidylinositol (GPI) anchor protein synthesis, which leads to a
deficiency of complement regulatory proteins and unregulated complement-mediated
hemolysis [7–9]. More often, AA and PNH can present in the same patient as a moving
target in the same spectrum.

Though it is etiologically challenging to prove the cause of AA/PNH, it is imperative
to report this rare condition in association with the recent SARS-CoV2 pandemic. Here, we
describe two cases of aplastic anemia and PNH presenting as pancytopenia associated with
SARS-CoV-2.
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2. Methods

This report involves two cases of acquired pancytopenia associated with COVID-19
manifesting as PNH and AA. Data sources were retrospective and collected from the
electronic medical record system, including patient histories, labs and diagnostics, the
documentation of clinical course, therapies used, and clinical outcomes at follow-up.

3. Case Series
3.1. Case 1

A previously healthy 21-year-old male presents to the hematology clinic with pancy-
topenia that was discovered during the pre-operative evaluation of an ankle open reduction
and internal fixation (ORIF) in April 2022. His only medical history is that of mild COVID-
19 infection confirmed by PCR, and he has no family history of any hematological disorders.
Initial labs revealed a hemoglobin of 9.3 g/dL, white blood cell count of 4.1 × 103 cells/µL,
absolute neutrophil count of 2.74 × 103 cells/µL, and platelet count of 34 × 103 cells/µL.
His coagulation profile (PT/INR, APTT), D-dimer, and fibrinogen levels were within
reference range. COVID-19 assessed using nasopharyngeal polymerase chain reaction
(PCR) was negative. Hemolytic labs revealed an LDH of 595 U/L and an elevated total
bilirubin of 1.4 mg/dL. Bone marrow biopsy showed a decreased trilineage hematopoiesis,
but no blasts. Further cytogenetic studies showed an abnormal 13q deletion in 2 out of
20 cells. PNH flow cytometry identified PNH clones in granulocytes (19.53%), monocytes
(19.77%), and RBCs (3.61%; 0.22% type II cells and 3.39% type III cells). Since the patient
was previously healthy without a family history of hematological disease nor a constel-
lation of symptoms suggesting a possible congenital cause of bone marrow failure, such
as Fanconi anemia and dyskeratosis congenita, further genetic testing was not performed.
A diagnosis of hemolytic paroxysmal nocturnal hemoglobinuria/non-severe aplastic ane-
mia combination syndrome was made. He was administered the appropriate immunization
for encapsulated organisms prior to starting him on ravulizumab. Five months after di-
agnosis, and after completing three doses of ravulizumab, he showed improvements in
counts and did not require transfusions since diagnosis.

3.2. Case 2

A 52-year-old female presents to the hematology clinic with increased bruising. She
has a medical history of anterior uveitis and fibromyalgia, however, no family history of
hematological disorders. She contracted a mild COVID-19 infection in May 2022, confirmed
with PCR, and finished a course of nirmatrelvir–ritonavir (Paxlovid) without experiencing
any respiratory compromise. A month following her recovery, she experienced easy
bruising that prompted a visit to her primary care physician where basic labs were run,
and she was found to be pancytopenic. On exam, she did not have any active bleeding,
petechiae, abdominal pain, or melena. Notably, she completed her initial vaccination series
for SARS-CoV-2 with Johnson & Johnson/Janssen vaccines in 2021, and seven months later,
she had a follow-up vaccination with a Pfizer–BioNtech booster. The initial laboratory
studies revealed a hemoglobin of 11.6 mg/dL, white blood cell count of 3.0 × 103 cells/µL,
absolute neutrophil count of 0.9 × 103 cells/µL, and platelet count of 18 × 103 cells/µL.
Bone marrow biopsy revealed decreased trilineage hematopoiesis and no increase in blasts;
however, rare, small irregular lymphoid aggregates composed of small mature T and B
lymphocytes were present. Flow cytometry revealed normal immunophenotypic results.
Next generation sequencing and cytogenetic studies did not reveal any abnormalities,
but PNH flow cytometry identified minute PNH clones in FLAER- and CD157-negative
neutrophils and monocytes (0.5%). The patient was diagnosed with non-severe aplastic
anemia with a non-hemolytic subclinical PNH clone and was managed with observation
and a close monitoring of blood counts. She did not develop any further easy bruising or
bleeding episodes during observation.

The clinical characteristics of both cases are summarized below in Table 1.
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Table 1. Clinical information for patients with SARS-CoV-2-related aplastic anemia.

Variable
Patient Case

1 2

Age 21 52

Sex Male Female

Interval between COVID
infection and pancytopenia 4 months 1 month

CBC

WBC 4.1 3.0
ANC 1.2 0.9
Platelets 34 18
HGB 9.3 11.6
MCV 106.2 94

Bone Marrow Biopsy Cellularity 10–20% 10–15%

PNH clones
Granulocytes 19.53% N/A
Monocytes 19.77% 0.5%
RBCs 3.61% N/A

History of autoimmune disease None Anterior uveitis

SARS-CoV-2 Vaccination None
Johnson and Johnson/Janssen

Seven months later,
Pfizer–BioNtech booster

Treatment Ravulizumab N/A

4. Discussion

Epidemiological studies estimate the annual incidence of AA in 2019 to be around
2.0 per million in Western countries and higher in Asia (3.0–5.0 per million) [8]. Compara-
tively, the annual incidence for PNH in the US is 5.7 per million [9]. PNH can affect any age
group; however, in the US, the most affected age group is between third and fifth decades.
At the time of writing, the incidence rates of AA and PNH in the post-COVID-19 era were
unknown. Several studies have reviewed the hematologic manifestations of COVID-19,
and the most frequently observed laboratory findings include lymphopenia, neutrophilia,
anemia, and thrombocytopenia [2,10,11]. However, as we reported here, some patients
have a predilection towards acquiring bone marrow failure syndromes after a COVID-19
infection. A brief compilation of such cases is presented here in Table 2. Although their
association with SARS-CoV-2 infection seems temporal and, in some instances, incidental,
given the wide prevalence of the virus, an increasing number of new AA and PNH cases
related to COVID-19 warrant further exploration of a viral trigger that leads to marrow
failure as a sequela.

Table 2. Cases of SARS-CoV-2-related aplastic anemia/PNH.

Clinical Data Diagnosis

Bone
Marrow
Biopsy

Cellularity

Onset of
Cytopenia after

COVID
Infection

AA/PNH
Therapy

COVID-19
Treatment Reference(s)

21, M *
Hemolytic

PNH/aplastic
anemia

10–20% 4 months Ravulizumab Supportive This report

52, F *

Aplastic anemia
(with

subclinical
PNH clones)

10–15% 1 month Observation Paxlovid This report
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Table 2. Cont.

Clinical Data Diagnosis

Bone
Marrow
Biopsy

Cellularity

Onset of
Cytopenia after

COVID
Infection

AA/PNH
Therapy

COVID-19
Treatment Reference(s)

35, M Hemolytic
PNH Normal 0 days ‡

Eculizumab,
transfusion

support

3-day course of
pulse steroids,

and IVIG
[3]

22, F Severe aplastic
anemia 5% 10 days Sibling HSCT Supportive [4]

69, F Severe aplastic
anemia 5–10% 2 days

Cyclosporine,
antithymocyte

globulin,
eltrombopag

Supportive [4]

76, M Pure red cell
aplasia 20–30% 4 months Cyclosporine Supportive [4]

21, M

Severe aplastic
anemia
(with

subclinical
PNH clones)

<5% <1 month

Cyclosporine,
antithymocyte

globulin,
eltrombopag,
eculizumab †

Supportive [4]

69, F

Severe aplastic
anemia
(with

subclinical
PNH clones)

5% 5 months

Cyclosporine,
antithymocyte

globulin,
eltrombopag

Supportive [4]

19, F Hemolytic
PNH 40–50% § 0 days ‡ Eculizumab,

Ravulizumab Supportive [5]

28, F Severe aplastic
anemia 20–30% 3 months

Cyclosporine,
antithymocyte

globulin,
eltrombopag,
prednisone

Supportive [4,6]

21, M Severe aplastic
anemia <5% 2 months Sibling HSCT Supportive [12]

12, F Severe aplastic
anemia 10% 0 days ‡

Antithymocyte
globulin,

cyclosporine
Paxlovid [13]

18, M Severe aplastic
anemia 10% 0 days ‡

Antithymocyte
globulin,

cyclosporine
Supportive [13]

78, F
Hemolytic

PNH/aplastic
anemia

Poor 0 days ‡ -- || Supportive [14]

* Our case report. † Received eculizumab due to expansion of PNH clone. ‡ SARS-CoV-2 PCR was positive on
presentation; timing between infection and cytopenia onset unclear. § Biopsy also showed large areas less than
10% cellular. || Patient was voluntarily discharged prior to the start of any treatment; follow-up unknown.

This emerging relationship between COVID-19, AA, and PNH is being investigated
globally. A survey from the UK examined the emergence of AA in patients recovering
from COVID-19 infection and discovered 3 cases of AA (diagnosed as severe or very severe
AA) developed a few weeks after a positive SARS-CoV-2 result, 2 cases of AA relapse
(confirmed with marrow hypocellularity), and 15 cases of hematologic decline in known
AA that required treatment, transfusion support, and monitoring [15]. Additionally, there
has been an increase in the number of cases reporting the exacerbation of PNH with COVID-
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19 infection since the start of the pandemic. Iannuzzi et al. reported 14 cases of known
PNH patients and 7 cases of AA/PNH patients who presented with worsening hemolysis
symptoms following an infection with SARS-CoV-2 [14]. This underscores the need to
include the worsening clinical spectrum in estimating the true incidence of AA/PNH
during the COVID-19 pandemic.

A few mechanisms have been proposed regarding the effect of SARS-CoV-2 on the
hematopoietic system including the direct effects of the virus on the bone marrow, cytokine
storm causing immune-mediated damage, and the direct effect of virus on erythroid
precursors [2]. A summary of these mechanisms is illustrated below in Figure 1. Viral
infections, such as SARS-CoV-1, MERS-CoV, and SARS-CoV-2, have been shown to induce
a pro-inflammatory state wherein activated white blood cells and cytokines are released
in a positive feedback loop [8]. Because of this background inflammatory state, immune
system hyperactivation results in multiorgan dysfunction [16]. Ratajczak and Kucia (2020)
evaluated the role of the Nlrp3–inflammasome complex in generating an inflammatory
microenvironment, how the innate immune system interacts with the inflammasome, and
the secretion of pro-inflammatory cytokines in COVID-19 and HSCs (Figure 1) [17]. Their
research demonstrated the overexpression of inflammasome complex in HSCs during an
active infectious period and that SARS-CoV-2 virus entry receptor angiotensin-converting
enzyme 2 (ACE2) is also expressed on the surface of HSCs [17]. They hypothesized that
SARS-CoV-2 may be involved in the direct transcription of pro-inflammatory mediators
in HSCs by a spike protein interaction with the ACE2 receptor, and it may also induce
uncontrolled Nlrp3 inflammasome expression, leading to hematopoietic stem cell death via
pyroptosis [17,18].
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Figure 1. Mechanisms of SARS-CoV-2 on hematopoietic cells. The SARS-CoV-2 virus has
two primary mechanisms: direct viral entry (above, inset) and through inciting an immune response
(below). Direct viral entry, via ACE2 receptors, may upregulate Nlrp3 inflammasome expression,
leading to pyroptosis, viral replication within HSCs, and apoptosis. Immune response causes the
activation of T cells that respond to HSCs and subsequent immune attack, leading to the proliferation
of inflammatory signals and a cytokine storm. HSC: hematopoietic stem cell; ACE2: angiotensin-
converting enzyme 2; and Nlrp3: NOD-like receptor family pyrin domain containing 3. Different
color circles represent cells and the corresponding labels of each cell are given in the figure.

The pro-inflammatory microenvironment generated by COVID-19 also plays a role in
the immune-mediated acquired aplastic anemia mechanism. The development of abnormal
autoimmune responses, including cytotoxic T-cells that activate, expand, and circulate as
oligoclones, causes the release of myelosuppressive cytokines and induces the cell death
of HSCs and progenitor cells [19]. Nevertheless, the inciting antigens for such a T-cell
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response remain undetermined, and HLA polymorphisms and the aberrant expression of
T-cell receptor signaling genes may also play a role in T-cell dysfunction [20]. Whether the
SARS-CoV-2 virus can act as an inciting antigen remains to be clarified.

PNH clonal expansion is found in almost 50% of patients with immune-mediated
acquired aplastic anemia [20]. Clonal expansion can be from intrinsic (such as PNH cells
being conferred an intrinsic growth advantage via acquired mutations) or extrinsic (such as
an environment targeting the destruction of normal HSCs giving rise to PNH HSC selection)
in nature. It must be noted that both mechanisms can also co-occur simultaneously [7].
It has also been proposed that PNH cells have acquired the capacity to evade apoptotic
stimuli and inflammatory cytokines and escape the HSC-directed immune attack as found
in aplastic anemia [20].

Moreover, if SARS-CoV-2 catalyzes an immunologic attack against bone marrow pro-
genitors, these cases illustrate the variability in the virus’s ability to cause PNH clonal
expansion and foster an autoimmune marrow environment (Figure 2). Here, case 1 demon-
strated a larger PNH clone population, leading to the hemolytic presentation, and case 2
was found to have a small amount of PNH clones. Although the reason for this variability
can be multifactorial, a reduced immunologic attack should correspond to the lower levels
of PNH clone expansion [20].
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Based on treatment data reported in the literature, only one patient was treated for
the combined COVID-19 infection and PNH with a short course of pulse steroids followed
by IVIG (Table 2). However, the investigators noted no hematological improvement and
even the use of eculizumab yielded a poor response [3]. In our report, case 2 received
two prophylactic COVID-19 vaccines and completed a five-day course of Paxlovid after
COVID-19 exposure, whereas case 1 received neither. To compare the clinical charac-
teristics and impact on disease trajectory, we need longitudinal follow-ups and larger
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retrospective studies [15]. Similarly, data on overall survival (OS) stratified by concomitant
COVID-19 and PNH compared to COVID-19 alone are sparsely reported. Median OS
appears to be reduced in the combined setting [15]; however, larger studies are needed to
better understand how COVID-19 infection influences the overall survival for PNH/AA.
Whether the temporal relationship between somatic PIGA mutation and immunologic
attack (i.e., COVID-19 infection) determines the degree of clone expansion as well as the
effects of COVID vaccination and/or antiviral treatment remain open questions that need
exploring in future studies.

5. Conclusions

In summary, we report two cases of new-onset PNH/aplastic anemia syndrome and
aplastic anemia associated with COVID-19. It is possible that SARS-CoV-2 does play a
role in the development of PNH clonal expansion and bone marrow failure, but the exact
mechanism is still unknown. Regardless, aplastic anemia is a common ground, perhaps
stimulating the formation of clonal populations. Although the association of both cases
with COVID-19 is temporal, and COVID-19 may be an incidental diagnosis, the growing
evidence related to the hematological effects of SARS-CoV-2 infection highlights the need
for further investigation of this phenomenon.
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