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Abstract: In recent decades, fuzzy logic and fuzzy multi-criteria decision-making systems have
been applied in several fields. This paper aims to determine the optimal wind farm siting solution
in a fuzzy environment. Therefore, the main research question of the present paper is whether
and to what extent the uncertainty in the researcher’s judgments affects the ranking of wind farm
siting solutions. The fuzzy analytical hierarchy method is applied to an existing case study of wind
farm siting on the island of Andros, examining the stability of the final priorities of the alternatives
under a regime of gradual increases in ambiguity, as well as whether the introduced ambiguity
in the model corresponds to any uncertainty the researcher has during the process of scoring the
criteria and alternatives. Five assessment criteria (wind potential, ground slope, distance from road
network, distance from high-voltage network, and social acceptance of local population) and eight
eligible suitable alternatives (A1–A8) for wind farm siting are considered in the computations. The
methodology includes the fuzzification of initial decision-maker judgments, the calculation of fuzzy
intermediate priorities (weights), the defuzzification of fuzzy intermediate priorities (weights), and
the synthesis of intermediate priorities into final priorities of alternatives, according to the procedures
of the crisp AHP (CAHP). Under the assumptions of the initial case study, the results show that the
final priorities are quite robust when faced with increased ambiguity. In almost all the examined
cases, the alternative initially chosen as the best, A1, is dominant, followed by A3. In addition, in all
cases, social acceptance favors alternative A1, and wind velocity favors alternative A8. Therefore,
fuzzy multi-criteria methods can be applied to determine an optimal wind farm siting solution when
criteria with qualitative characteristics are used and the manifestation of preferences involves strong
elements of subjectivity.

Keywords: onshore wind farm; fuzzy analytic hierarchy process (FAHP); triangular fuzzy numbers;
Andros Island

1. Introduction

In recent decades, the energy market has turned to renewable energy sources (RESs)
as an efficient, economical, but, above all, clean and environmentally friendly solution.
Renewable energy sources such as wind, hydropower, and oceanic energy sources should
be introduced to promote energy conservation [1]. Regarding the policy of reducing
greenhouse gas emissions, RESs have emerged as a dominant pillar in the production of
electricity, which is constantly growing. In addition, target 7 (SDG 7) of the Sustainable
Development Goals (SDGs) proposes an increase in the global percentage of renewable
energy [2]. Therefore, RESs can significantly contribute to sustainability.

According to the European Environment Agency, the share of energy consumed in
the EU during 2021 and 2022 generated from renewable sources was 21.9% and 23%,
respectively [3]. Solid biomass represented 40% of the total renewable energy supply in
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Europe in 2022, followed by wind (15%), hydropower (10%), and liquid biofuels (7%),
whereas other significant contributions include heat pumps (7%) and solar photovoltaics
(7%), as well as biogases, renewable waste, geothermal, and solar thermal [3]. Meeting
the new target of 42.5% for 2030 will demand more than double the rates of renewables
deployment seen over the past decade [3]. Wind energy, both onshore and offshore,
appears as one of the most basic sources, with an ever-increasing percentage of total energy
production, as it emerges as a particularly environmentally friendly but also economically
competitive source. Globally, wind energy production exceeded 900 GW in 2022 [4], while
the installed capacity in Greece, in particular, reached 4681.4 MW [5].

Simultaneously with the deployment of the sector, the interest of national and inter-
national organizations, investors, academia, and researchers in finding the optimal wind
farm siting solutions is continuously increasing. Researchers begin with the identification
and delineation of exclusion zones, i.e., areas deemed unsuitable for the deployment of
wind farms. Exclusion areas include protected areas, national parks, areas with very low
wind potential, areas that do not meet the minimum distance from residential areas, ar-
chaeological sites, road networks, airports, areas that are migratory paths for birds, and
military areas. Omitting these helps identify suitable areas for wind farm siting, from
which optimal areas can be defined based on several environmental, technical, economic,
and social criteria. These criteria often include the wind potential of the area, distances
from the electricity and road network, slope, land uses, and visual nuisance. In addition,
the acceptance of wind farm projects by the local population is of particular interest. The
peculiarity of the visual nuisance criterion is that the degree of acceptance is not “easily”
measurable, but it also can change over time. Public acceptance is influenced by various
factors not necessarily scientifically documented and, moreover, is prone to sensationalist
rhetoric. A well-organized and effective information campaign can change an initially
formed attitude.

A geographical information system (GIS) is a basic tool for data analysis. GISs have
been recently used extensively as a decision support system to identify potential areas
for wind farm installations [6–8]. However, finding the optimal solutions requires the
assessment and combination of a series of criteria that are not directly related to each
other. This assessment, to a certain extent and depending on the criterion, depends on the
experience and subjectivity of the researcher or the decision maker. Multi-criteria decision-
making (MCDM) methods are often applied in the assessment phase. They combine
criteria and alternatives, use mathematical equations to derive results, and prioritize the
alternatives based on the selected criteria, offering the decision maker a series of optimal
solutions. The most frequently used MCDM methods in the literature regarding wind
farm siting solutions are the analytical hierarchy process (AHP) (e.g., [6,9–12]), a technique
for order of preference by similarity to ideal solution (TOPSIS) (e.g., [13–17]), VIKOR
(e.g., [18–20]), elimination et choix traduisant la realité (ELECTRE) (e.g., [16,21,22]), and
the preference ranking optimization method for enrichment evaluation (PROMETHEE)
(e.g., [23,24]). In a recent study in which wind energy and MCDM methods were discussed,
Eroglu et al. [25] concluded that the AHP method is the most frequently used method.

A special category of MCDM methods comprises those that use “fuzzy inference”
or “fuzzy logic” in their mathematical computations, with fuzzy AHP and fuzzy TOPSIS
being the most widespread. These methods are particularly used for the expression of
subjectivity, as well as in cases where the criteria describe vague concepts, e.g., when one
has a positive, very positive, negative, or very negative attitude toward a project or activity.

Although there are numerous case studies in the international literature that use AHP
for criteria weighting (e.g., [6,9–12]) in wind farm siting processes, there are really a handful
of studies that use the fuzzy analytic hierarchy process (FAHP).

More specifically, Sánchez-Lozano et al. [26] employed FAHP approaches of various
MCDM strategies to select appropriate sites for wind farms on the coast of the Murcia
Region (southeastern Spain). The criteria were converted into a fuzzy decision matrix
using triangular fuzzy numbers (TFNs), and the authors used a GIS to construct a database
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of the options. The results indicated that the best alternative obtained by the FTOPSIS
method is the same as that obtained by the other fuzzy MCDM methods (fuzzy WSM,
fuzzy AHP, fuzzy revised AHP), and the positions of the next best options are likewise
very comparable.

In similar research, Ayodele et al. [27] proposed a GIS-based model for the interval
type-2 FAHP to identify the best locations for wind farm deployment in Nigeria. The
approach aimed to overcome the problems of ambiguity, vagueness, and inconsistency in
the selection of appropriate areas for wind farm siting by focusing on the usage of fuzzy sets
to express experts’ linguistic assessments. The model assessed the suitable sites using two
sets (weighted and constraint) of social, environmental, or economic criteria. The results
showed that the country is estimated to have a suitable area of 125,728.6 km2, 2650.1 km2

of which is considered extremely appropriate for wind farm locations.
Tercan et al. [28] developed an integrated methodology for assessing the wind farm

siting of offshore bottom-fixed structures in two areas (Cyclades and the İzmir region) in
two countries (Greece and Turkey, respectively). The combined use of MCDM methods
and a GIS was implemented, and a group of experts used fuzzy sets and linguistic terms to
achieve more consistent and independent rankings and results. The results indicated that
289 km2 (3.22%) of the study area in the Greek region was deemed to be appropriate for
offshore wind farms compared to 519 km2 (10.23%) in the Turkish region.

In another study, Rehman et al. [29] provided a preliminary investigation on a rule-
based wind farm turbine selection methodology based on fuzzy logic ideas. In conjunction
with the turbine selection model, they examined several scenarios, and two test scenarios
were used to illustrate the applicability of the methodology. A total of 17 turbines from
various manufacturers with rated capacities ranging from 1.5 to 3 MW were assessed using
data from a real potential location in Saudi Arabia.

Meanwhile, Eroğlu [30] used a GIS and the FAHP to identify the most appropriate
areas for wind farm siting in the mountainous province of Gümüşhane in the Black Sea
Region of Turkey and create a model with 81 sub-criteria and 17 primary criteria pertinent
to wind power plants. A suitability map with restricted areas, very suitable areas, and less
suitable areas for the study area was created. The results indicated several crucial wind
farm installation areas in the southwest, middle, and northwest regions of the study area.

Dhingra et al. [31] developed a framework for identifying and prioritizing the barriers
to the growth of offshore wind energy in India using an MCDM approach and applying the
FAHP. Their findings showed that the most significant obstacles to the expansion of offshore
wind energy in India are financial and technical, while the least significant obstacles are
supply chain and regulatory and political barriers.

In addition, it should be noted that regarding the insular environment in Greece, there
have been previous efforts regarding wind farm siting (e.g., [32–36]), and all of them use
the AHP method in their calculations to provide the most suitable sites for wind farm
deployment.

The selection of optimal wind farm siting solutions is a process that requires the
combined analysis of several criteria, some of which can be measured and quantified, while
others cannot. Although even quantitative criteria may contain a degree of uncertainty,
criteria such as public opinion rely on assessments based on qualitative judgments that
include the natural ambiguity that governs human intelligence and behavior.

This study aims to investigate whether the researcher’s uncertainty is introduced into
the FAHP and how the outcome of the final weights and priorities are affected during the
pairwise comparison process of assessment criteria and alternatives in an effort to identify
the optimal wind farm siting solutions. The island of Andros (South Aegean Region, Greece)
is the study area for this evaluation, resulting in nine eligible siting alternatives based on
the exclusion siting criteria in one of the authors’ earlier publications [32]. The FAHP
method with gradually increasing ambiguity rates is applied, and results are compared in
order to investigate the changes.

The main contributions of the paper can be summarized by the following.
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(i) A fuzzy logic-based method is applied that allows the decision maker to create
flexible decision rules for the wind farm siting challenge. The proposed methodology is
scalable and reliable, and it may be expanded to any number of assessment criteria in the
decision-making process. (ii) To the authors’ knowledge, this is the first study in Greece
that investigates the resilience of the results and the final ranking of alternative wind farm
siting locations to a gradually increasing ambiguity in judgments and examines whether
the ambiguity of the researcher during the pairwise comparison is introduced into the
model and calculations during the triangular fuzzy number (TFN) construction. (iii) The
present work also contributes to the body of research where the assessment criteria are
determined by sharp values rather than by linguistic labels or fuzzy triangular numbers.
(iv) This study offers crucial background information for the decision-making processes
regarding the deployment of WFs’ siting decisions.

The remainder of this paper is organized as follows. Section 2 explains the FAHP
methodology. Section 3 presents the study area, provides evidence for the assessment
criteria and alternatives, and outlines the proposed research methodology. The analytical
findings are shown in Section 4, and Section 5 discusses the results and concludes with
useful remarks.

2. Fuzzy Analytical Hierarchy Process Methodology

Fuzzy logic (FL), an extension of binary logic to multi-faceted logic, was first intro-
duced in 1965 by Lotfi Zadeh [37]. The truth of each statement is a matter of degree, as
determined by a membership function µA(x) that maps the input value x to an appropriate
participation value in the closed set [0, 1]. The non-fuzzy numbers “clear, specific” are
called “crisp” and have a participation grade of 1. This paper uses TFNs (Figure 1). The
numbers are denoted as A = (l, m, u) (i.e., lower, middle, upper), while the membership
function µA(x) of the TFN is provided in Equation (1).

µA(x) =


x−l
m−l , l ≤ x ≤ m
x−u
m−u , m ≤ x ≤ u
0, otherwise

(1)
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In an MCDM method, when judgments and priorities are real numbers, calculating
and comparing the final priorities of alternatives are straightforward. However, if fuzzy
numbers represent judgments or priorities, then applying algebraic operations between
them can be complex. Due to the nature of fuzzy numbers and the existence of membership
functions, the methods of calculating algebraic operations are complex. Moreover, the
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more complex the membership function is, the more difficult the algebraic operations are.
These operations are based on the basic properties of the fuzzy sets of Zadesh [37]. In the
international literature, there are many methods used for calculating arithmetic operations
of fuzzy numbers [38–44]. This paper employs the results of papers that used the a-cut
method, in which fuzzy numbers contain the concept of intervals. A fuzzy number can
consider a generalization of the concept of interval since; instead of considering one interval,
more intervals are considered at various levels α ∈ [0, 1]. If the intervals at the different
levels are calculated, then operations between fuzzy numbers are reduced to operations
between intervals, while fuzzy arithmetic is transformed into interval arithmetic.

When operations are performed between TFNs A(l, m, u), basic algebraic operations
are further simplified (becoming approximate in terms of multiplication and division
operations). Equations (2)–(7) are the most widespread and most used in the numerous
variants of FAHPs [45,46] and, ultimately, the equations this paper uses. Of note, this paper
employs the results of the work of Palash et al. [47] to define the algebraic operations.

If we let A(l1, m1, u1) and B(l2, m2, u2) be two TFNs and l1, m1, u1, l2, m2, u2 ⊂R+, then
the following holds:

Addition : A ⊕ B = (l1, m1, u1) + (l2, m2, u2) = (l1 + l2, m1+m2, u1+u2) (2)

Subtraction : A ⊖ B = (l1, m1, u1)− (l2, m2, u2) = (l1 − u2, m1−m2, u1−l2) (3)

Multiplication with k ⊂R : k ∗ (l1, m1, u1) =

{
(k ∗ l1, k ∗ m1, k ∗ u1) i f k > 0
(k ∗ u1, k ∗ m1, k ∗ l1) i f k < 0

(4)

Multiplication : A ⊗ B = (l1, m1, u1) ∗ (l2, m2, u2) = (l1 ∗ l2, m1∗m2, u1∗u2) (5)

Inverse : A −1 = (l1, m1, u1)
−1 =

(
1
u1

,
1

m1
,

1
l1

,
)

, l1, m1, u1 ̸= 0 (6)

nthroot : A
1
n = (l1, m1, u1)

1
n =

(
l1

1
n , m1

1
n , u1

1
n

)
(7)

Our methodology was selected with the application of geometric mean and cen-
troid defuzzification based on Buckley’s model [48], which has been characterized by
Liu et al. [46] as being “. . .a simple but practical tool”. The methodology can be broken
down into four steps as follows:

1. Fuzzification of initial decision-maker judgments (pairwise comparison judgments);
2. Calculation of fuzzy intermediate priorities (weights);
3. Defuzzification of fuzzy intermediate priorities (weights);
4. Synthesis of intermediate priorities into final priorities of alternatives according to the

procedures of the crisp AHP (CAHP).

2.1. Fuzzification of Initial Decision-Maker Judgments

The fuzzification of the initial judgments of the decision maker (Step 1) captures
the uncertainty the researcher has in the process of evaluating criteria and alternatives
using fuzzy numbers to change from ambiguity to the realm of mathematics. According
to Deng [49], the comparison process can be quite complex and may produce unreliable
results. Srdjevic and Medeiros [50] also noted that the application of FAHP can produce
questionable results if an unbalanced nine-point Saaty scale is used or if this fuzzy scale is
not entirely justified. The most common fuzzy scales use five- or nine-point scales [46].

In these cases, the concept of fuzzy distance δ is introduced, and each evaluation is
converted to the symmetric TFN A(l = m − δ, m, u = m + δ) with the fuzzy distance usually
ranging from 0.5 to 2. For example, a judgment of strong importance “5” with a fuzzy
distance δ = 1 is converted to the TFN A(4,5,6). The most common value for δ is 1, as shown
in Figure 2.
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This paper aims to investigate the extent to which uncertainty in the researcher’s
judgments affects the ranking of wind farm siting solutions. The scale shown in Figure 2
is used, and the fuzzy distance δ is gradually increased. However, the fuzzification of the
initial judgments is a process in which the researcher should capture their own ambiguity.
The use of a standard fuzzy scale of Saaty, in any form, inevitably introduces the ambiguity
of the scale maker rather than the researcher carrying out the work. Even if the researcher
chooses or constructs their own scale, the assessment is inevitably carried out under the
assumption of an even distribution of ambiguity in all judgments. In this case, fuzzy
numbers do not capture any doubt or uncertainty that the researcher has during the
evaluation phase of the criteria and alternatives but enable an internal process of the
method that ignores the researcher’s personal attitude to any judgments, which risks
unreliable results.

In this paper, the ambiguity for each judgment is initially estimated as a percentage,
yielding a scale that is easy, simple, and relatively understandable to the human mind.
Then, assuming that 0% ambiguity corresponds to a crisp number and 100% ambiguity
corresponds to the maximum space that a TFN can occupy on the Saaty scale, the fuzzy
distance δ is calculated in a linear way, staying within the boundaries where 1 denotes
equal importance and 9 equals extremely strong importance. Thus, the maximum fuzzy
distance is 2 × δ = 9 − 1 = 8. For a TFN A(l, m, u), the fuzzy distance 2 × δ is defined
as follows:

A(l, m, u) : 2 × δ = l − u (8)

For example, the fuzzy number A(4, 5, 6) expresses strong importance and uncertainty:
(6 − 4)/8 = 25%. In this way, the expression of ambiguity as a percentage is matched
with the fuzzy distance 2 × δ. Because we assume that the limits of the scale [1, 9] are
inviolable, the fuzzy numbers close to the scale borders will not be symmetric, and the
researcher’s uncertainty will be distributed asymmetrically. For example, if the researcher
expresses a judgment of extremely strong importance (9) and an uncertainty of 10%, all
of the uncertainty is distributed toward strong–very strong importance. In any case, the
values l, u of the fuzzy number A(l, m, u) can be derived by the following:

IF m + δ ≤ 9 AND m − δ ≥ 1 THEN


u = m + δ

AND
l = m − δ

(9)

IF m + δ ≥ 9 THEN


u = 9
AND

l = 9 − 2δ
(10)

IF m − δ ≤ 1 THEN


u = 1 + 2δ

AND
l = 1

(11)
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The numbers u and l can take values in the closed subset of R [1, 9] and m in the closed
subset of N [1, 9], while, in any case, u − l = 2 × δ.

In all the above cases, the barrier imposed at the borders of the scale (1 and 9) pushes
the ambiguity to be increasingly spread toward central values. In the case of extremely
strong importance, this fact makes practical sense. Since no evaluation can be greater than
extremely strong importance (9), inevitably, the whole ambiguity is allocated to values of
lesser importance. However, in the case of equal importance, the ambiguity should also be
distributed to areas where a reversal of preference is present. Thus, in the next step, the
scale is extended to values less than 1 (inverse numbers), which indicate a corresponding
weakness instead of importance in judgments (e.g., 1/5, indicating strong weakness).

Finally, ideally, the researcher defines l as the lower limit on its uncertainty and u
as the maximum limit, based on Saaty’s scale. For example, a judgment for very strong
importance, which can also be moderate importance or extremely strong importance, can
be captured by the TFN A(3, 7, 9). In this way, the researcher defines the limits of ambiguity
as perceived in each case. For the examination of the above, a case study is examined in this
paper where the construction of the TFNs considers the variation in the judgment values
after the completion of a questionnaire survey by experts.

2.2. Consistency Check

A consistency check helps minimize inconsistencies in the matrixes resulting from
pairwise comparison. According to Liou et al. [46], there are two ways of measuring the
consistency of the fuzzy pairwise comparison matrix: “crisp consistency” is computed by
translating the fuzzy matrix to a representative crisp one and “fuzzy consistency” calculates
a consistency index directly from a fuzzy matrix. “Fuzzy consistency” methods are either
very complicated (fuzzy programming method), or little research has been performed in
the field (geometric consistency index). “Crisp consistency”, on the other hand, is the most
used and suitable for all types of fuzzy sets [46]. Moreover, according to Mahmoudzadeh
and Bafandeh [51], checking “crisp consistency” can express the consistency of a fuzzy
matrix. By applying α-cuts, they proved that if the matrix obtained from the α-cuts of the
fuzzy numbers for α = 1 is consistent, then the fuzzy matrix resulting from the pairwise
comparison is also consistent. Thus, in the case of a TFN A(l, m, u), the α-cut for α = 1
coincides with the crisp number m, and the matrix with the α-cuts coincides with a crisp
matrix where its elements are the values of m. For those reasons, this paper adopts the
results of Mahmoudzadeh and Bafandeh [51]; thus, for the consistency check, crisp matrixes
are used where each element aij equals the middle mij of each fuzzy number A(l, m, u).
In the case study examined in this paper [32], the authors have already performed the
consistency check of these matrixes.

2.3. Calculation of Fuzzy Intermediate Priorities (Weights)

Various methods have been proposed for aggregating judgments and, ultimately,
calculating the priorities (weights) of criteria and alternatives. The most common are those
that make use of arithmetic, logarithmic, or geometric means. Of these, the geometric mean
is considered quite valid for composition, and according to Barzilai [52], it avoids problems
arising from reversal operations and the order in which the operations are performed. This
paper uses the geometric mean method based on Buckley’s model [48]. Thus, given a fuzzy
matrix Aij of magnitude n and using Equations (2)–(7) for the algebraic operations, the
geometric mean for each line is first calculated according to Equation (12).

ri =

(
n

∏
i=1

aij

) 1
n

(12)

The fuzzy intermediate priorities (weights) are then calculated using Equation (13).

wi = ri ⊗ (r1 ⊕ r2 ⊕ . . . ⊕ rn)
−1 (13)
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2.4. Defuzzification of Fuzzy Intermediate Priorities (Weights)

The centroid method, or the center of area (COA) or center of gravity (COG), is the
most prevalent defuzzification method [46,53]. Its principle is Equation (14), where x* is the
defuzzified value, x indicates the element, and µ(x) is its associated membership function.

x∗ =

∫
µ(x)xdx∫

µ(x)
(14)

For a TFN with integration limits from l to u, the result is as follows:

x∗ =
l + m + h

3
(15)

Apart from the above equations, several other variations have been used. For instance,
Büyüközkan [54] defuzzified a TFN using an a-cut set, and the result is Equation (16),
which also corresponds to Yager’s approach [55], which analyzes the mean of the elements
within an interval. Furthermore, Facchinetti, Ricci, and Muzzioli [56] showed that this
method takes into consideration the worst and best results arising from a fuzzy number.
As a result, this paper uses Equation (16) to defuzzify TFN.

x∗ =
l + 2m + h

4
(16)

2.5. Synthesis of Intermediate Priorities into Final Priorities of Alternatives

The synthesis of intermediate priorities into the final priorities of the alternatives
follows the procedures of Saaty’s crisp AHP (CAHP) [57]. Equation (17) is used for the
reduction to the unity of the crisp priorities in Equation (16).

wi =
w∗

i
∑n

i=1 w∗
i

(17)

Finally, if a is the criterion, b is the alternative, wa is the defuzzified priority of criterion
a, and wab is the defuzzified intermediate priority of alternative b with regards to criterion
a. Equation (18) yields the final priority of alternative b.

wb =
w

∑
a=1

wa × wab (18)

The optimal solution is the alternative that gathers the higher score for wb, while the
ranking of the remainder is carried out in descending order of the wb index.

3. Materials and Methods

Andros is the northernmost island of the Cyclades region in Greece and second in
size after the island of Naxos, with an area of 379.21 km2 and a total coastline length of
176 km. Andros is located between the islands of Evia and Tinos and is 6 and 1 nautical
miles from them, respectively. It extends from the northwest to the southeast and has an
elongated shape with a maximum length of 40 km and a width of 17 km. The island has
a permanent population of 8826 inhabitants [58]. The wind potential of Andros is very
high, and in most parts of the island, a wind velocity of 8–10 m/s and even higher prevails.
However, in the northern and central parts of the island, there are some areas where the
wind velocity ranges from 7 to 8 m/s, while there are also very few places where the wind
velocity does not exceed 5 m/s. The ground slope on the island of Andros is low and,
in many areas, does not exceed 20%. Large slopes (45–70%) are only observed along the
coastline of the island and in close proximity to it. The road network on Andros has a total
length of approximately 510 km, of which 145 km belongs to the provincial network and
365 km to the municipal network. The high-voltage power grid runs along the western
part of the island.
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3.1. Assessment Criteria and Alternatives

The assessment criteria selected for the process of identifying suitable areas for the
siting of wind farms, according to the study by Bili and Vagiona [32], aim at the economic
efficiency of the project, the minimization of its construction costs, and the easiest possible
acceptance of the construction of the project by the society of Andros, and they are as fol-
lows: wind potential (K1), ground slope (K2), distance from the road network (K3), distance
from the high-voltage network (K4), and social acceptance of the local population (K5).

3.1.1. Wind Velocity (K1)

One crucial economic factor that influences the site of a wind farm anywhere is the
wind potential. A site’s potential for producing wind energy is dependent on the wind
velocity at that specific location. The wind potential criterion has been incorporated into
almost every wind farm siting case study (e.g., [9,27,59,60]). The study of an area’s wind
data is critical for assessing its site suitability and selecting a suitable wind turbine. Areas
with higher wind speeds are considered more suitable for wind farm siting.

3.1.2. Ground Slope (K2)

The morphology of the soil determines an area’s suitability for wind farm siting. In
the case of high slopes, special works and foundations are needed. All these processes
result in increased project costs and a more substantial impact of the wind farm project on
the natural landscape of the site. Therefore, in many case studies, to avoid the negative
impacts due to unsuitable ground, a slope limit is defined (e.g., [11,61–63]). Areas with
slight or even flat slopes are considered more suitable for wind farm siting.

3.1.3. Distance from the Road Network (K3)

The exploitation of existing road networks is essential in wind farm siting studies.
Creating new roads needed to access the wind farm projects has negative effects on the
environment, especially during the construction phase. Furthermore, the distance from the
road network is considered an important criterion [21,64,65], as construction far away from
roads increases the installation and repair costs.

3.1.4. Distance from the High-Voltage Network (K4)

The distance from the medium- or high-voltage power grid affects the technical–
economic viability of a project and has been used in several studies in the wind farm
siting literature (e.g., [21,66,67]). The siting of wind turbines should be carried out near
the electrical network to minimize the cost of electricity delivered to the consumer and
avoid the need for new electricity lines, which would result in increased project costs. The
distance from the high-voltage electricity grid has been used in this study.

3.1.5. Social Acceptance (K5)

Community acceptance reflects the extent to which people affect and are affected
by the deployment and use of wind farm projects. Although local community opinion
and other factors that influence community acceptance regarding wind farm projects have
been investigated in the literature [68], only a handful of studies (e.g., [27,69–71]) used
participatory planning and incorporate public opinion in the wind farm siting process.

After applying several exclusion criteria, a study by Billi and Vagiona [32] identified
eight potentially suitable areas for onshore wind farm siting, as depicted in Figure 3. They
applied the AHP to rank the potential areas, and according to their final priorities, the
results were as follows: A1 (0.24), A3 (0.18), A2 (0.16), A8 (0.11), A4 (0.09), A5 (0.09), A6
(0.07), and A7 (0.06). The most suitable area is site 1, followed by A3, while the least suitable
is A7.
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3.2. Methodology Diagram

The present research used the results of [32], applied an FAHP, gradually increased
the degree of ambiguity, and compared the results to investigate the changes. In addition,
we investigated whether any uncertainty of the researcher during the process of pairwise
comparison of assessment criteria and alternatives was introduced into the method and
how the final priorities were affected.

The principal four steps of the research methodology applied in this study, as men-
tioned in Section 2, include (i) the fuzzification of initial decision-maker judgments; (ii) the
calculation of fuzzy intermediate priorities; (iii) the defuzzification of fuzzy intermediate
priorities; and (iv) the synthesis of intermediate priorities into final priorities of alternatives,
according to the procedures of the crisp AHP (CAHP). The methodology used for the
fuzzification of the judgments is presented in Figure 4.

The questionnaire survey aimed to record experts’ preferences on the significance of
the five assessment criteria (K1–K5); thus, it included a comparative assessment of the
five assessment criteria. A total of 15 experts participated in the survey, all of whom were
graduates of the postgraduate study program “Environmental Protection and Sustainable
Development” and attended courses related to renewable energy resources. The process-
ing of the experts’ responses provided the quantification of the relative weights of the
assessment criteria.
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4. Results

The final priorities of the alternatives were parametrically investigated and calculated,
applying the methodology described above. The parameter that changed was the uncer-
tainty manifested in the initial judgments expressed, in most cases, by a fuzzy distance
δ, as described earlier. In each subsection, different assumptions are made, priorities are
calculated, and results are compared with the use of diagrams.

4.1. Using Saaty’s Fuzzy Scale and Fuzzy Distance δ Incremented by 0.5 for All Judgments

The final priorities are first calculated for a fuzzy distance δ of 0.5, and then, δ is
increased each iteration by a step of 0.5 to δ = 3. The scale is bounded between 1 and
9, which means that no initial judgments can be outside these limits. For every fuzzy
distance “δ”, a different fuzzy scale results, and the outcome is different final priorities for
the alternatives. Figure 5 depicts the fuzzy scales that were used to fuzzify the initial “crisp”
judgments when δ = 1 and δ = 2. Tables 1 and 2 depict the initial judgments and priorities
of the criteria for δ = 0.5, respectively, and Figure 6 depicts the final priorities of the best
alternatives vs. the fuzzy distance δ. The uncertainty that enters the model, with the use
of the fuzzy distance “δ”, affects the final priorities of the alternatives. This dependence



Sustainability 2024, 16, 3971 12 of 25

on the best alternatives, A1 and A3, is depicted in Figure 6, in which the trend can also be
observed.
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The results show that the final priorities are quite stable and resistant to ambiguity.
No change occurs in the final priorities, with area A1 dominating in all cases. However,
the increase in ambiguity seems to favor the alternative A3, second in the ranking, which
converges with A1 and theoretically intersects at a fuzzy distance δ of 11.89, which, however,
exceeds the boundaries of the scale and has no practical meaning. Of note, the application
of the scale imposes symmetry on fuzzy numbers, except for the boundaries, and the same
assessment of ambiguity for all judgments, which may deviate from the actual doubts
or uncertainty that a researcher may have. Moreover, while, as mentioned, the upper
boundary of 9 makes practical sense, the lower boundary of 1, which indicates a judgment
of equal importance, does not, and it would be more correct if a reversal of preference
occurs for the lower (l) number of the TFNs.
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Table 1. Initial judgments for criteria. TFN with fuzzy distance δ = 0.5.

Wind Potential (K1) Slope (K2) Distance from
Road Network (K3)

Distance from
High-Voltage Network (K4) Social Acceptance (K5)

l m u l m u l m u l m u l m u

Wind potential (K1) 1.0000 1.0000 1.0000 2.5000 3.0000 3.5000 2.5000 3.0000 3.5000 2.5000 3.0000 3.5000 0.1818 0.2000 0.2222

Slope (K2) 0.2857 0.3333 0.4000 1.0000 1.0000 1.0000 1.0000 1.0000 1.5000 1.0000 1.0000 1.5000 0.1333 0.1429 0.1538

Distance from
road network (K3) 0.2857 0.3333 0.4000 0.6667 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.5000 0.1333 0.1429 0.1538

Distance from high-voltage network
(K4) 0.2857 0.3333 0.4000 0.6667 1.0000 1.0000 0.6667 1.0000 1.0000 1.0000 1.0000 1.0000 0.1333 0.1429 0.1538

Social acceptance (K5) 4.5000 5.0000 5.5000 6.5000 7.0000 7.5000 6.5000 7.0000 7.5000 6.5000 7.0000 7.5000 1.0000 1.0000 1.0000

Table 2. Criteria priorities wa. TFN with fuzzy distance δ = 0.5.

Fuzzy Geometric Mean ři
¯
r1⊕

¯
r2⊕. . .⊕¯

rn
¯
wi=

¯
ri⊗
(

¯
r1⊕

¯
r2⊕. . .⊕¯

rn

)−1
w*

i = l+2m+u
4

Crisp AHP W
(Normalized)

l m u l m u l m u Normalized

Wind potential (K1) 1.2322 1.4011 1.5696 6.8277 7.4676 8.1475 ŵ1= 0.1512 0.1876 0.2299 w1= 0.1891 0.1876 0.1916

Slope (K2) 0.5202 0.5439 0.6734 (r1 ⊕ r2 ⊕ . . . ⊕ rn )−1 ŵ2= 0.0638 0.0728 0.0986 w2= 0.0770 0.0764 0.0732

Distance from road network (K3) 0.4797 0.5439 0.6209 l m u ŵ3= 0.0589 0.0728 0.0909 w3= 0.0739 0.0733 0.0732

Distance from high-voltage
network (K4) 0.4423 0.5439 0.5726

0.1227 0.1339 0.14646
ŵ4= 0.0543 0.0728 0.0839 w4= 0.0710 0.0704 0.0732

Social acceptance (K5) 4.1533 4.4346 4.7110 ŵ5= 0.5098 0.5938 0.6900 w5= 0.5969 0.5922 0.5887

tot= 1.0078 1.0000 1.0000
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4.2. Using Saaty’s Fuzzy Scale δ = 1 and Fuzzy Distance δ Incremented by 0.5 Only for the Social
Acceptance Criterion (K5)

The four assessment criteria (K1–K4) used by Bili and Vagiona [32] were evaluated
based on measurable data, while the criterion of social acceptance (K5) was assessed
through experts’ judgments. When measurable data are used, the uncertainty inherent in
the initial judgments is expected to be relatively small and dependent on measurement
errors, model assumptions, or other systemic or non-systemic errors. However, in the case
of K5, where the initial judgment is estimated based on the “feelings” experts have about
the subject, the uncertainty behaves differently. This phenomenon makes the K5 criterion
interesting to investigate specifically in relation to the uncertainty introduced in the initial
judgments. Thus, in this subsection, the classic fuzzy scale of Saaty is used, i.e., with a
fuzzy distance δ = 1 for all judgments, except for K5, in which δ is increased by 0.5. As in
Section 4.1, the scale is bounded above and below [1, 9]. Figure 7 depicts the final priorities
of the best alternatives vs. the fuzzy distance δ.
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As in Section 4.1, the final priorities seem to be quite stable and resistant to ambiguity.
No change occurs in the final priorities, with area A1 dominating in all cases. Again, with
the increase in ambiguity, a trend toward convergence occurs between the first (A1) and
second (A3) alternative, while what has been stated about the symmetry of triangular
numbers and the lower boundary of the scale also applies.

4.3. Using Saaty’s Fuzzy Scale δ = 1 and Estimation of Ambiguity for Alternative A1 in the
Criterion of Social Acceptance (K5) as a Percentage, Incrementing by 10 Percentage Points

In this case, all judgments have a fixed estimate of uncertainty, which is approximated
using the fuzzy scale of Saaty with fuzzy distance δ = 1, except for alternative A1, to the
criterion of social acceptance. In this case, the uncertainty is estimated as a percentage, as
described in Section 2.1, which increases from 10% to 100% in steps of 10 percentage points.
The criterion of social acceptance (K5) as qualitative is considered to contain the element
of ambiguity to a greater extent and is of greater interest in terms of its influence. For this
criterion, the behavior of the most dominant alternative, A1, is investigated to evaluate
how changes in ambiguity affect the final priorities of the alternatives. As in the previous
cases, the scale is bounded above and below [1, 9]. Figure 8 depicts the final priorities for
the best alternatives vs. uncertainty.
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The results show that the first (A1), second (A3), and third (A2) alternatives initially
start to converge with the increase in ambiguity and then diverge. This characteristic is
attributed to a flaw in the scale, which is bounded above and below; thus, as ambiguity
increases, it is distributed toward the central values of the scale (Figure 9), creating, in this
case, this divergence between the best, the second-best, and the third-best alternatives. As
mentioned before, in the case of the upper boundary of 9, shifting the ambiguity toward
the central values of the scale is appropriate—no judgment can be greater than “extremely
strong importance”—but in the case of the lower boundary of 1, the scale cannot include
values of ambiguity (i.e., <1) for which the preference in the alternative should change. Of
course, the same remark also applies in cases where the most common fuzzy scale of Saaty
δ = 1 is used, though to a much lesser extent. In the case of a fuzzy scale with δ = 1, the
ambiguity of the judgment “equal importance” is distributed only to the right of the scale,
i.e., to “moderate importance”. However, in this case, the effect is more intense and better
visualized with the diagrams.
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4.4. Using a “Crisp” Numbers Scale and Estimation of Ambiguity for Alternative A1 in the
Criterion of Social Acceptance (K5) as a Percentage, Incrementing by 10 Percentage Points

Following Section 4.3, this case uses “crisp” numbers for all judgments, apart from the
alternative A1 to the criterion of social acceptance (K5), whose uncertainty is estimated as a
percentage, as in Section 4.3. The remaining assumptions are the same. The aim is to check
how much the use of the fuzzy scale, with δ = 1 for the remainder of the initial judgments,
influences the observed divergence in the diagrams in Section 4.3. Figure 10 depicts the
final priorities of the best alternatives vs. uncertainty.
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Figures 9 and 10 are very similar, which enhances the attribution of the observed
divergence between the best and the second- and third-best alternatives to the fuzzy scale
used and enhances its weakness regarding the lower boundary of 1. Moreover, the use
of crisp numbers instead of the fuzzy scale δ = 1 does not seem to affect the results. One
reason for this behavior may be the symmetry imposed by the scale on all TFNs, which, at
least for small values of the fuzzy distance δ, favors the central values (m) of the TFN that
coincide with the corresponding crisp numbers.

4.5. Using Saaty’s Fuzzy Scale and Fuzzy Distance δ = 1 Incrementing by 1 for All Judgments,
without the Lower Boundary of 1

To deal with the weakness of the fuzzy scale regarding the lower boundary of 1, as
described above, in the following cases, the lower number l of the TFNs of the initial
judgments can use values below 1, reversing the preference. This is carried out using the
reverse numbers of Saaty’s scale, i.e., 1/3 for “moderate weakness”. For example, for a
judgment of “moderate importance”, when the fuzzy distance is δ = 2, the TFN is 1, 3, and
5; when δ = 3, the TFN becomes 1/2, 3, and 6; and when δ = 4, the TFN becomes 1/3, 3, and
7. The rest of the TFNs are formed accordingly. Apart from that, this case is similar to the
case presented in Section 4.1. Starting with a fuzzy distance δ = 1 and increasing δ by a step
of 1 to δ = 4 for all judgments of criteria and alternatives, the final priorities are calculated.
Figure 11 depicts the final priorities of the best alternatives vs. fuzzy distance δ.

The results now show a greater convergence of the final priorities of the prevailing
alternatives (A1 and A3). A1 is still the prevailing alternative in most cases until the fuzzy
distance δ reaches 3.265, with A3 becoming dominant. However, the fuzzy distance for
which the trend lines intersect is quite high, and A1 is still considered to be the best option.
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4.6. Using Saaty’s Fuzzy Scale and Fuzzy Distance δ = 1 Incrementing by 1 Only for the Criterion
of Social Acceptance (K5), without the Lower Boundary of 1

This case is similar to the case presented in Section 4.2. Considering that the criterion
K5 has a special interest, increases in the fuzzy distance δ are being applied only to the
judgments of this criterion. As in Section 4.5, no lower boundary of 1 (one) for the TFNs is
used. Figure 12 depicts the final priorities of the best alternatives vs. fuzzy distance δ.
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Similar to the previous case (Section 4.5), the results show a convergence trend of the
final priorities of the prevailing alternatives (A1 and A3). A1 is still the prevailing alternative
in most cases until the fuzzy distance δ reaches 3.56, with A3 becoming dominant. As
in Section 4.5, this value for fuzzy distance is also considered quite high, and A1 is still
estimated to be the best option.
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4.7. Using Saaty’s Fuzzy Scale and Fuzzy Distance δ = 1 Incrementing by 1 Only for the
Alternative A1 Regarding the Criterion of Social Acceptance (K5), without the Lower Boundary of 1

This section makes the same assumptions as Section 4.3, except it uses the fuzzy
distance δ for the estimation of ambiguity instead of a percentage. In addition, like in
previous sections, no lower boundary of 1 for the TFNs is used. Figure 13 depicts the final
priorities of the best alternatives vs. fuzzy distance δ.
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The results show that the final priorities are not affected by the increase in ambiguity.
Alternative A1 is dominant in all cases, while the difference with the second option is
almost the same in all cases.

4.8. Using Saaty’s Fuzzy Scale and Fuzzy Distance δ = 1 Incremented by 1 Only for the Alternative
A3 Regarding the Criterion of Social Acceptance (K5), without the Lower Boundary of 1

This section’s case resembles that presented in Section 4.7, except the investigation
is performed for the second predominant alternative (A3). For this alternative, and only
regarding the criterion K5, the fuzzy distance is incremented by 1, starting with δ = 1.
The remaining assumptions are the same as the assumptions considered in Section 4.7.
Figure 14 depicts the final priorities of the best alternatives vs. fuzzy distance δ.
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The results, contrary to the previous case, show an almost convergence between the
two prevailing alternatives. A1 is still the prevailing alternative, with A3 approaching it
as the fuzzy distance δ increases. The trend lines intersect at a fuzzy distance of δ = 4.245,
with A3 becoming dominant. However, this fuzzy distance value is also considered quite
high, and A1 is still estimated to be the best option. Finally, a comparison of the results of
paragraphs in Sections 4.7 and 4.8 (Figures 13 and 14) shows that alternative A3 is more
affected by ambiguity in judgments in a positive way compared to alternative A1, which is
almost indifferent to ambiguity.

4.9. Using a Questionnaire for the Judgments of the Criteria and Saaty’s Fuzzy Scale with Fuzzy
Distance δ = 1 for the Remainder

In this last case examined, we assess the ambiguity in pairwise comparisons of criteria
using the judgments of postgraduate students with an environmental background. This
paper claims that the use of standard fuzzy scales, in any form, inevitably introduces the
ambiguity of the scale maker instead of the researcher, and that the best way to introduce
ambiguity into the method is for the researchers to construct the TFNs individually every
time.

To carry out such an approach, a questionnaire for the judgments of the criteria was
completed by the postgraduate students. Thus, for the TFN construction, the median
(MEDIAN), minimum (MIN), and maximum (MAX) of the judgments from the ques-
tionnaires are used to define the middle value m, the low value l, and the high value u,
respectively. Moreover, aiming to exclude extreme values in judgments, a second approach
was followed using quadrants P25, P50, and P75, where values for l, m, and u of the TFNs
include 25%, 50%, and 75% of the judgments, respectively. Regarding the judgments in the
alternatives, no modification is made, as the judgments are assumed to have been derived
either from measurements or from estimates of local experts; these experts are familiar
with the peculiarities of the alternative locations on the island of Andros. Thus, the classic
fuzzy Saaty scale with a fuzzy distance δ = 1 is used for all judgments. Consequently,
we assume that the ambiguity is symmetrical and has the same value for all judgments
in pairwise comparisons of all alternatives. However, the students who completed the
questionnaire had no special knowledge of the peculiarities of the island of Andros (i.e.,
the series of protests against the installation of the wind farms, which led to an increased
sensitivity regarding the social acceptance criterion), so any comparison with the results of
the previous subsections should be performed carefully. The main goal of examining this
case was to detect the extent of the ambiguity in the judgments of the criteria and estimate
how this ambiguity affects the final priorities.

After the completion of the pairwise matrix for the criteria and the construction of the
TFNs, a “crisp” consistency check was performed, yielding a consistency index CR of 0.009
(<0.1); therefore, the matrix of the criteria was consistent. Tables 3 and 4 depict the TFNs of
the criteria matrix, while Tables 5 and 6 depict the final priorities of the alternatives.

The first conclusion from the results is that the variance transformed into ambiguity is
quite large; thus, methodologies that use fuzzy calculus can be useful when including this
variance in the calculations. In the case where MIN and MAX are used to determine the
boundaries of triangular numbers, the fuzzy distance is between δ = 4 and δ = 5, and when
quadrants P25, P50, and P75 are used to exclude extreme judgments, the fuzzy distance is
between δ = 2 and δ = 3. Moreover, this variation appears even though the questionnaires
were completed by a relatively homogeneous group.

Regarding the priorities of criteria K1 and K2, K1 prevails over K2 in the case of the
use of quadrants P25, P50, and P75, which is consistent with most relevant research in the
field [72]. However, the criterion of social acceptance is rarely used directly, as the most
common approach of the researchers is to indirectly express social acceptance through
other relevant criteria, such as visual disturbance or distance from residential areas.
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Table 3. Judgment criteria matrix with TFNs, where l = MIN, m = MEDIAN, and u = MAX.

Wind Potential (K1) Slope (K2) Distance from
Road Network (K3)

Distance from
High-Voltage Network (K4) Social Acceptance (K5)

l m u l m u l m u l m u l m u

Wind potential (K1) 1.0000 1.0000 1.0000 0.2000 5.0000 9.0000 0.2000 5.0000 9.0000 0.2000 5.0000 7.0000 0.1111 3.0000 7.0000

Slope (K2) 0.1111 0.2000 5.0000 1.0000 1.0000 1.0000 0.2000 1.0000 9.0000 0.2000 1.0000 9.0000 0.1111 0.3333 5.0000

Distance from
road network (K3) 0.1111 0.2000 5.0000 0.1111 1.0000 5.0000 1.0000 1.0000 1.0000 0.2000 1.0000 5.0000 0.1111 0.3333 5.0000

Distance from high-voltage network
(K4) 0.1429 0.2000 5.0000 0.1111 1.0000 5.0000 0.2000 1.0000 5.0000 1.0000 1.0000 1.0000 0.1111 0.3333 9.0000

Social acceptance (K5) 0.1429 0.3333 9.0000 0.2000 3.0000 9.0000 0.2000 3.0000 9.0000 0.1111 3.0000 9.0000 1.0000 1.0000 1.0000

Table 4. Judgment criteria matrix with TFNs, where l = P25, m = MEDIAN, and u = P75.

Wind Potential (K1) Slope (K2) Distance from Road
Network (K3)

Distance from
High-Voltage Network (K4) Social Acceptance (K5)

l m u l m u l m u l m u l m u

Wind potential (K1) 1.0000 1.0000 1.0000 3.0000 5.0000 7.0000 2.0000 5.0000 6.5000 0.6667 5.0000 6.0000 0.2000 3.0000 5.0000

Slope (K2) 0.1429 0.2000 0.3333 1.0000 1.0000 1.0000 0.3333 1.0000 4.0000 0.3333 1.0000 3.0000 0.1714 0.3333 1.5000

Distance from
road network (K3) 0.1538 0.2000 0.5000 0.2500 1.0000 3.0000 1.0000 1.0000 1.0000 0.6667 1.0000 2.5000 0.2000 0.3333 0.4167

Distance from high-voltage network
(K4) 0.1667 0.2000 1.5000 0.3333 1.0000 3.0000 0.4000 1.0000 1.5000 1.0000 1.0000 1.0000 0.2000 0.3333 2.0000

Social acceptance (K5) 0.2000 0.3333 5.0000 0.6667 3.0000 5.8333 2.4000 3.0000 5.0000 0.5000 3.0000 5.0000 1.0000 1.0000 1.0000
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Table 5. Final priorities of alternatives for TFNs, where l = MIN, m = MEDIAN, and u = MAX.

Final Priorities of Alternatives Rank

Fuzzy Crisp Fuzzy Crisp

A1 0.1483 0.1473 3rd 4th

A2 0.1367 0.1277 5th 5th

A3 0.2058 0.1907 1st 2nd

A4 0.1633 0.1536 2nd 3rd

A5 0.0690 0.0623 7th 6th

A6 0.0636 0.0504 8th 7th

A7 0.0697 0.0556 6th 8th

A8 0.1436 0.2123 4th 1st

Total 1.0000 1.0000

Table 6. Final priorities of alternatives for TFNs, where l = P25, m = MEDIAN, and u = P75.

Final Priorities of Alternatives Rank

Fuzzy Crisp Fuzzy Crisp

A1 0.1557 0.1473 3rd 4th

A2 0.1313 0.1277 5th 5th

A3 0.1922 0.1907 1st 2nd

A4 0.1554 0.1536 4th 3rd

A5 0.0673 0.0623 6th 6th

A6 0.0553 0.0504 8th 7th

A7 0.0602 0.0556 7th 8th

A8 0.1826 0.2123 2nd 1st

Total 1.0000 1.0000

Regarding the final priorities, five out of eight alternatives (A1, A2, A3, A4, A8) are
the most prevalent in all cases of crisp and fuzzy calculus. When using crisp calculus, the
best choice is A8. With the introduction of ambiguity, however, the optimal choice changes
from A8 to A3, regardless of whether MIN, MEDIAN, and MAX or P25, P50, and P75 are
used. In addition, the ranking of the other prevalent alternatives changes significantly.

In the case where ambiguity was not introduced by an internal mechanism of the
method and TFNs were not required to be symmetric but instead were constructed by the
variation in the judgment values, ambiguity plays an important role in the final ranking
of the alternatives. This effect of ambiguity is estimated to be even greater if something
similar were performed on the judgments of the alternatives, for which symmetric TFNs
with a distance δ of 1 were used.

5. Discussion and Conclusions

The need to prioritize possible sites for wind farms has led to MCDM methods
being the focus of research. Of these methods, especially for the AHP, where criteria and
alternatives are evaluated through pairwise comparisons based on data and estimates of
experts, an element of uncertainty and doubt is almost always present. This issue, which
can be resolved through fuzzy calculus and fuzzy MCDM methods, is addressed in the
present paper.

This paper applies an FAHP based on the Buckley model [48] that uses geometric mean
and centroid defuzzification. This model was applied in a case study of wind farm siting on
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the island of Andros, Greece [32]. The aim was to investigate the resilience of the results and
the final ranking of alternative locations to a gradually increasing ambiguity in judgments
and whether any ambiguity that the researcher has during the pairwise comparison is
introduced into the model and calculations during the TFN construction. A major reason
for choosing this case study was because it uses the criterion of social acceptance (K5) as
an independent criterion, using expert assessment for the evaluation of alternatives to
this criterion. The choice of an independent criterion, the scoring of alternatives based on
estimates, and the subjectivity involved in such estimates made this case study interesting
from the point of view of the existence of ambiguity in the judgments.

Regarding the methodology used, the application showed that standard fuzzy scales
cannot capture ambiguity when exceeding certain values that cause a reversal in preference.
To be more precise, fuzzy scales that are bounded below do not allocate ambiguity properly
since they cannot include values below the unity (i.e., <1) for which the preference in
the alternative should change. In some cases (Sections 4.3 and 4.4) that appear to be
problematic, we observed that for small values of ambiguity, a trend toward convergence
between the prevailing alternatives occurs, and for large values, there is divergence, which
was assumed to be a defect of the scale. This inability seems irrelevant for small values
of ambiguity, but for large values, it seems to have a significant effect. To overcome this
weakness, fuzzy scales that use values of less than 1 were tested to express ambiguity when
a reversal in preference (values less than 1) occurs. In any case, however, more research
and investigation are necessary in order to reach safe conclusions.

Based on the results and under the assumptions of this study [32], the final priorities
are quite resistant to increasing ambiguity. In almost all cases, the alternative initially chosen
as the best, A1, is dominant, followed by A3. In the cases discussed in Sections 4.6–4.8,
which are considered more accurate, A3 eventually becomes the best option. However,
this is the case for large ambiguity values ranging from δ = 3.56 to δ = 4.25. In addition,
the increase in ambiguity seems to affect the alternative A3 more and in a positive way
(Section 4.8).

In the last case, where the criteria assessment was performed by postgraduate students,
the first observation is the existence of large variations in judgments despite coming from a
relatively homogeneous group. This supports the view that apart from the use of central
values (i.e., average or median), the use of fuzzy calculus can be useful when including this
variance in the calculations. In this case, we observed the ambiguity in judgments playing
a crucial role, producing different results and ranking the final priorities of the alternatives.
When applying crisp calculus, K1 is judged to be the most important, followed by K5. The
prevailing alternative is A8, followed by A3, while five alternatives (A1, A2, A3, A4, and
A8) receive high scores. When we apply FL, the variation in judgments causes a significant
effect on the final priorities. The criterion K1 continues to prevail in the case of quadrants
P25, P50, and P75 but with a lower percentage, while, in the case of MIN, MEDIAN, and
MAX, it almost equals that of K5. Regarding the final priorities, alternative A3 was first,
followed by A4.

As a general comment on all cases, K5 favors the alternative A1, and K1 favors the
alternative A8, while the alternative A3 gathers high scores in all cases. In addition, the
alternative A3 seems to be favored more than all other alternatives by the existence of
ambiguity in judgments, and, in some cases, it is considered the optimal choice.

The method faces limitations when using scales for the fuzzification of the judgments.
The application of the scales imposes symmetry on fuzzy numbers, except for the bound-
aries, and the same assessment of ambiguity for all judgments, which may deviate from
the actual uncertainty of the researcher. On the other hand, when the TFNs are constructed
considering the variation in the judgment values after the completion of a questionnaire
(Section 4.8), in case the consistency check fails, it is very difficult to construct a consistent
matrix and at the same time respect the values given by the questionnaire.

Finally, regarding the procedure as a whole, this paper agrees with Deng [49] and
Srdjevic and Medeiros [50] that a risk of producing unreliable results is present, and special
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care is needed during the fuzzification step. The use of standard scales with a fixed fuzzy
distance is not always the best way to capture ambiguity. Moreover, the existence of a lower
boundary of 1, used by many standard scales, seems to be a weak point. In any case, the
optimal approach to producing reliable TFNs is to define the lower and maximum limits of
every judgment separately.

Future studies may test the use of trapezoidal or Gaussian distribution in computations
and compare the results. In addition, a combination of fuzzy approaches of different multi-
criteria methods (e.g., FAHP and FTOPSIS) could be applied to onshore wind farm site
selection decision problems in future research. The proposed methodology may also
be replicated in other case studies regarding wind farm siting in order to enhance the
conclusions drawn from this study.
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