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Abstract: To mitigate the problem of global climate change, governments have taken measures to
reduce greenhouse gas emissions. Carbon emission trading has gradually attracted attention as a
market-oriented option. Power industry panel data from 30 provinces in China were used for an
empirical analysis in this study. The super-efficiency Slack-Based Measure (SBM) model was used to
calculate the shadow price of carbon trading and the green total factor productivity (GTFP), and the
Ordinary Least Squares (OLS) regression model was used to quantitatively analyze the correlation
between the shadow price of carbon trading and the GTFP of the power industry. The results showed
that the shadow price of carbon trading had a significantly negative impact on the GTFP of the
power industry; therefore, it needs to be improved and perfected. Through a further analysis using
the heterogeneity test, it was found that there were problems in the current carbon trading price
mechanism. In the face of the above problems, we offer suggestions for improvement from the
perspectives of the government and companies. This study helps deepen the understanding of carbon
trading prices and the GTFP in the power industry, and it provides a reference for formulating more
effective carbon trading policies and corporate green management strategies.
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1. Introduction

In recent years, the problem of global climate change has become increasingly serious,
and reducing carbon emissions has become a common goal for governments. It is necessary
to promote green and low-carbon development among economic market entities [1]. Emis-
sion trading is a market-based regulatory tool recognized by academia, which internalizes
carbon emissions as a cost or tradable resource for businesses.

In July 2021, China’s carbon emission trading market was officially launched on the
Shanghai Environmental Energy Exchange. The total trading volume on the first day
of transactions was 4.104 million tons, with a total turnover of CNY 210,230,100. This
market covers high-carbon industries, such as the electricity, steel, cement, and aluminum
industries, and has resulted in China becoming the world’s largest carbon emission trading
market, in which the power industry is an important participant. As China’s largest
carbon emission industry, its development in China’s carbon emission trading market has
attracted much attention. According to data from the relevant agencies, by the beginning
of 2022, China’s power industry had accumulated trading carbon quotas totaling more
than 300 million tons, accounting for nearly 90% of the total trading volume. In order
to encourage electric power companies to reduce carbon emissions and promote green
development, governments have adopted a variety of policy measures, including carbon
emission trading systems.

The carbon emission quota of China’s power industry is allocated according to its
power output. Companies need to buy enough of a quota to cover their carbon emissions.
If they exceed their quota, they need to buy more from the market. This has prompted
the power industry to strengthen its energy conservation and emission reduction, while
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also providing it with economic incentives to encourage the use of cleaner energy. Of the
many industrial sectors in China, only the power-generation industry has set up a cross-
provincial trading market; hence, the carbon emission trading mechanism of the power
industry is more mature, and the data are more comprehensive. Green transformation
and the development of the power industry are two important tasks involved in China’s
industrial transformation and upgrading. Therefore, it is necessary to explore the impact of
carbon emission prices on the green total factor productivity (GTFP) of the power industry,
which has important theoretical and practical significance for guiding the development of
China’s carbon emission trading market.

The purpose of this study was to explore the causal relationship between the shadow
price of carbon emissions and the GTFP of China’s power industry. This article emphasizes
the importance of carbon trading, provides empirical evidence for exploring the impact of
shadow prices of carbon emissions on the GTFP of the power industry, and offers policy
recommendations for improving the effectiveness of China’s carbon emission trading
system. The shadow prices reflect the cost to companies of reducing emissions. The GTFP
comprehensively considers the environmental and economic benefits of the enterprise.
Therefore, if the shadow price is too high, the cost of reducing emissions for enterprises will
be higher, which is not conducive to improving the GTFP of enterprises. The carbon trading
pilot, as a market-oriented environmental regulatory tool, can convert carbon emissions
and carbon emission rights into costs and benefits for enterprises. Therefore, this study
suggests that, in the environment of carbon trading, high shadow prices will harm the
GTFP of enterprises. The innovation of this article mainly lies in the following two points.
(1) Taking the power industry as the research object, this study investigates the impact of
shadow prices on the GTFP. Previous studies have not considered the power industry as
an important research object when studying the GTFP. (2) This study uses shadow prices
as real prices to reveal the shortcomings of the carbon trading market. At present, the
construction of China’s carbon trading market is still in its early stages. Therefore, using
shadow prices as a true price to reveal the shortcomings of the carbon trading market is of
great significance.

2. Carbon Trading Market

In 2011, the Chinese government launched a carbon trading pilot project in Beijing,
Shanghai, Tianjin, and Chongqing. In 2013, China expanded the carbon trading pilot to
seven provinces and gradually adjusted the trading rules and regulatory mechanisms. As
of 2023, China has established carbon trading markets in 31 provinces and regions, and
China’s carbon market has become one of the world’s largest carbon markets.

Figures 1–3 are based on information from the China Carbon Trading website (http:
//www.tanpaifang.com/). As shown in Figure 1, the turnover exhibited an increasing
trend in 2015–2020. In 2016, it increased by 43.7% over 2015, and it increased by 12.9% in
2017. In 2018, it decreased but remained higher than that in 2016. In 2019 and 2020, the
turnover significantly increased again, by 23.8% and 33.5%, respectively. In 2020, it was
more than 2.5 times that of 2015. In summary, based on the current development trend in
the trading volume of China’s carbon trading market, there is still room for improvement.

As shown in Figure 2, Guangdong’s and Hubei’s carbon trading volumes were the
top two among all pilot cities; both exceeded 70 million tons, which was much higher
than that of the other provinces. In addition, Beijing’s, Shanghai’s, and Tianjin’s carbon
trading volumes ranked third, fourth, and fifth, respectively, with values of 14,614,500 tons,
17,396,900 tons, and 9,201,100 tons. Chongqing’s and Fujian’s carbon trading volumes were
relatively small, with 8,690,000 tons and 8,469,800 tons, respectively.

http://www.tanpaifang.com/
http://www.tanpaifang.com/
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As shown in Figure 3, the carbon trading prices in different regions were quite different.
Beijing had the highest average price, followed by Shanghai and Chongqing. The prices
for Hubei, Guangdong, and Tianjin were relatively low. The price for Fujian after 2018
was in the middle of the pilot areas. In addition, the annual average price in these regions
fluctuated. From 2015 to 2017, the price of carbon trading was generally low, but in 2018
and 2019, with a reduction in the carbon emission quotas, the price of carbon trading
increased everywhere. Among them, the prices for Hubei, Shanghai, and Beijing reached
the highest point over the six years in 2019, while the prices for other regions, such as
Guangdong and Fujian, increased significantly in 2019. The annual average price of these
carbon trading pilot areas reflects the development of China’s carbon emission trading
market, and it also shows that there are differences in the participation and performance of
different regions in the carbon market.
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It can be seen that (1) yearly growth is evident in the carbon emission trading volume;
(2) marked regional disparities exist in trading volumes; and (3) carbon trading prices
show substantial fluctuations with notable regional variations. These data suggest that the
construction of China’s carbon emission trading market is in its early stages and immature.

3. Literature Review

The literature review of this paper mainly includes three aspects: carbon trading
price research, GTFP research, and the research on the impact of carbon trading prices on
the GTFP.

3.1. Carbon Trading Price Research

The research on carbon trading prices mainly includes the influencing factors and price
forecasts. Keppler et al. [2] found that the carbon price of the first stage of the EU carbon
emission market is guided by the long-term emission reduction cost, and an increase in the
coal and natural gas prices will increase the emission reduction cost for companies, thus
significantly pushing up the price of carbon emission rights. In the second stage, the carbon
price is more driven by the electricity price, and the short-term rent-seeking phenomenon is
obvious. Aatola et al. [3] added stock parameters when describing the economic situation.
Zhao et al. [4] found that market factors and policy factors have an impact on the carbon
price, among which market factors have the greatest impact. Jiang et al. [5] used a multiple
regression model and found that carbon trading prices are significantly correlated with
financial markets, energy prices, and air quality. Wang et al. [6] demonstrated that energy
prices, the GDP growth rate, temperature, and precipitation have varying degrees of impact
on the carbon prices. Li [7] found that natural gas prices, crude oil prices, and the macro-
economy have a positive impact on the pricing of carbon emission trading, while coal
prices have a negative impact.

Benz and Truck [8] used the GARCH model and the Markov state transition model
to predict the carbon emission trading price fluctuations and found that the Markov state
transition model had a better prediction accuracy than the GARCH model. Seifert et al. [9]
proposed a stochastic equilibrium model based on the characteristics of the EU carbon
emission trading market that is suitable for predicting the fluctuations in carbon spot
trading prices. Eugenia Sanin et al. [10] achieved better modeling results by combining
the time-varying jump probability function with the ARMA-GARCH model to conduct an
empirical analysis of the EU carbon emission trading market price. In order to solve the
problem of ARMA model selection, Wang [11] used a boosting algorithm to find the optimal
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subset of ARMA; the boosting–ARMA model had a higher carbon trading price prediction
accuracy and was very convenient and fast. Ji et al. [12] used the carbon trading price for
the pilot areas of Guangdong, China, as the research object and established a ternary linear
regression model to predict the carbon trading price. They achieved ideal results using
this model. Yin et al. [13] constructed the ‘China carbon trading price index’, and then
a SVAR model with the China carbon trading price index, the EU carbon trading price
index, an industrial index, the China Securities Index energy index (CSI), an air quality
index (AQI), and the HS300 to study carbon trading prices in China. Pradhan et al. [14]
used country-specific dynamic computable general equilibrium (CGE) models. This paper
estimated carbon prices in China and India, and compared the effects of carbon pricing
policies under terms of trade effects.

The existing literature mainly focuses on predicting carbon trading prices, emphasizing
the differences between different factors and models. However, the construction of China’s
carbon trading market is still in its early stages, and the prices of carbon trading may be
extremely unstable, even distorted, and cannot reflect true price information. Therefore,
when studying China’s carbon market, full consideration should be given to the immaturity
of this market.

3.2. Green Total Factor Productivity Research

The research on the GTFP is mainly divided into influencing factors and measurement
methods. Shi et al. [15] used the GTFP to measure the quality of economic development
and evaluated the level of green financial development from multiple dimensions, such as
green credit and green investments. The environmental Kuznets curve theory concerns the
relationship between the level of economic development and environmental pollution. It
is generally believed that the relationship between the two shows an inverted U-shaped
curve. According to Zheng et al. [16], the relationship between China’s carbon emissions
and economic growth is long-term, steady, and shows an inverted U-shape. Zhao et al. [17]
introduced a multi-participation environmental governance system as a regulating variable
in their empirical analysis and found that, in the environmental governance system, multi-
participation subjects can realize an adjustment in the steepness level of the environmental
Kuznets curve and the location of the inflection point, which produces the dual effects
of “peak decline” and “inflection point decline”. Zhao et al. [18] aimed to assess the
level of smart transportation technology, and then investigate its impact on green total
factor productivity using the instrumental variable–generalized method of moments (IV-
GMM) model.

More and more scholars have noticed the impact of environmental regulation on the
GTFP [19,20]. Li et al. [21] found that environmental regulation has a regional impact
on the GTFP. Yuan [22] determined that this impact is also applicable in the industrial
sector. Urbanization promotes GTFP growth and economic growth through the role of
“scale externalities” [23,24]. On the other hand, urbanization will cause population and
economic activities to gather to a certain extent and generate an external economy [25], so
that resources such as capital and technology are better allocated, thereby promoting TFP
growth [26,27]. Zheng [28] found that urbanization significantly promoted the growth of
the GTFP.

The current measurement methods for the GTFP index mainly include the parametric
method, the semi-parametric method, and the non-parametric method. The commonly
used parametric methods include the Solow residual method and the stochastic frontier
function method (SFA). The Solow residual method calculates the total factor productivity
by deducting the growth rate of all the input factors; however, this method is difficult to
implement in real life. Zhao et al. [29] found that China’s labor factor elasticity and capital
factor elasticity are changing, which is inconsistent with the fixed-elasticity hypothesis of the
Solow residual value. The stochastic frontier method was first proposed by Aigner [30] et al.
in 1997, which effectively eliminated the influence of random errors. Yu et al. [23] found
that the degree of marketization, the innovation investment, and the enterprise size have a
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positive impact on the total factor productivity of China’s high-tech industry, and the degree
of influence is different in different regions. The semi-parametric method mainly includes
two types: the OP semi-parametric method proposed by Olley and Pakes [31] and the LP
semi-parametric method proposed by Levinsohn and Petrin. These methods are mainly
applied to measure the total factor productivity at the micro-enterprise level. Many of the
parametric and non-parametric methods have been optimized. For example, Blundell and
Bond [32] effectively solved the endogenous problem in regression by adding instrumental
variables to the GMM (generalized method of moments) estimation of the TFP. In the
non-parametric method, a data envelopment analysis (DEA), which is suitable for “multi-
input–multi-output” situations, is the most widely used. The traditional DEA method uses
the direction distance function (SDF) to calculate the total factor productivity. One of the
assumptions of this method is that the output changes in the same proportion. However,
when calculating the GTFP index, the expected output increases while the undesired output
decreases. In order to solve this problem, Fare et al. [33] combined the DEA method with
the Malmquist index. On this basis, Chung et al. [34] used the Malmquist–Luenberger index
method to consider the undesired output and calculate the GTFP index. Chen [35] showed
that the slack-based measure (SBM) model is also widely used in efficiency evaluation.

The research in the existing literature mainly discusses the impact of environmental
regulations, urbanization, marketization, and other factors on the GTFP. It is worth noting
that shadow prices, as an important reflection of a company’s ability to reduce emissions,
have been overlooked by such research. Shadow prices reflect the number of products a
company reduces for every one unit of pollution. Therefore, studying shadow prices and
the GTFP is of great significance.

3.3. Research on the Impact of Carbon Trading Prices on the GTFP

Wang et al. [36] calculated the GTFP growth rate of each province in China and em-
pirically analyzed its influencing factors. The results showed that the growth rate in each
region is steadily increasing, and China’s economic growth is gradually transforming from
factor inputs such as capital, labor, energy, and environmental capacity (represented by
CO2 emissions) to sustainable GTFP. Liu [37] studied the impact of carbon trading on
green performance from the perspective of Chinese industrial companies and found that
carbon trading also has a positive impact on the performance and profitability of companies.
Song et al. [38] found that carbon trading policies have a positive effect on promoting corpo-
rate environmental investments and improving green performance. Through an empirical
study of Chinese companies, Wan et al. [39] found that a carbon trading policy can promote
the green technology innovations and environmental management ability of companies,
thus improving their performance and profitability. Meng et al. [40] studied the impact
of a carbon trading policy on carbon emissions and the economic performance of China’s
industrial sector by collecting relevant data on Chinese industrial companies and using
panel data analysis methods. A carbon trading policy can promote a reduction in carbon
emissions and improve the economic benefits in China’s industrial sector. Zhang et al. [41]
used the data for pilot provinces and cities to analyze the impact mechanism of carbon
trading on the carbon peak and carbon neutralization. Zhang [42] used the data for some
provinces and cities in China to analyze the impact of carbon trading on the economy and
the environment. Xiao et al. [43] provided firm-level evidence of TFP improvement from
China’s pilot of carbon trading. Zhou et al. [44] studied the direct impact and mechanism
assessment of carbon emission trading policy on the GTFP, finding that carbon emission
trading policies have a positive impact on the GTFP.

Considering the immaturity of China’s carbon market, another concern is that the
actual carbon trading prices may be distorted and may contain too many confounding
factors. Therefore, it is necessary to study the total factor productivity through shadow
prices. The existing literature includes important research on carbon trading prices, the
green total factor productivity, and their relationship. However, there is still a certain
research gap. (1) From the perspective of the shadow prices of carbon emissions, studying
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the GTFP has been overlooked. Although there are direct trading prices, shadow prices can
better reflect the “true price”, especially for an immature trading market. (2) In the literature,
few studies have focused on the power production industry. As the largest carbon-emitting
industry in China, the power industry is an important participant in the carbon trading
market. This study aimed to examine the impact of carbon emission shadow prices on the
GTFP of the power industry and reveal the differences between carbon trading pilot areas
and non-pilot areas. This study also provides suggestions for the design of carbon trading
markets and the green and low-carbon transformation of the power industry.

4. Methodology
4.1. Measurement of Shadow Price Calculation Method in Power Industry
4.1.1. Shadow Price Based on SBM Dual Model

Shadow prices express by how much the output must be reduced if an industry wants
to reduce their carbon emissions by one unit. By referring to Zhang et al. [45], this article
used the SBM dual model to calculate shadow prices. S1 is the number of good outputs.
S2 is the number of undesirable outputs. M is the number of inputs. x0, y0, b0 represent
the row vector (x0, . . . xM0), (y0, . . . yS10), (b0, . . . bS20). µy, µb, ν are the dual-variable of the
good outputs, bad outputs, and inputs, respectively. See the following equation.

Max p = µyy0 − vx0 − µbb0

s.t.p ≤ 0

v ≥ 1
M

∗ 1/x0

µy ≥ 1 + p
S1 + S2

∗ 1/y0

µb ≥ 1 + p
S1 + S2

∗ 1/b0

Based on the calculation results of the above equation, the shadow price of carbon
emissions can be expressed by the following equation.

cp = µb/µy

4.1.2. Variable Selection and Data Sources

In this study, labor (L), energy (E), and stock (K) were selected as the input factors,
and the gross domestic product (GDP) and CO2 were selected as the expected output
and undesired output, respectively. L was calculated based on the number of employed
individuals. The capital stock (K) was calculated by using the perpetual inventory method
based on the data for the total fixed-asset investments. The depreciation rate was 9.6%,
and the capital stock in the base period was 10% of the fixed capital investments in the
base period. E was uniformly converted into standard coal based on various energy-
consumption levels. The GDP was converted into the actual regional gross domestic
product using the base period as a constant price.

The data needed for these calculations were obtained mainly from the China Statistical
Yearbook, China Urban Statistical Yearbook, China Urban Construction Statistical Yearbook, China
Regional Statistical Yearbook, and China Energy Statistical Yearbook. When calculating the level
of labor force, the data for the urban non-agricultural population were mainly obtained
from the China Population and Employment Statistical Yearbook. Carbon dioxide emissions
were mainly estimated using the IPCC calculation method, namely, the emission factor
method. The CO2 data were obtained from the China Carbon Accounting Database (https:
//www.ceads.net.cn/, accessed on 7 April 2024).

In view of the availability of data, the period 2016–2020 was selected as the research
interval, and the panel data of 30 provinces in China were selected as the sample.

https://www.ceads.net.cn/
https://www.ceads.net.cn/
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4.2. Measurement of Green Total Factor Productivity Index in Power Industry
4.2.1. The GTFP Based on Super SBM Model

This article uses the Super SBM model to evaluate the efficiency of each unit. The
Super SBM model is currently a classic model in data envelopment analysis and is widely
recognized by academia. (1) The SBM model has non radial characteristics. The general
DEA models such as CCR (Charnes–Cooper–Rhodes) and BCC (Banker–Charnes–Cooper)
assume that the reduction in input or the increase in output follow the principle of pro-
portionality. On the one hand, this principle of proportionality is inconsistent with reality.
On the other hand, it may overestimate the efficiency value and lack guidance for reality.
Therefore, this article adopts the SBM model for measurement, which can identify the re-
dundancy of inputs to the maximum extent. (2) The DEA model is a frontier measurement
method with efficiency values ranging from 0 to 1. An efficiency value of 1 indicates that
the decision-making unit is technically effective. Effective technology does not necessarily
mean that there is no need for comparison and improvement. This article adopts the super
efficient processing method to further distinguish technically effective units.

It was assumed that there are M types of inputs, where m represents the type of input,
S1 the type of good output, and S2 the type of bad output. Good output is the expected
output in the production process, which means more is better, such as products. Bad
output is an unexpected output in the production process that means less is better, such as
pollutants. X represents the input vector, Y represents the output vector, and B represents
the bad output vector. λ stands for intensity variables. xm0, ys10, and bs20 are the input,
good output, and bad output variables of the measured units. s−mo, s+s10, and s+s20 are slack
variables for input, good output, and bad output, respectively. The planning formula for
the Super SBM model is as follows.

ρ* = min
1 − 1

M ∑M
m=1 s−mo/xm0

1 + 1
s1+s2

(
∑s1

s1=1 s+s10/ys10+∑s2
s2=1 s−s20/bs20

)
s.t.xm0 = Xλ+ s−n0, m = 1...M;

ys10 = Yλ− s+s10, s1 = 1...s1;

bs20 = Bλ+ s−s20, s2 = 1...s2;

s−m ≥ 0, s+s1
≥ 0, s−s2

≥ 0, λ ≥ 0

4.2.2. Variable Selection and Data Sources

To determine the GTFP of the power industry, the commonly used variables are L,
K, E, Y1, and Y2. The labor input (L) refers to the amount of all types of labor used for
production in an enterprise, including employees and managers. The labor input (L) refers
to the number of all labor used for production in an enterprise, including employees and
managers. The capital stock (K) refers to the quantity and value of various production
materials and equipment used by companies for production. The energy input (E) refers to
the coal energy used in the production process of the power industry. Yield 1 (Y1) usually
refers to the main output of the power industry: power generation. Yield 2 (Y2) refers to
CO2 emission.

This study took the relevant data for the power industry from 2016 to 2020 as the
research objects and calculated the GTFP of the power industry for 30 provinces. The data
for Tibet, Hong Kong, Macao, and Taiwan were not considered, as they were unavailable.
L and K were obtained mainly from the China Energy Statistical Yearbook. E and Y1 were
obtained mainly from the China Electric Power Statistical Yearbook. Y2 was obtained mainly
from the CEADs database (https://www.ceads.net.cn/, accessed on 7 April 2024).

https://www.ceads.net.cn/
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4.3. Theoretical Framework and Hypotheses

The shadow price of carbon emissions indicates the price that companies need to pay
to reduce their carbon dioxide emissions by one unit, which represents the marginal cost
of carbon emission reduction. We hypothesize that the shadow price of carbon emissions
can inhibit the GTFP of the power industry. Firstly, when the shadow price of carbon is
too high, power companies need to pay higher carbon emission costs, which will increase
operating costs and financial burdens. Companies may reduce their expenditure on green
technology and environmental protection facilities as a result. This may lead to a slowdown
in the speed of technology and facility renewal by companies, thus inhibiting the GTFP
of the industry. Secondly, the high shadow price of carbon will affect the investment
efficiency of the power industry. When power companies invest in green technologies
and environmental protection facilities, they may take into account the rate of return and
benefits. The operating costs, investment returns, and technical facility update speed of
companies may be affected by the shadow price of carbon trading. Therefore, we propose
Hypothesis 1.

Hypothesis 1. A high shadow price can inhibit the GTFP of the power industry.

Companies in the pilot areas of carbon trading may be more vulnerable to this inhibi-
tion, as companies in the carbon trading pilot area are more likely to carry out emission
reduction activities, which are vulnerable to the negative impact of high emission reduction
costs. First of all, the carbon trading pilot area has a stronger level of environmental regula-
tion, which has prompted companies to carry out environmental governance. In fact, the
carbon trading pilot area represents market-based environmental regulation. On the one
hand, the government usually supervises and controls the companies in the pilot areas; on
the other hand, the promotion and publicity of the carbon trading pilot policy will promote
the formation of a social atmosphere and consensus for low-carbon development, in addi-
tion to encouraging the public to supervise and vote on companies. Secondly, companies
in carbon trading pilot areas are also more aware of the need to reduce carbon emissions
in the present and future. The implementation of a carbon trading policy involves carbon
emission quotas and carbon emission trading, which directly affect the economic interests
and operating costs of companies. In addition to carrying out daily business activities to
obtain profits, companies can obtain economic benefits through carbon emission reduction
activities. Although emission reduction activities are often detrimental to short-term profits,
the anticipation of long-term benefits encourages companies to pursue such activities. To
summarize, whether active or passive, companies in carbon trading pilot areas pay more
attention to and adopt carbon emission reduction activities. Companies engaged in carbon
emission reduction activities are more vulnerable to the negative effects of high shadow
prices. Therefore, we propose Hypothesis 2.

Hypothesis 2. The carbon trading pilot aggravates the inhibition of the shadow price on the GTFP.

If the high shadow price of carbon can inhibit the green total factor productivity of the
power industry, then companies can alleviate this inhibition by improving their emission
reduction technology. On the one hand, companies with a high level of technological
innovation often belong to the group of low-carbon companies, which are not vulnerable
to the negative impact of high emission reduction costs; on the other hand, companies
can make up for the losses caused by carbon emissions through technological innovations
and by reducing their power-generation energy consumption. First of all, low-carbon and
high-tech innovation companies often rely on technological innovations to obtain their
profits. Low-carbon companies are not the object of environmental governance and are less
affected by government environmental regulations; hence, they are not sensitive to changes
in the shadow price of carbon. Therefore, high-tech innovation companies can alleviate the
inhibitory effect of the carbon shadow price on their corporate green performance. Second,
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carbon emission technology innovations can help companies improve their production
efficiency and resource utilization efficiency, promote social development and sustainability,
enhance their enterprise competitiveness and innovation ability, and strengthen their social
responsibility and moral obligation, in order to improve the green total factor productivity
performance of the industry. Through technological innovations, companies can reduce
their environmental load and carbon emissions; develop environmentally friendly products
and services; promote social development and sustainability; improve their production
efficiency, product quality, and service level; enhance their competitiveness and innovation
ability; and better fulfill their social responsibilities and moral obligations. Therefore, we
propose Hypothesis 3.

Hypothesis 3. Carbon emission technology innovations alleviate the inhibitory effect of the shadow
price on the GTFP.

4.4. Research Model and Variables
4.4.1. Research Model

The OLS method, extensively employed in economic data analysis and modeling,
revolves around fitting a linear model by minimizing the sum of squared residuals. We
have the GTFP as a dependent variable, cp as an independent variable, and pgdp, expand,
and indstr as control variables. There is a linear relationship between them, as follows:

GTFP = β0 + β1cp + β2pgdp + β3expand + β4indstr + ε (1)

where β0 represents the intercept, β1 are the coefficients of the independent variable, and ε

is the error term. We mainly focus on the coefficients of β1, including positivity, negativity,
and significance. The goal of OLS is to estimate the parameters of the model by minimizing
the sum of squared residuals, as follows:

min∑ ε2
i (2)

The hypotheses in this study were tested mainly using a regression method. For
Hypothesis 1, we examined the impact of the explanatory variable (the carbon trading
shadow price) on the explained variable (the GTFP). If the coefficient is significantly
negative, Hypothesis 1 is verified. Hypotheses 2 and 3 were tested using a heterogeneity
test, namely, grouping regression. If the inhibition effect of the carbon trading shadow price
in the non-carbon trading pilot group is smaller than that in the carbon trading pilot group,
Hypothesis 2 is verified. If the inhibition effect of the carbon trading shadow price in the
carbon emission technology innovation group is smaller than that in the low-technology
innovation group, then Hypothesis 3 is verified.

4.4.2. Variable Selection and Data Sources

This study used the calculated shadow price (cp) of carbon trading for 30 regions of
China from 2016 to 2020 as the independent variable and tested the impact of the shadow
price on the green total factor productivity in the power industry. The GTFP index of
the power industry for 30 regions of China from 2016 to 2020 was used as the dependent
variable in the OLS method. In order to increase the accuracy, control variables were added
in this study that may have an impact on the green development of electricity, namely,
pgdp, expand, indstr.

The specific definitions and sources of variables are shown in Table 1.
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Table 1. Specific definitions and sources of variables.

Variable Name Definition Type of Variable Source

cp Shadow price of carbon trading in the region Independent variable This article calculates that
GTFP Green total factor productivity in the power industry Dependent variable This article calculates that
pgdp GDP per capita in the region Control variables China Statistical Yearbook

expand The growth rate of electricity consumption in the region Control variables China Electric Power Statistical Yearbook
indstr The level of industrialization in the region Control variables China Statistical Yearbook

5. Empirical Results
5.1. Shadow Price Calculation Results and Analysis

We substituted the panel data into the production function to obtain an estimation.
Then, the actual data for the Y, E, L, and K in each province and region in each year were
substituted into the formula. The average shadow prices of carbon emission rights for each
province and region were calculated, as shown in Table 2. Finally, the shadow price of the
carbon emission rights in the national market were calculated using a weighted average
(Figure 4).

Table 2. China’s regional carbon shadow price for the period 2016–2020 (Unit: yuan/ton).

Region\Year 2016 2017 2018 2019 2020

Beijing 9397 8135 7669 8534 7447
Tianjin 1818 1762 1465 1164 798
Hebei 1345 1317 1848 1099 1004
Shanxi 759 816 878 689 602

Inner Mongolia 631 521 546 456 392
Liaoning 1193 1193 1485 970 788

Jilin 1177 1116 1085 702 429
Heilongjiang 1390 1319 1421 917 658

Shanghai 6358 4220 4066 4141 6426
Jiangsu 2350 2395 4312 2238 2148

Zhejiang 3160 3008 5049 3029 2965
Anhui 1412 1338 1747 1492 1762
Fujian 2311 2210 2626 2067 2233
Jiangxi 1976 1852 2074 1752 1799

Shandong 1284 1203 2104 951 736
Henan 1437 1436 2559 1550 1755
Hubei 2217 2091 2857 2046 2066
Hunan 2478 2384 3144 2112 1979

Guangdong 3490 3314 10932 3308 3356
Guangxi 1647 1468 1803 1306 1215
Hainan 1253 1299 1113 1288 1335

Chongqing 2413 2276 2362 2399 2580
Sichuan 2720 2799 4310 2776 2880
Guizhou 1123 1085 1255 1128 1199
Yunnan 1744 1590 1751 1534 348
Shanxi 935 927 1124 860 820
Gansu 1254 1240 1292 1164 1144

Qinghai 1546 1461 1080 1361 1386
Ningxia 706 613 416 492 422
Xinjiang 950 908 894 857 852

It can be seen from Figure 4 that the trend in the shadow prices of carbon trading
was not stable over these five years. In some areas, such as Jiangsu and Fujian, the prices
increased over the five years, and in other areas, such as Beijing and Tianjin, the prices
declined. There were also some areas where the prices fluctuated, such as Guangdong and
Yunnan. On average, Beijing had the highest and Guangxi had the lowest shadow price of
carbon trading over these five years.



Sustainability 2024, 16, 4020 12 of 20

Sustainability 2024, 16, 4020 12 of 21 
 

Guangxi 1647 1468 1803 1306 1215 
Hainan 1253 1299 1113 1288 1335 

Chongqing 2413 2276 2362 2399 2580 
Sichuan 2720 2799 4310 2776 2880 
Guizhou 1123 1085 1255 1128 1199 
Yunnan 1744 1590 1751 1534 348 
Shanxi 935 927 1124 860 820 
Gansu 1254 1240 1292 1164 1144 

Qinghai 1546 1461 1080 1361 1386 
Ningxia 706 613 416 492 422 
Xinjiang 950 908 894 857 852 

 
Figure 4. Shadow price of carbon trading in pilot areas of China from 2016 to 2020. 

It can be seen from Figure 4 that the trend in the shadow prices of carbon trading was 
not stable over these five years. In some areas, such as Jiangsu and Fujian, the prices in-
creased over the five years, and in other areas, such as Beijing and Tianjin, the prices de-
clined. There were also some areas where the prices fluctuated, such as Guangdong and 
Yunnan. On average, Beijing had the highest and Guangxi had the lowest shadow price 
of carbon trading over these five years. 

There were obvious regional differences in the shadow price of carbon trading in 
various regions of the country. Taking 2019 as an example, the prices in Beijing, Shanghai, 
Guangdong, and other places were relatively high, while the prices in Shandong, Henan, 
Guizhou, and other places were relatively low. At the same time, we also found that the 
price differences between regions changed in different years. For example, the shadow 
price of carbon trading in Guangdong soared in 2018 and fell slightly in 2020. In addition, 
the median of the carbon trading shadow price in all the regions of the country was below 
2000 CNY/ton; however, the price difference between regions was large. Taking 2019 as 
an example, the median shadow price of carbon trading in Shandong, Anhui, Henan, and 
other places was only about 1000 CNY/ton, while the median in Guangdong, Shanghai, 
Zhejiang, and other places exceeded 4000 CNY/ton. 

From 2016 to 2020, the average shadow prices of carbon trading for various regions 
of the country were different. The highest was for Guangdong Province, with an average 
of 5280 CNY/ton, and the lowest was for Inner Mongolia, with an average of 509.2 

Figure 4. Shadow price of carbon trading in pilot areas of China from 2016 to 2020.

There were obvious regional differences in the shadow price of carbon trading in
various regions of the country. Taking 2019 as an example, the prices in Beijing, Shanghai,
Guangdong, and other places were relatively high, while the prices in Shandong, Henan,
Guizhou, and other places were relatively low. At the same time, we also found that the
price differences between regions changed in different years. For example, the shadow
price of carbon trading in Guangdong soared in 2018 and fell slightly in 2020. In addition,
the median of the carbon trading shadow price in all the regions of the country was below
2000 CNY/ton; however, the price difference between regions was large. Taking 2019 as
an example, the median shadow price of carbon trading in Shandong, Anhui, Henan, and
other places was only about 1000 CNY/ton, while the median in Guangdong, Shanghai,
Zhejiang, and other places exceeded 4000 CNY/ton.

From 2016 to 2020, the average shadow prices of carbon trading for various regions of
the country were different. The highest was for Guangdong Province, with an average of
5280 CNY/ton, and the lowest was for Inner Mongolia, with an average of 509.2 CNY/ton.
In summary, the national average carbon trading shadow price showed an upward trend
from 2016 to 2018 and then declined. The trend in the shadow price of carbon trading in
different regions was not the same; however, the overall trend rose.

5.2. GTFP Calculation Results and Analysis

The calculation results are shown in Table 3 and Figures 5 and 6.
From the perspective of the time dimension, the GTFP values in different regions

fluctuated greatly between years, and there were no obvious upward or downward trends
overall. From the perspective of the spatial dimension, the GTFP values of different
regions were quite different. The GTFP value of Fujian Province was the highest, while
the GTFP value of Beijing was the lowest. The order from first to seventh was Fujian
Province, Shanghai City, Hubei Province, Guangdong Province, Tianjin City, Chongqing
City, and Beijing City. Because the GTFP is an indicator of the total factor productivity, the
productivity and technical level of these areas were relatively high; however, the specific
reasons for the above phenomenon may involve various factors, such as the industrial
structure, natural resources, and human resources. The GTFP in Beijing was relatively low
between 2016 and 2020. A possible reason for this is that most companies in this region
are at the middle and high ends of the industrial chain and lack downstream production
links, which means that their industrial chain is incomplete and lacks industrial synergy.
Moreover, coal accounts for a relatively high proportion of Beijing’s energy structure. Coal
is a high-carbon type of energy, and this energy structure is relatively unfavorable for an
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improvement in the GTFP. The GTFP for Fujian Province was high. A possible reason for
this is that the province is rich in natural resources such as forests and hydropower, and
the rational use of these resources helps to improve the GTFP. In addition, Fujian Province
has formulated a series of policies and measures in energy conservation and emission
reduction, which are conducive to promoting production efficiency and environmental
protection. Based on the data provided, we can analyze the GTFP of each region as follows:

(1) The GTFP of Beijing reached its peak in 2016 and then showed a downward trend,
reaching 0.39 in 2020. The GTFP in Tianjin steadily increased from 2016 to 2018 and then
showed a downward trend, reaching 0.56 in 2020. A possible reason for this is that, with
the development of the economy, the emphasis on environmental protection and green
development in these two regions and cities decreased, leading to a decrease in green
production efficiency. The GTFP in Shanghai showed a slight decrease from 2016 to 2017
and then gradually increased, reaching 0.56 in 2020. Shanghai has always been one of the
most economically developed regions in China, and it also places great emphasis on green
development, which may be one of the reasons for its increasing GTFP year by year. (2) The
GTFP in Fujian Province showed a slight decrease from 2016 to 2017 and then increased year
by year, reaching 0.88 in 2020. Fujian Province has abundant natural and human resources,
and it also pays attention to environmental protection and green development, which may
be one of the reasons for its increasing GTFP year by year. The GTFP in Hubei Province
showed a slight decrease from 2016 to 2017, followed by an upward trend, reaching 0.65
in 2020. A possible reason for this is that Hubei Province was one of the regions that
experienced rapid economic development before the pandemic, while also emphasizing
environmental protection and green development. (3) The GTFP in Guangdong Province
decreased from 2016 to 2018 and then increased year by year. The GTFP value in 2020
was 0.57. The economic development of Guangdong Province has always been relatively
fast, and this province has also faced issues such as environmental protection and green
transformation. However, in recent years, the government has strengthened its investment
in and management of environmental protection and green development, which may be
one of the reasons for its increasing GTFP year by year. The GTFP in Chongqing showed a
relatively stable upward trend, increasing year by year from 0.45 in 2016 to 0.50 in 2020.
However, the growth rate was relatively slow compared to those of the other pilot areas, at
less than 0.5, and it showed a trend of first slowing down and then becoming fast. This was
especially true in 2019 and 2020, when the growth rate accelerated; however, these changes
were not significant. From a long-term perspective, the GTFP in Chongqing showed a
relatively stable state, lacking significant fluctuations. There were obvious differences
in the GTFP characteristics between different regions. The GTFP in Fujian Province was
significantly higher than that in other regions, while the GTFP in Beijing was relatively
low. The GTFP values in each region showed certain spatial distribution characteristics.
Geographically, the pilot area can be divided into three regions: the northern, eastern,
and central and western regions. Among them, Beijing, Tianjin, and Shanghai belong to
the eastern region, Fujian and Guangdong belong to the southern region, and Hubei and
Chongqing belong to the central and western regions. The GTFP in the eastern region was
generally higher, while that in the central and western regions was generally lower. By
analyzing the above data from a regional perspective, it was observed that the eastern
region is economically developed. The shadow prices of carbon trading in the eastern
region were generally higher and less volatile. This also means that companies in the
eastern region pay more attention to emission reduction and explore low-carbon economic
models earlier. In addition, the GTFP in the eastern region was generally higher, which may
have been related to this region’s economic development level and industrial structure. The
central region includes the Henan, Hunan, Hubei, and Jiangxi provinces. The shadow price
of carbon trading in these regions was lower than that in the eastern region, which reflects
the relatively low level of economic development in these provinces and the relatively
weak awareness and ability of companies to reduce emissions. However, the GTFP in
the central region was still high, indicating that these provinces have a high potential for
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economic development. The western region includes provinces such as Xinjiang, Sichuan,
Yunnan, and Ningxia, and the shadow price of carbon trading in these regions was also
lower than that in the eastern region. However, the GTFP in these regions was generally
higher, indicating that these regions have begun to explore low-carbon economic models in
terms of economic growth and that they have a high economic growth efficiency.

Table 3. GTFP for all regions of the country in 2016–2020.

Region\Year 2016 2017 2018 2019 2020

Beijing 0.44 0.36 0.39 0.40 0.39
Tianjin 0.62 0.60 0.62 0.55 0.56
Hebei 0.57 0.59 0.57 0.52 0.48
Shanxi 0.55 0.57 0.61 0.57 0.56

Inner Mongolia 0.65 0.74 0.90 1.01 0.85
Liaoning 0.52 0.52 0.51 0.52 0.51

Jilin 0.34 0.35 0.39 0.41 0.43
Heilongjiang 0.38 0.38 0.41 0.42 0.41

Shanghai 0.55 0.59 0.57 0.57 0.60
Jiangsu 1.03 0.91 0.87 0.81 0.76

Zhejiang 0.75 0.72 0.71 0.72 0.65
Anhui 0.70 0.69 0.73 0.76 0.65
Fujian 1.29 0.80 0.89 0.98 0.88
Jiangxi 0.52 0.53 0.54 0.55 0.52

Shandong 0.81 0.63 0.70 0.61 0.62
Henan 0.47 0.46 0.48 0.44 0.41
Hubei 0.58 0.60 0.65 0.65 0.65
Hunan 0.42 0.42 0.44 0.46 0.45

Guangdong 0.55 0.61 0.59 0.62 0.57
Guangxi 0.45 0.48 0.58 0.69 0.61
Hainan 0.55 0.58 0.54 0.58 0.54

Chongqing 0.45 0.45 0.49 0.49 0.50
Sichuan 0.69 0.72 0.71 0.82 1.02
Guizhou 0.55 0.61 0.62 0.62 0.60
Yunnan 0.86 1.01 1.03 1.00 1.01
Shanxi 0.52 0.53 0.57 0.55 0.54
Gansu 0.38 0.41 0.48 0.50 0.53

Qinghai 0.57 0.59 0.80 1.04 1.04
Ningxia 0.69 0.88 1.01 1.02 0.78
Xinjiang 0.70 0.74 0.85 1.02 0.79
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5.3. Descriptive Statistical Results of Variables

It can be seen from Table 4 that the sample mean of the GTFP is 0.627, the standard
deviation is 0.18, the minimum value is 0.352, and the maximum value is 1.036, indicating
that the GTFP varies greatly among different provinces and years. The sample mean of the
shadow price (cp) of carbon is 7.366, the standard deviation is 0.665, the minimum value
is 5.97, and the maximum value is 9.148, indicating that there are great differences in the
shadow price of carbon trading between different provinces and years.

Table 4. Descriptive statistical results of variables.

Variable Obs Mean Std. Dev. Min Max

GTFP 150 0.627 0.18 0.352 1.036
cp 150 7.366 0.665 5.97 9.148

pgdp 150 10.98 0.392 10.279 11.994
expand 150 8.595 0.549 7.225 9.758
indstr 150 52.591 7.841 42.4 83.7

5.4. Benchmark Regression

Table 5 shows benchmark regression results. The coefficient of the cp in column (1)
to column (4) was at the level of 10%, which is significantly negative, indicating that the
shadow price inhibited the GTFP of the power industry. These results show that, when
we only consider the impact of the carbon shadow price on the GTFP, the coefficient
is negative and significant, and when the carbon trading price increases, the GTFP will
decrease. When we simultaneously controlled for the per capita GDP, the local fiscal general
budget expenditure, and the tertiary industry added value as a proportion of the GDP, the
coefficient of the carbon shadow price was still negative and significant, indicating that this
negative correlation does not come from the influence of other variables. In addition, we
also used a fixed-effect model, and the results showed that this negative correlation was
common among individuals. Therefore, Hypothesis 1 was validated.
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Table 5. Benchmark regression.

(1) (2) (3) (4)

GTFP GTFP GTFP GTFP

cp −0.0406 ** −0.0421 ** −0.0418 ** −0.0248 *
(0.02) (0.02) (0.02) (0.01)

pgdp 0.0493 0.0700 0.2466 **
(0.09) (0.10) (0.10)

expand −0.0386 −0.0763
(0.06) (0.05)

indstr −0.0125 ***
(0.00)

_cons 0.9264 *** 0.3961 0.4979 −0.5837
(0.15) (1.01) (1.03) (0.76)

N 150 150 150 150
r2_within 0.0188 0.0296 0.0413 0.2090

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

5.5. Heterogeneity Test

In order to further verify the other hypotheses proposed in this paper, four groups
of experiments were carried out, as shown in Table 6. The differences between the carbon
emission technology innovation group and the non-technology innovation group were
divided according to the level of carbon emission reductions per unit of power genera-
tion in each region. The carbon emission reductions of the technology innovation group
were higher than the average, and the carbon emission reductions of the non-technology
innovation group were lower than the average. The experimental results are shown in
Table 6. Column (1) shows the non-carbon emission trading pilot area. Column (2) shows
the carbon emission trading pilot area. Column (3) shows the carbon emission reduc-
tion technology innovation group. Column (4) shows the non-carbon emission reduction
technology innovation group.

Table 6. Heterogeneity test results.

Non-Pilot Areas Pilot Areas Non-Technological
Innovation Groups

Technological
Innovation Groups

GTFP GTFP GTFP GTFP
cp 0.0373 −0.0353 * 0.0157 −0.0882 *

(0.02) (0.02) (0.0228) (0.0443)
pgdp 0.7207 *** 0.3101 *** 0.2661 ** 0.2377 **

(0.11) (0.11) (0.1114) (0.0966)
expand −0.0159 −0.0724 −0.1011 ** −0.0673

(0.04) (0.08) (0.0447) (0.0622)
indstr −0.0230 *** 0.0014 −0.0148 *** −0.0126 ***

(0.00) (0.01) (0.0038) (0.0036)
_cons −6.4235 *** −1.9187 ** −0.7642 −0.0955

(1.46) (0.91) (0.8637) (0.8911)
N 35 115 70 80
r2 0.8814 0.2119 0.2634 0.2700

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

The coefficient of cp in the non-pilot areas was 0.0373, which was not significant, indi-
cating that the shadow price of carbon in the non-pilot area had no significant impact on the
GTFP. In the pilot areas, the coefficient of cp was −0.0353, which was significantly negative,
indicating that the higher the value of the cp, the lower the GTFP. The significance of this
relationship was 10% (represented by an asterisk). This successfully verifies Hypothesis 2:
the carbon trading pilot intensified the inhibitory effect of the shadow price of carbon on
the GTFP.
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For the non-technological innovation group, the coefficient of cp (0.0157) fails to reach
statistical significance, suggesting an absence of a substantial relationship between the
carbon shadow price and the GTFP within this group not engaged in carbon emission
reduction innovations. In the technological innovation groups, the coefficient of cp was
−0.0882, which was significant at the 10% level, indicating that the inhibitory effect could be
alleviated. This successfully verifies Hypothesis 3: carbon emission reduction technology
innovations alleviated the inhibitory effect of the shadow price of carbon on the GTFP.

6. Discussion

Our research provides a real price perspective for the carbon emission trading market.
We have three findings: (1) shadow prices can suppress GTFP; (2) in the carbon trading envi-
ronment, this inhibitory effect is more pronounced; and (3) under technological innovation,
this inhibitory effect can be alleviated. Our research can also be supported by Wu et al.’s,
and Peng and Liu’s research [46,47]. Their research also emphasizes that excessive shadow
prices are a burden on emission reduction. Our research precisely validated this viewpoint
through three regression analyses.

The shadow price of carbon is usually the cost to electric power companies of reducing
carbon emissions. If the shadow price of carbon trading is higher, the cost to companies
will be higher, which inhibits the investment of companies into environmental protection.
This leads to poor environmental performance for companies, which, in turn, affects the
GTFP. The shadow price of carbon has an impact on corporate governance. If companies
become burdened with higher carbon transaction costs, it may cause pressure on their
financial situation, which may affect the stability and transparency of their governance
structure. This may lead companies to reduce their technological investment in carbon
emission reduction, which, in turn, affects the GTFP score.

Therefore, power companies need to seek a balance between carbon emission control
and emission reduction investment. It is necessary to formulate scientific carbon emission
control strategies and technological innovation investment plans to ensure that companies
can maintain reasonable cost expenditures while reducing carbon emissions. Companies
can achieve this balance by formulating investment objectives and assessment mechanisms
for technological development and by establishing a carbon emission data tracking and
control system. In order to strengthen the management of the GTFP, the industry needs to
establish management institutions and processes, strengthen data collection and analysis,
formulate goals and plans, and supervise and evaluate the implementation of carbon
emission reduction by various companies. In addition, companies also need to strengthen
their disclosure of relevant information and improve the transparency and credibility of
the relevant data sources.

The inhibitory effect of the shadow price on the GTFP may bring certain risks. There-
fore, the power industry needs to strengthen its risk management and formulate corre-
sponding strategies and emergency plans. In addition, power companies need to strengthen
communication and cooperation with policy-making institutions and carbon trading mar-
kets to better respond to changes in carbon trading policies and markets. Companies can
reduce the cost of carbon emissions by improving their innovation capabilities, thereby
reducing the inhibitory effect of carbon trading shadow prices on the GTFP. Companies
need to strengthen their technology research and development and innovation investments
and improve the quantity and quality of patents in order to achieve a win–win situation
of technological innovation and carbon emission control. In addition, companies and
research institutions can promote the common development of technological innovation
and carbon emission control through cooperation and promote the development of the
entire power industry.

7. Conclusions and Recommendations

This study explored the impact of carbon emission shadow prices on the GTFP of the
power industry and drew conclusions through empirical research. The results show that
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the shadow price of carbon emission trading has a significant impact on the GTFP of the
power industry. Specifically, when the shadow price of carbon emission trading is small,
the GTFP of the power industry performs better, and its carbon emission level is relatively
low; when the shadow price of carbon emission trading is high, the GTFP of the power
industry is relatively poor, and its carbon emission level is relatively high. Therefore, we
provide the following four suggestions.

(1) Government departments should promote the development of a carbon trading mar-
ket, promote the transparency and stability of market prices, improve the enthusiasm
of electric power companies to participate in market transactions, strengthen the su-
pervision of the carbon trading market, formulate reasonable carbon emission trading
prices, and avoid price distortions.

(2) In order to reduce the cost of carbon trading, companies can adopt more environ-
mentally friendly technologies. In addition, companies can reduce the cost of carbon
trading by participating in the competition of the carbon trading market and by
finding lower-cost carbon quotas. Companies should carefully evaluate their carbon
transaction costs and formulate corresponding strategies to control their costs so as
to ensure their sustainable development. Companies can also increase their use of
renewable energy, which can not only reduce carbon emissions, but also reduce costs.

(3) Companies can improve their energy efficiency to reduce their energy consumption
and carbon emissions, including by adopting more efficient equipment and technolo-
gies, optimizing energy management, and other measures. By improving their energy
efficiency, companies can use more environmentally friendly technologies to reduce
their carbon emissions.

(4) In order to reduce the impact of competition among power companies, it is rec-
ommended that power companies consider adopting a variety of carbon trading
methods, such as carbon emission trading, carbon neutralization trading, and carbon
emission reduction certification, to reduce carbon trading costs. Moreover, the flexibil-
ity and competitiveness of companies can be improved through diversified carbon
trading methods. At the same time, it is suggested that electric power companies can
strengthen cooperation and innovation, jointly promote the development and applica-
tion of emission reduction technologies through joint development and cooperative
research, reduce carbon transaction costs, and improve their competitiveness.
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