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Abstract: Mast cells (MCs) are immune cells that reside in tissues; particularly in the skin, and in
the gastrointestinal and respiratory tracts. In recent years, there has been considerable interest in the
Mas-Related G Protein-Coupled Receptor X2 (MRGPRX2), which is present on the surface of MCs
and can be targeted by multiple exogenous and endogenous ligands. It is potentially implicated in
non-IgE-mediated pseudoallergic reactions and inflammatory conditions such as asthma or atopic
dermatitis. In this paper, we review natural products and herbal medicines that may potentially
interact with MRGPRX2. They mainly belong to the classes of polyphenols, flavonoids, coumarins,
and alkaloids. Representative compounds include rosmarinic acid, liquiritin from licorice extract,
osthole, and sinomenine, respectively. While evidence-based medicine studies are still required,
these compounds have shown diverse effects, such as antioxidant, analgesic, anti-inflammatory, or
neuroprotective. However, despite potential beneficial effects, their use is also burdened with risks of
fatal reactions such as anaphylaxis. The role of MRGPRX2 in these reactions is a subject of debate.
This review explores the literature on xenobiotic compounds from herbal medicines that have been
shown to act as MRGPRX2 ligands, and their potential clinical significance.
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1. Introduction

Mast cells (MCs) are, among a number of other functions, the primary initiators
of allergic and allergic-like symptoms; they swiftly release numerous mediators upon
activation. Allergic MC activation occurs via an IgE-dependent pathway, in which the
allergen is matched to a specific IgE that binds to a high-affinity IgE receptor (FcεRI) on
the cell surface [1]. However, there are also clinical reactions that resemble allergy and
develop after exposure to a variety of xenobiotic compounds for which IgE-mediated
mechanisms have not been demonstrated and are therefore termed pseudoallergic or
anaphylactoid [2]. After a period of uncertainty regarding the responsible pathway, the
Mas-Related G Protein-Coupled Receptor X2 (MRGPRX2) was proposed to be one of the
possible IgE-independent MC activation pathways [3]. McNeil et al. demonstrated that
MRGPRX2 can be activated by xenobiotics, including fluoroquinolones, neuromuscular
blocking agents, and peptidergic therapeutics (e.g., icatibant, leuprolide), in addition to
previously known endogenous ligands such as neuropeptides and substance P (SP) [4].
Since the publication of McNeil’s seminal paper in 2015, the number of publications
addressing xenobiotic triggering of MRGPRX2 has increased rapidly. The hypothesis
that drug hypersensitivity reactions are induced via an MRGPRX2-dependent pathway,
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mainly by drugs from the muscle relaxant and flouroquinolone antibiotic groups, has
attracted much attention from the scientific community [5]. However, many studies have
also been devoted to other xenobiotics—including those found in medicinal plants—and
these analyse their association with the MRGPRX2 receptor. In this article, we review
these studies, focusing on the best documented evidence and the most representative
compounds derived from the polyphenols, coumarins, alkaloids, and other groups that
could have a potential impact on accelerating or alleviating MRGPRX2-dependent diseases.
In addition to an analysis of the latest available data on the association of MRGPRX2 with
xenobiotics and its potential clinical relevance, we also discuss the limitations of these
studies, highlighting the current knowledge gap.

2. Pathophysiological Basis
2.1. Mast Cell Characteristics

MCs are immune cells that are present in almost all tissues of the body but are
particularly abundant in those tissues directly exposed to the external environment [6].
While MCs are primarily associated with allergic reactions, they also play a significant role
in various physiological and pathological processes [7–11].

All MCs contain intracellular granules and express the high-affinity IgE receptor FcεRI
on their surface [12]. The cross-linking of FcεRI receptors upon antigen-IgE binding is the
most recognized pathway of MC activation, playing a crucial role in potentially fatal reactions
such as anaphylaxis [1]. MC stimulation leads to degranulation and the release of granule
contents, which is a primary cause of hypersensitivity manifestations [1]. The granules store a
wide range of preformed mediators, including histamine [13], proteases such as tryptases and
chymases [13,14], and also some cytokines; mainly tumor necrosis factor alpha (TNF-α) [15].
These substances cause various biological effects, such as increasing vascular permeabil-
ity, smooth muscle contraction and activation of immune cells, which are associated with
symptoms of allergic inflammation [16]. In addition to the immediate release of preformed
mediators, MCs also secrete de novo synthesized compounds that are produced after MC
stimulation [13]. These include lipid mediators—such as prostaglandin D2 (PGD2), which are
rapidly produced and released [17]—and cytokines, which are produced and secreted over a
longer period of time (hours rather than minutes) [18–20].

In humans, MCs are generally categorized into one of three subtypes, based on the
content of specific proteases. MCs that contain only tryptase (MCT) are found in the mucosa
of the small intestine and in the alveolar septa [21]. MCs that contain only chymase (MCC)
are commonly found in synovial tissue. MCs, which contain both tryptase and chymase
(MCTC), are predominantly found in the skin, submucosal layers of the small intestine, and
tonsils [22]. However, at the transcriptional level, the protease content displays more tissue-
specific variability, which is evident both between and within tissues [12]. Cutting-edge
advancements in single-cell profiling technologies have opened new avenues to unravel
the complexity and diversity of MCs. These breakthroughs shed light on previously unseen
heterogeneity among MCs across various tissues, which is distinct from other cell types.
In humans, transcriptomic analysis unveiled the existence of seven distinct MC subsets
(MC1–7) distributed across 12 organs, each with unique transcriptomic core signatures [23].

All MCs express FcεRI, but there is controversy regarding whether MCT and MCC
express MRGPRX2, despite the known expression of MRGPRX2 in skin MCTC [24–26].
Furthermore, even among skin MCTC, only a small percentage of cells exhibit MRGPRX2
expression under steady-state conditions [24,25].

2.2. Structure and Regulation of MRGPRX2 Function

MRGPRX2 is a G protein-coupled receptor (GPCR) that was first reported to be ex-
pressed mainly on MCs and sensory neurons [3,27]. The receptor has low affinity and
low selectivity with respect to ligand binding. MRGPRX2 has been shown to be activated
by a wide range of endogenous and exogenous compounds, primarily by small cationic
molecules and peptides that have amphipathic properties, or share a motif of tetrahy-
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droisoquinoline (THIQ) or a similar motif [4,5]. Endogenous ligands of MRGPRX2 include
neuropeptides such as SP, PAMP-12, and cortistatin-14 (CST-14), as well as antimicrobial
host defense peptides such as cathelicidin LL-37, hBD2, and eosinophil granule proteins
(e.g., MBP). Exogenous ligands of MRGPRX2 include the cationic polymer compound
48/80 (C48/80), which is commonly used in receptor functional assays, and a variety of
drugs approved by the Food and Drug Administration (FDA), such as fluoroquinolones
(e.g., ciprofloxacin), neuromuscular blocking agents (e.g., rocuronium, atracurium), opioids
(e.g., morphine), and many others [4,9,28]. MRGPRX2 can also be activated or inhibited by
other exogenous agents, such as bacterial quorum sensing proteins, insect venoms [3,29,30],
or many different plant xenobiotics (Figure 1) [31–59]; representatives of which are de-
scribed in the following part of this review.
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Inc., Elliocott City, MD, USA).

As a GPCR, MRGPRX2 shares the structure of seven transmembrane (TM) α-helices
connected by three extracellular loops (ECLs) and three intracellular loops (ICLs) [60].
The ECL region contains the N-terminus responsible for ligand binding, whereas the ICL
region contains the C-terminus involved in G protein coupling, β-arrestin recruitment,
and downstream signalling [61–64]. The extracellular binding of ligands to MRGPRX2
promotes the conformational changes in the transmembrane domains, resulting in struc-
tural changes on the cytoplasmic side of the membrane and activation of G proteins, and
subsequent MC degranulation [65]. Conversely, some ligands can induce intracellular
β-arrestin recruitment, leading to receptor desensitization and internalization [62]. The
downstream signalling pathways of MRGPRX2 involve the activation of the phospholipase
C pathway (PLC-PKC-IP3R), which result in intracellular Ca2+ influx and MC degranula-
tion. Additionally, the MAP kinase (ERK-P38-JNK), PI3K-AKT, and NF-κB pathways are
activated, leading to cytokines and PGD2 synthesis in MCs [7].

2.3. Role of MRGPRX2 in MC-Driven Skin Diseases

To date, the exact role of MRGPRX2 in MCs has not been fully understood [9]. Nu-
merous in vivo and in vitro studies have been conducted on the receptor (and its mouse
ortholog, MrgprB2 [4]), indicating its potential involvement in various physiological and
pathological processes. With its ability to bind to a diverse range of ligands, MRGPRX2
has been implicated in drug pseudoallergic reactions, neurogenic inflammation, and a
wide array of inflammatory diseases such as allergic contact dermatitis (ACD), chronic ur-
ticaria (CU), rosacea, rheumatoid arthritis, atopic dermatitis (AD), mastocytosis, ulcerative
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colitis, and allergic asthma [8–11]. However, conclusive evidence regarding MRGPRX2′s
involvement in these conditions in humans is still lacking.

Endogenous peptides considered to be MRGPRX2 ligand play an important role
in the development of inflammatory skin diseases. The neuropeptide SP and the host
defense peptide cathelicidin LL-37 are key players in the pathogenesis of rosacea and AD,
and are upregulated in the skin of patients [8,10]. Both peptides in vitro were shown to
activate MCs via MRGPRX2, leading to MC degranulation and release of pro-inflammatory
mediators, including histamine and cytokines (i.e., TNFα) [66,67]. It was proposed that
the released mediators can subsequently act on sensory neurons and vascular endothelial
cells to promote neurogenic inflammation, resulting in itching, erythema, swelling, and
pain that exacerbate disease symptoms [8,10]. In addition, MC-derived mediators recruit
immune cells into the inflamed tissue and stimulate both neurons and immune cells
(such as neutrophils) to secrete more SP and LL-37, which then could again activate
MCs [8,10,11]. Similar mechanisms involving SP and MCs are also present in ACD and
CU [8,10,68]. Another neuropeptide ligand of MRGPRX2 involved in the development
of neurogenic skin inflammation, such as the non-histaminergic pruritus associated with
ACD, is CST-14 [8,10,69–71]. The skin conditions are also characterized by elevated levels
of proinflammatory cytokines such as IL-13 and IL-31 [72–74]. It is noteworthy that in all
these diseases, except CU, an increased number of MCs has been reported in the skin of
patients compared to healthy controls [8,10]. Additionally, the expression of MRGPRX on
cutaneous MCs is higher in patients with CU [24]. Therefore, the involvement of MRGPRX2
in inflammatory skin diseases is suggested [8,10,11].

In several of these diseases, the usual treatment with antihistamines and other first-
line drugs has been reported to be ineffective [75–77]. With the current generation of
H1-antihistamines, sedation has become a minor concern, as the use up to fourfold normal
doses are minimally or non-sedating [77–79]. However, due to incomplete efficacy in all
patients, the search for other medications remains a priority.

3. Traditional Chinese Medicines and Plant-Derived Compounds

Traditional Chinese medicine (TCM) is a medical therapy system that has been prac-
ticed for millennia. It stands as one of the earliest forms of medical practice recorded in
global history. Given their extensive use in China and many other countries, traditional
Chinese medicines (TCMs) remain among the most commonly prescribed therapeutic
agents worldwide [80]. TCMs often consist of natural herbal and other remedies tailored
for specific conditions such as allergic or heart diseases [81,82]. Both the beneficial effects
and side effects of TCMs may potentially be linked, at least in part, to the interaction of
active compounds with the MRGPRX2 receptor.

3.1. TCM Compounds in Evidence-Based Medicine and Their Potential for Use in Humans

Evidence-based medicine (EBM) involves making medical management decisions,
particularly therapeutic decisions, based on current scientific evidence that has been sys-
tematically and reliably verified [83]. EBM is widely accepted in modern medicine in
most countries and is based on the results of high-quality clinical trials; typically random-
ized, double-blinded, and placebo-controlled trial. In contrast, evidence from case-control
studies, followed by case reports or studies in animal models or in vitro, is of less impor-
tance [83]. Chinese medicine, including treatment with herbs and their constituents, has a
fundamentally different approach to therapeutic decision-making. The approach is based
on a long-standing tradition, there is a lack of well-designed, standardized and repro-
ducible clinical trials to demonstrate the efficacy and safety of the therapeutic interventions
used [84,85]. TCM studies receive an average low mean score of 1.25 on the Jadad scale
which is used to assess the methodological quality of clinical trials; a maximum score of
5 indicates the best-quality study [86]. The quality of clinical trials in TCM is limited by
several factors. These include batch-to-batch variation of investigational products, difficulty
in preparing appropriate placebos for multicomponent herbal preparations, unclear ran-
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domization rules, and the discrepancy between the standardized intervention required by
EBM and the individual patient approach inherent in TCM [84]. Therefore, data obtained
within the TCM context are major risk factors for bias and may limit the translatability of
these findings to an evidence-based clinical context.

Although there is increasing evidence of the biological activity of many xenobiotic
compounds used in TCM formulations, this evidence is mostly derived from animal or
in vitro models that evaluate the effects of specific isolated compounds at concentrations that
may not be biologically relevant or representative of therapeutically used extracts (refer to
Table 1). For instance, baicalin was claimed to possess “anticancer” activities in non-small cell
lung cancer, but these conclusions came from a study that assessed its effect on tumor growth
and survival in a mouse model [87]. The design of this study suggests that “anticancer”
property should be considered as antineoplastic activity (i.e., elimination of cancer cells).
In another example concerning cancer the authors showed, through experiments on cell
culture, that osthole inhibits proliferation of gastric cancer cells [88]. Molecular modelling
methods were applied in another study to target signalling pathways involved in breast
cancer development with molecules such as salvianolic acid C [89]. This is also research that
is still distant from clinical applications. It should therefore be noted that often the properties
of TCM substances refers to their effects in experiments conducted, as mentioned above,
in vitro and such properties cannot be directly translated into the clinic until they have been
proven though robust placebo-controlled trials. It should also be emphasized that a number
of the substances described below have not been registered as medicinal products by the
FDA and the European Medicines Agency [90,91]. In TCM, these substances are attributed
with anti-inflammatory effects (osthole [92–97], flavonoids [98–100]); have been proposed for
use in heart disease (salvianolic acid C [101,102]), rheumatoid arthritis (sinomenine [103]),
cardiovascular disease, gastrointestinal and respiratory infections (baicalin [104]); however,
they also have very broad and non-specific indications (liquiritin [105], praeruptorin A [106],
piperine [107], rosmarinic acid [108]).

Clinical data on interventions based on MRGPRX2 inhibition are limited. However,
it is worth noting that in-human studies are already underway. Following successful ba-
sic in vivo studies in mouse and dog models [109], two clinical trials have been initiated
with an orally administered specific MRGPRX2 antagonist—the synthetic small molecule
compound EP262—in the indications of chronic spontaneous urticaria and atopic dermati-
tis [110]. Both studies are double-blinded, placebo-controlled, and randomized; therefore,
they are expected to provide reliable results on the efficacy of the studied molecule. The
primary outcome measure for urticaria is the change in a patient-reported questionnaire as-
sessing the number of hives and intensity of itch over seven consecutive days. In the atopic
dermatitis study, the primary objective is to evaluate the safety and tolerability of EP262.
The results of these studies are expected to provide valuable insight into the practical
clinical relevance of blocking MCs degranulation in the MRGPRX2-dependent pathway.

3.2. Polyphenols

Polyphenols are a broad and complex category of chemical substances derived from
plants. These components have at least one aromatic ring with one or more hydroxyl (OH)
groups in their structure, and are categorized into several classes; of which flavonoids,
phenolic acids, lignans, and stilbenes are the main groups [111]. Polyphenols are com-
monly found in fruits and vegetables [111]. Few randomized clinical trials have demon-
strated antioxidant, antidiabetic, and cardioprotective activity of some polyphenols, or
their role in improvement of gut microbial composition as prebiotics [112–119]. Addi-
tionally, these are suggested to display many other biological effects such as anti-aging,
anti-inflammatory, anticarcinogenic, and neuroprotective. However, direct in-human ev-
idence on these alleged properties are so far lacking [111]. Several polyphenols have
been reported as potential MRGPRX2 ligands exerting possible protective or pathological
effects in chronic skin diseases and other conditions, including MRGPRX2-dependent
pseudoallergy reactions [33,35,37,120].
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3.2.1. Salvanolic Acid C and Isosalvanolic Acid C

Danshen injection (DI) is a traditional Chinese medicine injection solution (TCMI),
containing the primary component derived from Salvia miltiorrhi [37,120]. It is commonly
used in the medical treatment of angina pectoris [102], liver cirrhosis [121], and heart
diseases including acute coronary syndrome [122]. However, the use of DI is often asso-
ciated with adverse reactions, including anaphylaxis [123,124]. Three phenolic acids of
Salvia miltiorrhi—namely salvianolic acid A (SA), salvianolic acid C (SC), and isosalviano-
lic acid C (ISC) (Figure 2)—have been identified as MRGPRX2 agonists and have been
shown to induce degranulation of MCs [37,120]. Among them, SC was shown to exhibit
the most potent MC stimulating activity. In the intracellular Ca2+ mobilization assay on
MRGPRX2-transfected human embryonic kidney 293 (MRGPRX2-HEK293) cells, a half
maximal effective concentration (EC50) of the components was determined. The EC50 of
SC, ISC and SA were 15.70 ± 4.62, 38.88 ± 8.67, and 363.40 ± 34.51 µM, respectively [37].
These results were confirmed by cell membrane chromatography, which showed that SC
had the longest retention time on the column with MRGPRX2, indicating the strongest
interaction with the receptor [37]. The authors also suggested that these polyphenolic
compounds compete to bind to the active site of MRGPRX2 with ciprofloxacin, which
is a known receptor ligand [37]. Molecular docking of ISC subsequently supported this
hypothesis, showing that ISC forms at least three hydrogen bonds with MRGPRX2 in
the active pocket [120]. In a mouse model of passive cutaneous anaphylaxis (PCA), the
injection of SC and ISC into the mouse hind paw resulted in tissue swelling and increase of
vascular permeability [37]; whereas hind paw inflammation was significantly inhibited in
MrgprB2 knockout mice or mice with MCs depletion [120]. Furthermore, the activation and
degranulation of Laboratory of Allergic Disease 2 (LAD2) human mast cells induced by SC
and ISC was abolished in MRGPRX2 knockout cells [37,120]. These reports suggest that the
polyphenolic compounds found in DI may be responsible for anaphylactoid reactions to
the drug, especially two geometric isomers, SC and ISC. It is noteworthy that DI research
has demonstrated the instability of SA in distilled water solutions, resulting in its conver-
sion to SC and ISC, which are the more potent components [125]. However, the complex
composition of DI does not exclude the involvement of other substances in the induction
of the anaphylactoid reactions [124,126]. Similarly, the administration route, including
the high dose of DI, which was described as the cause of some adverse drug reactions
(ADRs) [127,128], could be the reason for allergy-like reactions to DI. The data highlight the
need for caution in the administration of TCMI and the urgent need for in-depth research
of TCMs ingredients.
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Figure 2. (A) Structure diagrams of selected compounds in the different ligand groups. (B) Two potent
mast cell degranulators: monomer C48/80 and tetrahydroisoquinoline (THIQ) motif. Molecular
fragments with patterns similar to monomer of C48/80 as well as heterocyclic motifs from THIQ are
highlighted (created with ChemOffice 22.0, Perkin Elmer, Shelton, CT, USA).

3.2.2. Rosmarinic Acid

Rosmarinic acid (Figure 2) is a polyphenolic compound commonly found in Rosemari-
nus officinalis, popularly known as rosemary, and in other herbs, such as Perilla frutescens,
which is widely used in TCM [108]. In vitro studies and animal models suggest that
rosmarinic acid can have some physiological effects, including anti-inflammatory and
antinociceptive activities (Table 1) [129,130]. One of its proposed mechanisms of action
is the targeting of signalling pathway proteins, such as NF-κB [131]. Recently, data have
emerged suggesting an ameliorative effect of rosmarinic acid on ACD and inhibition of
MRGPRX2-mediated pseudoallergic reactions [35,72]. Ding et al. established a mouse
model of dibutyl square acid-induced ACD that exhibits common symptoms of ACD,
such as epidermal thickness, lymphocyte infiltration, MC degranulation, elevated serum
levels of histamine and IL-13, and increased bouts of scratching in mice [72]. Notably,
rosmarinic acid treatment reduced all symptoms of ACD in the mouse model. Furthermore,
the ACD model exhibited increased expression of CST-14 mRNA, which was significantly
decreased after administration of rosmarinic acid. The role of rosmarinic acid in MRGPRX2-
mediated MC activation was also investigated. The results showed that pretreatment
with rosmarinic acid reduced intracellular Ca2+ influx, LAD2 cell degranulation, and
histamine release induced by CST-14 and C48/80 [35,72]. Furthermore, in cells treated
with rosmarinic acid, MRGPRX2 mRNA and protein levels were downregulated whereas
CST-14 expression levels remained unchanged [72]. The suppressing effect of rosmarinic
acid on MC stimulation was also demonstrated to inhibit the activation of downstream
signalling pathways. The compound decreased the phosphorylation of proteins associ-
ated with MC degranulation (PLC and IP3) and cytokine production (PKC and ERK), as
well as NF-κB; this is consistent with previous studies [131]. Interestingly, the authors
also performed a molecular docking study, in which they demonstrated that rosmarinic
acid interacts with MRGPRX2 and associates with its G proteins at the intracellular site
(Figure 3) [72]. Conversely, another study [40] indicated that rosmarinic acid is a weak
inhibitor (IC50 = 1.8 mM) of C48/80-induced activation of MCs. However, the study was
conducted in other cell lines, namely primary cell culture of mouse peritoneal mast cells
(MPMC) and MRGPRX2-HEK293 cells, and the concentration of rosmarinic acid used in
the study were significantly lower (10 µM versus 25–100 µM in the previous studies), which
could have a big impact on data results. Additionally, the study did not provide additional
evidence supporting weak performance of rosmarinic acid on MC activation [40]. On the
other hand, the authors also performed molecular docking and showed that rosmarinic
acid was not expected to interact with the MRGPRX2 binding pocket [40]. In conclu-
sion, additional studies should be conducted to elucidate the effect of rosmarinic acid on
MRGPRX2-mediated MC functions.
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3.3. Flavonoids

Flavonoids are a large group of plant compounds—i.e., a subgroup of polyphenols—with
a wide range of beneficial effects on human health [98]. They are very abundant in plants,
including fruits and seeds; and contribute to their characteristics such as color, fragrance, and
flavor [98]. Flavonoids have been reported to potentially exert biological activities such as anti-
inflammatory, immunomodulatory, antibacterial, antiparasitic, antiviral, anticancer, anti-aging,
neuroprotective, cardioprotective, and antidiabetic effects [98]. Several flavonoids have been
identified as potential MRGPRX2 antagonists (Figure 1). Most of them have been reported
to have protective effects against hypersensitivity reactions and other health conditions such
as pruritus [56] or CU [42,132]. Additionally, agonists of MRGPRX2 among flavonoids have
also been identified [33,133]. Flavonoids have been reported to affect MC stimulation both by
direct binding to the receptor and by interactions with regulatory enzymes or transcription
factors [42,132,134,135]. In this section, we describe a few representatives of flavonoids that
may interact directly with MRGPRX2.

3.3.1. Baicalin

Baicalin, a flavone (Figure 2), is one of the major components of Scutellaria baicalensis
Georgi, which is extracted from a dried root of the plant [33]. Baicalin is commonly used
in TCMI for the treatment of inflammation, cardiovascular disease, and gastrointestinal
and respiratory infections [104]. Although baicalin has multiple beneficial pharmacological
activities (Table 1), TCMI with baicalin as the main active ingredient have been reported to
induce a number of allergic reactions [67,136–139]. Therefore, Wang et al. investigated the
role of baicalin in anaphylactoid reactions in mice [33]. Using mouse models of systemic
and cutaneous anaphylaxis in wild type (WT) and MrgprB2 knockdown mice, the authors
showed that baicalin induces receptor-dependent pseudoallergy [33]. Another study [133]
demonstrated that this compound induces intracellular Ca2+ mobilization and histamine
release in LAD2 cells, but not in MRGPRX2 knockdown LAD2 cells. Taken together, these
data suggest that baicalin may induce anaphylactoid reactions to TCMI through MRGPRX2.
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3.3.2. Liquiritin from Licorice Extract

Licorice (synonyms: liquorice, and Gan-Cao in Chinese [139]) is scientifically known
as the genus Glycyrrhiza [105] and is widely used in the food industry (as flavoring and
sweetener agents [31]), in cosmetics and in pharmaceuticals [105]. At the same time, licorice
is one of the most widely used ingredients in TCM [31]. It has many alleged biological
effects, including protective activities against many types of cancer [105], antibacterial
and anti-inflammatory effects [105]. Licorice extract contains a wide range of bioactive
components, including flavonoids such as liquiritin, chalconoids (isoliquiritigenin and
licochalcon A), and saponins (glycyrrhizic acid) (Figure 1) [31,41,52,105]. Recent studies
have proposed licorice ingredients as treatment agents for MRGPRX2-mediated anaphylac-
toid reactions [31,41,52]. In vitro studies of one of the active licorice flavonoids, liquiritin
(LQ), demonstrated suppression of MC activation (intracellular Ca2+ mobilization assay)
and degranulation (β-hexosaminidase and histamine release) [41]. The compound also
showed an in vivo protective effect against anaphylaxis. In the mouse model of PCA, LQ
injection into the hind paw resulted in a dose-dependent suppression of swelling and
vasodilation and caused a reduction in the percentage of degranulated skin MCs [41]. The
flavonoid also reduced histamine and inflammatory cytokines levels in the paw and serum
of mice [41]. Liquiritin has been demonstrated to bind directly to MRGPRX2, and molecular
docking studies indicate that it fits well into the active site of the receptor (Figure 3) [41].
At the same time, the compound showed low cytotoxicity in tested cells and no activating
effect on MCs [41]. However, it is worth noting that the study did not include MrgprB2
knockout mice or MRGPRX2 silencing, which constitutes a limitation. Nonetheless, these
results suggest that LQ may be a potential MRGPRX2 inhibitor and provide a basis for
further research.

3.3.3. Fisetin

Another natural flavonoid that possesses a range of potential health-related bioactive
properties is fisetin (Figure 2). Fisetin is found in various fruits and vegetables [140,141] and
has been proposed to have anti-inflammatory [99] and antiallergic effects (Table 1) [100].
It has been reported to inhibit several signalling pathways in vitro, including PI3K-Akt-
mTOR, P38, and NF-κB [142,143], which were associated with an inhibitory effect in
human inflammatory skin models [144]. Recent research on the SP and ovalbumin co-
stimulated CU mouse model demonstrated protective effects of fisetin against CU [42]. The
compound alleviated the symptoms associated with CU in mice and reduced serum levels of
inflammatory mediators such as histamine and TNFα, as well as the infiltration of red blood
cells into the tissue and degranulation of skin MCs [42]. Additionally, fisetin suppressed
local and systemic anaphylactoid reactions in mice [42]. The study revealed that fisetin
exerts its inhibitory effects by binding to the active site of MRGPRX2, thus preventing MCs
activation [42]. Fisetin also targets the AKT signalling molecule, which is consistent with
previous reports on inhibition of signalling pathways (Figure 3) [142–144]. In conclusion,
fisetin can be considered as a potential MRGPRX2 antagonist in future research.

3.4. Coumarins

Coumarins are secondary metabolites that belong to the benzopyrone family and
are commonly found in many plants [145]. They were shown to potentially exhibit a
range of pharmacological activities, including anti-inflammatory [146,147], antibacterial,
antiviral, antifungal [148], anticancer [149], antihypertensive [145], antioxidant [150], and
neuroprotective effects [145]. To date, hundreds of coumarins have been identified and
described [145,151]. Here, we present representative examples of coumarins that affect the
response of MCs via MRGPRX2 signalling.

3.4.1. Praeruptorin A

Praeruptorins are bioactive coumarins extracted from Peucedanum species such as
P. praeruptorum, which are widely used in TCM [106]. Praeruptorins have many beneficial
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physiological effects in the treatment of upper respiratory tract infections, cardiovascu-
lar, immune, and nervous system diseases [106]. One of these biological compounds is
praeruptorin A, which exhibits several bioactive properties (Table 1) and has been studied
in the context of MC activation via MRGPRX2 [38]. A competitive binding assay showed
that this compound competes with ciprofloxacin for binding to MRGPRX2, suggesting that
it may interact directly with the receptor [38]. Stimulation of LAD2 cells by praeruptorin A
caused β-hexosaminidase and histamine release [38], suggesting that this compound may
trigger MRGPRX2-mediated pseudoallergy reactions; however, the data are very limited
and thus further studies are required.

3.4.2. Osthole

Osthole is a coumarin extracted from the dried fruits of the Cnidium monnieri Cusson
plant (Figure 2). It is used in TCM to treat various pathological conditions. Osthole has
been considered to possess anti-inflammatory properties [92,93] and has been shown to
have protective effects in animal models of allergic asthma [94,95] and AD [97] (Table 1).
The study by Callahan et al. [34] demonstrated that osthole attenuated both the early and
late phases of MC activation and allergic inflammation in mice in vivo. The compound
significantly reduced intracellular Ca2+ mobilization and MC degranulation induced by
known MRGPRX2 ligands: SP, C48/80, and LL-37. MCs treated with osthole showed a
reduction in cytokine release after MC activation and a significant downregulation of ki-
nases phosphorylation in the downstream signalling pathway [34]. Moreover, in the mouse
models of PCA and chronic skin rosacea, osthole attenuated the inflammatory response
to C48/80 or LL-37 injection, respectively [34]. The compound reduced mRNA levels of
MC inflammatory mediators, the percentage of degranulated MCs; and decreased redness,
epidermal thickness, and cellular infiltration in the skin of the treated mice cohort [34].
The authors showed that osthole inhibits MC activation through allosteric rather than
competitive interactions with MRGPRX2 (Figure 3) [34]. Furthermore, this study showed
that osthole affects both the surface and intracellular expression levels of MRGPRX2, pro-
viding another possible way to regulate the MRGPRX2 response in allergic reactions and
rosacea [34]. However, another study showed that osthole could induce degranulation in
rat basophilic leukemia (RBL-2H3) cells, which have rat homologue of MRGPRX2; MrgprB3,
and FcεRI [38]. The authors imply the interaction of osthole with IgE receptor, due to results
of competitive binding assay with quercetin (used as ligand of FcεRI in the assay). However,
in a later study quercetin has been reported to inhibit MRGPRX2 and MrgprB2 by direct
binding [46]. Therefore, due to insufficient data, the conclusions should be drawn carefully.

3.5. Alkaloids

Alkaloids are plant and animal metabolites that comprise a wide range of compounds
that share nitrogen as a characteristic chemical element present in their structures. As a
result of their structural diversity, alkaloids have numerous biological properties and are
widely used in modern medicine. Illustrative applications of alkaloids in healthcare include
chemotherapy (paclitaxel, vinblastine), analgesics (morphine, codeine), treatment of respi-
ratory diseases (codeine, capsaicin), dietary supplements (piperine), and many others [152].
The classification of plant alkaloids is based on their chemical structure, biochemical pre-
cursors, and their occurrence in different plant genera. Here, we describe two alkaloids
with opposite effects on MRGPRX2-dependent MC activation, namely sinomenine and
piperine, which belong to the opium and piperidine alkaloids, respectively [152].

3.5.1. Sinomenine

Natural opium alkaloids (such as codeine, morphine, and its derivatives such as
sinomenine, thebaine, pethidine, etc.) have been extensively described as MRGPRX2 ago-
nists [4,32,39,153]. Sinomenine (Figure 2) is extracted from the root of the medicinal plant
Caulis sinomenii and is a major active component of TCMI, used to treat rheumatoid arthri-
tis [103,154]. Some studies have confirmed the interaction of sinomenine and MRGPRX2
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on MC lines, suggesting a possible contribution of MRGPRX2 in sinomenine anaphylac-
toid reactions [32,39,153,155]. Liu et al. showed that sinomenine increased intracellular
Ca2+ influx in LAD2 cells and MPMC [153]. However, the response was significantly
reduced in MRGPRX2/MrgprB2 silenced cells [153]. Depletion of MRGPRX2 in LAD2 cells
was also associated with the absence of sinomenine-induced degranulation as assessed
by β-hexosaminidase and histamine release. Treatment of LAD2 cells with sinomenine
for 24 h induced a significant upregulation of MC cytokine expression and secretion, as
well as MRGPRX2 protein level in the cells and the phosphorylation levels of signalling
pathway proteins (PLC, IP3R, P38, PKC). These responses were significantly reduced in
MRGPRX2 knockdown LAD2 cells [153]. The anaphylactic effect of sinomenine in vivo
was also investigated. The mouse model of PCA showed that sinomenine injection in-
duced extensive paw extravasation and swelling. These inflammatory responses were
almost completely absent in mice with MC depletion or MrgprB2 knockdown mice, com-
pared to WT mice [153]. Molecular docking and competitive binding studies showed that
sinomenine binds directly to MRGPRX2 [155], most likely at the active site of the receptor
(Figure 3) [39,153]. These studies have also determined EC50 for sinomenine. For LAD2
cells, EC50 was 2.16 µM [32], for MRGPRX2-HEK293 cells it was 1.84 µM and 2.77 ± 0.44 µM
([32] and [153], respectively), and for MrgprB2-HEK293 cells it was 2318 ± 314 µM [153].
The data showed the EC50 values to be even lower than those obtained for morphine and
MRGPRX2 (4.5–7 µM) [39,156,157].

3.5.2. Piperine

Piperine is another alkaloid with inhibitory properties related to MRGPRX2 [36]. It is
found in the fruits of long and black peppers (Piper longum and Piper nigrum) [152]. Piperine
has been reported to suppress both early (degranulation) and late (de novo synthesis of
mediators) responses to MC activation [36]. In addition to inhibiting C48/80-induced
LAD2 cells degranulation, it also reduced ciprofloxacin and LL-37-induced activation of
MCs [36]. Additionally, affinity chromatography methods showed a competitive binding
of piperine to MRGPRX2 compared to sinomenine and ciprofloxacin [36,38]. In animal
models, piperine ameliorated cutaneous symptoms and systemic anaphylaxis in mice [36].
Piperine could also reduce secretion of IL-31, suggesting that it has alleviating effect on
pruritus [36,73]. In addition, the suppressive effect on MC degranulation induced by LL-
37 [36], which is abundant in rosacea tissues [8,10], highlights the potential use of piperine
in the treatment of this condition. In conclusion, these data indicate that piperine exhibits
certain inhibitory properties related to the attenuation of the MC simulation, including
drug-induced MC activation leading to allergic reactions. Therefore, further studies are
warranted to elucidate its potential as a therapeutic agent in allergic conditions.
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Table 1. Overview of compounds discussed in this manuscript (further details of the experimental studies are presented in the Supplementary Materials—Table S1).

Compound Experimental Model
or Methods Primary Outcome Measure Key Conclusions about

Compound Activity References MRGPRX2 Inhibition
and/or Activation

EC50 and/or IC50 for MRGPRX2
(Experimental Model and Assay) Cmax in Plasma

Sa
lv

ia
no

lic
ac

id

Molecular docking,
molecular dynamics Inhibition of PI3K and mTOR

A candidate for in vitro
experiments in breast

cancer studies
[89] Activation * [37]

EC50 = 15.70 ± 4.62 µM (MPMC,
β-hexosaminidase
release assay) [37]

171.48 ± 9.42 ng/mL 1

(0.00024 µM)
[158]

R
os

m
ar

in
ic

ac
id

Mouse and rat models Behavioral tests Antinociceptive and
anti-inflammatory activity [130]

Inhibition [72]
/no effect [35,40] 2

IC50 = 1.8 mM
(MRGPRX2-HEK293 cells,

retention time on CMC
column) [40]

IC50 cannot be calculated
(MRGPRX2-HEK293 cells,

intracellular Ca2+ mobilization
assay) [35]

Carrageenan-induced
pleurisy and paw edema

tests in rats
Behavioral tests Potential for anti-inflammatory

and antinociceptive activity [129]

PC12 cells
Amyloid

β-induced cellular reactive
oxygen species generation

A candidate for neuroprotective
treatment of Alzheimer’s disease [159]

162.20± 40.20
nmol/L

(0.162 mM)
[160]

Mouse model of
cardiac fibrosis

Morphological examination,
echocardiography

Promising as a therapeutic agent
against cardiac fibrosis [161]

Ba
ic

al
in

Mouse model of anxiety/
depression Depression-like behaviors Improvement of anxiety/

depression-like behaviors [162]

Activation * [33,133] NA -Rat model of peridontitis Toll-like receptor expression Potential for treatment of
periodontitis [163]

Mouse model Tumor growth Potential for treatment of lung
cancer [87]

Li
qu

ir
it

in

Rat model Cell viability, inflammatory
cytokine expression

Beneficial impact on
pressure ulcers [164]

Inhibition [41] NA -

Rat model Behavioral tests Potential for treatment of bone
cancer pain [165]

PC12 cells
Expression of proteins

involved in
signalling pathway

Neuroprotective activity [166]

Diabetic mouse model α-glucosidase inhibition Potential for treating diabetes [167]

H9C2 cells Cell viability level Cardioprotective effect [168]

Fi
se

ti
n Male C57bl/6 J mice Histopathological and

serological injury markers
Protection against septic acute

kidney injury [142]

Inhibition [42] NA -
Prostate and lung

adenocarcinoma cells
Inhibition of the PI3K/AKT

and the mTOR pathways
Potential as adjuvant with
chemotherapeutic drugs [143]
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Table 1. Cont.

Compound Experimental Model
or Methods Primary Outcome Measure Key Conclusions about

Compound Activity References MRGPRX2 Inhibition
and/or Activation

EC50 and/or IC50 for MRGPRX2
(Experimental Model and Assay) Cmax in Plasma

O
st

ho
le

Pulmonary inflammation
induced in mice

Inflammatory parameters
in BAL fluid

Potential for inhibition
of inflammation in chronic

obstructive pulmonary disease
[169]

Inhibition [34]/
activation [38] 3 NA -

Mouse model Itch–scratch response Antipruritic activity [170]

Mouse
monocyte-macrophage cells

Inflammatory
mediators’ level

Potential for treatment of
ulcerative colitis [92]

Model of middle cerebral
artery occlusion in rats

Determination of the
infarct area

Potential for neuroprotective
therapy in ischemic stroke [93]

Bleomycin induced
pulmonary fibrosis in rats

Expression of
inflammatory mediators Beneficial effects in tested model [171]

Cervical cancer cell lines
Cancer cell viability,

proliferation, and migration
and invasion

Potential as adjuvant treatment for
cervical cancer [172]

Human gastric cancer cells Cell proliferation
and apoptosis

Potential for inhibition of gastric
cancer cells proliferation [88]

Osteosarcoma cell lines Cell viability Potential for
osteosarcoma treatment [173]

Tumor-bearing mice Survival days Potential for developing
antitumor drugs [174]

Diabetic mice PPAR activation Potential for treatment of diabetes [175]

Skeletal muscle cells
Expression of AMP-activated

protein kinase and glucose
transporter 4

Potential for treatment of diabetes [176]

Pr
ae

ru
p-

to
ri

n
A Mouse macrophages Expression of
NF-κB-related proteins

Potential as a drug for
viral infection [177]

Activation [38] NA -
Human hepatocellular

carcinoma
Migration and invasion of

tested cells
Potential as a therapeutic agent in
human hepatocellular carcinoma [178]

Si
no

m
en

in
e

Rat neuron–glial cultures
Expression of TNF-α,
prostaglandin E2, and

reactive oxygen species

Potential for treatment of
inflammation-mediated

neuro-degenerative diseases
[179]

Activation
[32,39,43,153,155]

EC50 = 2.16 µM (LAD2 cells,
intracellular Ca2+ mobilization

assay) [32]
EC50 = 1.84 µM

(MRGPRX2-HEK293 cells,
intracellular Ca2+ mobilization

assay) [32]
EC50 = 2.77 ± 0.44 µM

(MRGPRX2-HEK293 cells,
intracellular Ca2+ mobilization

assay) [153]
EC50 = 2318 ± 314 µM

(MrgprB2-HEK293 cells,
intracellular Ca2+ mobilization

assay) [153]

Rats and mice models Behavioral tests Analgesic effect in rodent models [180] 123 ± 22 ng/mL
(0.00037 µM) [181]

Human bladder cancer cell
line P-glycoprotein expression A candidate for treatment of

bladder cancer [182]

Mouse model of middle
cerebral artery occlusion

Brain edema, neuronal
apoptosis, neurological

deficiency
A candidate for stroke therapy [183]

Microglial cells
Amyloid β-induced levels of
reactive oxygen species and

nitric oxide

Potential for treatment of
Alzheimer’s diseases [184]
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Table 1. Cont.

Compound Experimental Model
or Methods Primary Outcome Measure Key Conclusions about

Compound Activity References MRGPRX2 Inhibition
and/or Activation

EC50 and/or IC50 for MRGPRX2
(Experimental Model and Assay) Cmax in Plasma

Pi
pe

ri
ne

Cervical cancer and
non-tumoral cell lines

Cell proliferation, viability,
and migration

Potential as complementary
treatment in cervical cancer [185] Inhibition [36,38] NA -

* For these compounds reports of anaphylactoid reactions to injections with them are cited in the main text. 1 Maximum concentration in rat plasma. 2 Rosmarinic acid has been described
in separate studies as inhibitory compound for MRGPRX2 or with no effect on the receptor; for details see Section 3.2.2. 3 Osthole has been described as an inhibitory compound for
MRGPRX2 and an activator of RBL-2H3 cells with unclear target; for details see Section 3.4.2. Abbreviations: BAL, bronchoalveolar lavage; Cmax, maximum concentration in plasma;
EC50, half maximal effective concentration; IC50, half maximal inhibitory concentration; MPMC, mouse peritoneal mast cells; mTOR, mammalian target of rapamycin; NA, not applicable;
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PI3K, phosphoinositide 3-kinase; PPAR, peroxisome proliferator-activated receptors; TNF, tumor necrosis factor.
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4. Discussion

In vitro and in vivo studies using animals have demonstrated the involvement of the
MRGPRX2 receptor on MCs in numerous physiological and pathological processes—including
anaphylactoid responses to various ligands—including FDA-approved drugs, immune re-
sponses, host defense against bacteria, tissue homeostasis and repair, nociception and pain, and
sleep regulation [11,186]. However, there is a lack of reliable studies in humans. MRGPRX2 is
known to be activated by a variety of naturally derived ligands, including phenols, terpenoids,
flavonoids, quinones, coumarins, and lignans, as highlighted in the recent literature [9,10]. A
wide range of these compounds are used in TCM for the prevention and treatment of various
diseases [187]. It should be noted that the estimated number of TCMs is around 12,800 [188].
Despite the increasing use of TCMs worldwide and their therapeutic appeal, its integration
into mainstream healthcare continues to be impeded by the absence of strong evidence from an
evidence-based medicine (EBM) standpoint. One fundamental limitation is the batch-to-batch
variation of the active constituents contained in the herbal formulation used [84].

Nevertheless, TCMs injections are widely used in clinical settings; but ADRs, including
the incidence of anaphylaxis, have been increasing annually, posing a serious public health
concern [189]. On the other hand, TCM components and other herbal substances have been
reported to have an inhibitory effect on MRGPRX2-induced MC stimulation and have been
suggested to have protective effects in many skin diseases and pseudoallergic reactions
(Figure 1) [9]. Notably, flavonoids, which are typically known for their anti-inflammatory
properties (Table 1), exhibit diverse effects on MRGPRX2. Baicalein, for instance, is an
exception that can cause pseudoallergic reactions by activating MRGPRX2 [9]; while other
flavonoids, which are richer in hydroxyl groups, act as antagonists of this receptor. The most
prominent group of the receptor agonists are the opium alkaloids, which include morphine,
codeine, sinomenine, and thebaine [4,32,39]. Given that some of these compounds are
present in TCMs and have been described to cause anaphylactoid reactions, as have a large
number of drugs approved by the FDA, it is important to be aware of the possibility of
their occurrence and to manage them appropriately.

On the other hand, some TCM compounds were reported to indicate protective effects
against MRGPRX2-dependent anaphylaxis and chronic skin disorders. For instance, one of
the candidates could be osthole, a plant-derived coumarin, which has been shown to reduce
SP- and LL-37-induced MC degranulation, and to attenuate mouse models of anaphylaxis
to SP and LL-37-stimulated rosacea [34]. Similar results were obtained with piperine, which
also prevented MCs degranulation to LL-37, but also reduced IL-31 secretion [36], which
has been proposed as a key clinical target for the treatment of pruritus [73]. Treatment
with fisetin abolished the SP and ovalbumin co-stimulated mouse model of CU [42]. In the
mouse model of ACD, rosmarinic acid has been demonstrated to attenuate ACD manifes-
tations and suppress non-histaminergic pruritus by inhibiting MRGPRX2-mediated MC
degranulation to CST-14 and by reducing levels of the proinflammatory cytokine IL-13 in
mouse tissues [72,74]. In addition, rosmarinic acid and osthole act on the level of MRG-
PRX2 in the MC, therefore they may have additional suppressing effects in pseudoallergic
reactions and skin diseases [34,72].

There are several limitations in the studies presented in this review. All data are based
on preclinical studies involving cell lines and mouse models. While animal models with
knockdown of MrgprB2, along with in vitro studies using human cell lines and MRGPRX2
knockdown/silencing, have demonstrated the involvement of the aforementioned xenobi-
otics in MRGPRX2-mediated MC activation/inhibition, conclusive evidence is still needed
to confirm whether MRGPRX2 can mediate such effects in humans. While evolutionarily
conserved, differences exist between human and mouse MCs. Human MCs demonstrate
higher diversity, and the expression of MRGPRX2 can significantly vary among individu-
als. [23,190] Moreover, there is only approximately 53% overall sequence similarity between
mouse and human homologues [191]. Notably, studies have revealed that certain drugs
such as ciprofloxacin or levofloxacin activate MRGPRX2 with EC50 values 20–35 times
lower than its mouse ortholog, MrbprB2. [4] For instance, the studies of sinomenine demon-
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strated significant difference of EC50 in MRGPRX2- and MrgprB2-transfected HEK293 cells
(EC50 = 2318 µM and EC50 = 1.84–2.77 µM, respectively) [32,37]. Moreover, the EC50 values
can vary between different cell models (cell lines vs. primary cells) [186]. Additionally,
it has been observed that several antagonists, including L733060 and aprepitant, inhibit
SP-induced activation of mouse Mrgprb2 but do not inhibit human MRGPRX2 [192]. These
findings suggest significant species–specific differences between human MRGPRX2 and
mouse MrgprB2, indicating that MrgprB2 mutant mice may not be suitable models for
screening drugs intended for human use.

In vitro and in vivo animal studies can also not exactly reflect the function of MRG-
PRX2 in human tissues, because the key role in potential MRGPRX2-mediated anaphylaxis
may also depend on the receptor’s biology and the way of drug administration. Due to low
affinity of the receptor and thus the relatively high concentration of substance needed to
trigger response, the local concentration of the substance may be difficult to achieve. Exam-
ples of drugs such as atracurium have been described, whose plasma concentrations after
administration are markedly lower than the calculated EC50 for MRGPRX2 [186]. MCTC,
which is found predominantly in the skin, expresses high levels of MRGPRX2. Therefore,
the TCMs administration route plays an equally important role. Notably, over 80% of TCM
anaphylactoid reactions occur during parenteral administration [189], and might result
from high local TCM concentration after injection and subsequent potent stimulation of
skin MCs. Another possibility is that the receptor may be activated or inhibited by the same
compound, depending on its concentration. This dose-dependent effect is known in the
case of some opioid drugs, such as nalbuphine [193], where the agonistic or inhibitory effect
depends on the concentration of the drug, as well as the levels and conformation of the
receptor [194,195]. Moreover, the absence of specific biomarkers for MRGPRX2 activation
in vivo complicates human studies and impedes progress in this field.

The available studies on the interaction of natural products and herbal medicines
with MRGPRX2 are considerably limited; therefore, caution is advised when drawing
final conclusions.

5. Conclusions

Research into exogenous ligands for the MRGPRX2 receptor has grown tremendously
in recent years. In addition to some typical groups of drugs, these include numerous
substances of natural origin that are used in TCM for therapeutic purposes. In our work
we have described representative examples of these. They can show both antagonistic
and agonistic effects towards MRGPRX2. However, current data are derived from animal
studies and cell lines; and more studies using primary human(ized) models are needed.
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