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Abstract: Land use, as one of the major sources of carbon emissions, has profound implications
for global climate change. County-level land-use systems play a critical role in national carbon
emission management and control. Consequently, it is essential to explore the spatiotemporal
effects and optimization strategies of land-use carbon emissions at the county scale to promote the
achievement of regional dual carbon targets. This study, focusing on Shaanxi Province, analyzed
the spatiotemporal characteristics of land use from 2000 to 2020. By establishing a carbon emission
evaluation model, the spatiotemporal effects of county-level carbon emissions were clarified. Utilizing
Geodetector and K-means clustering methods, the driving mechanisms and clustering characteristics
of county-level carbon emissions were elucidated, and optimization strategies for land use carbon
emission were explored. The results showed that during 2000–2020, land use in Shaanxi Province
underwent significant spatiotemporal changes, with constructed land increasing by 97.62%, while
cultivated land and grassland were substantially reduced. The overall county-level carbon emissions
exhibited a pattern of North > Central > South. The total carbon emissions within the province
increased nearly fourfold over 20 years, reaching 1.00 × 108 tons. Constructed land was the primary
source of emissions, while forest land contributed significantly to the carbon sink of the study area.
Interactions among factors had significant impacts on the spatial differentiation of total county-level
carbon emissions. For counties with different types of carbon emissions, differentiated optimization
strategies were recommended. Low-carbon emission counties should intensify ecological protection
and rational utilization, medium-carbon emission counties need to strike a balance between economic
development and environmental protection, while high-carbon emission counties should prioritize
profound emission reduction and structural transformation.

Keywords: carbon emissions; dual carbon targets; land use; county-level; Geodetector

1. Introduction

Global climate change has emerged as a major challenge confronting humanity [1,2].
Owing to the rapid expansion of industrialization and extensive human activities, there has
been a consistent escalation in the emission of greenhouse gases, resulting in a persistent
increase in worldwide temperatures, a higher frequency of extreme weather phenomena,
and significant effects on human civilizations and natural ecosystems [3–5]. To address these
environmental challenges and climatic alterations, in 2020, China introduced the dual
objectives of achieving a carbon peak and advancing toward carbon neutrality [6]. Being
the largest global contributor to carbon dioxide emissions, China’s endeavors in reduc-
ing emissions are of paramount importance to the global mitigation efforts [7]. Shaanxi
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Province, as the leading province by Gross Domestic Product (GDP) in China’s northwest
region and possessing energy reserves that rank among the nation’s most substantial, plays
a critical role in influencing China’s overall emission reduction efforts through its carbon
emission profile and associated reduction strategies [8]. Land-use change is recognized as
one of the most direct anthropogenic drivers affecting the terrestrial ecosystem carbon cycle,
contributing to approximately one-third of human-induced carbon emissions [9]. Counties,
serving as critical administrative units that bridge overarching strategies with practical
implementations [10], urgently require in-depth research into the spatiotemporal effects of
land use on carbon emissions and optimization strategies at the county scale. Such research
endeavors are crucial for a comprehensive understanding of the distribution patterns,
regional disparities, and driving factors of carbon emissions, enabling the implementation
of targeted, refined reduction measures at smaller scales.

Land use plays a crucial role in shaping the carbon footprint of human activities [11,12].
Alterations in land use predominantly exert influence on the carbon cycle dynamics within
ecosystems through modifications in both their structural attributes (species constitution
and biomass) and functions (biodiversity, energy equilibrium, and carbon circulation pro-
cesses) [13]. On the one hand, as the natural spatial carrier for terrestrial ecosystem carbon
sources/sinks, alterations to the scale, structure, layout, and intensity of land use directly
or indirectly cause variations in carbon emissions/sequestration [14]. On the other hand,
as socio-economic carriers of human production and life, land bears the brunt of substan-
tial carbon emissions from socio-economic activities [15]. Significant differences in carbon
emissions exist under different land-use types [16]. Grassland, forest, shrubland, and
wetland are identified as major carbon sinks, whereas construction land and cultivated
land are recognized as primary carbon sources [17]. The basis of research on carbon
emissions from land use rests on the accounting of carbon emissions, and currently, the
main methods include field measurements [18], carbon emission coefficient method [19],
model calculations [20], and remote sensing estimation [21]. Among these, the carbon
emission coefficient method, due to its simplicity, practicality, and broad applicability,
has been widely adopted [19,22]. Building upon carbon emission accounting, scholars
have conducted studies at various scales and perspectives, focusing on aspects like car-
bon emission intensities [23], spatiotemporal variations [24], evolutionary patterns [25],
driving factors [26], and optimization strategies [27]. The spatiotemporal effects, driv-
ing mechanisms, and optimization methods of land-use carbon emissions are current
hotspots in research [28–30]. In the field of spatiotemporal effect research, scholars mainly
focus on the changes in land-use types, the dynamic balance between carbon sources
and carbon sinks, regional differences, and evolutionary characteristics [31], with inves-
tigative scopes encompassing multiple scales ranging from global [32] to national [33],
provincial [34], city clusters [35], and urban areas [36]. The focus has predominantly
been on macro scales, while research at the county level remains relatively scarce. Ad-
dressing this gap, the current study zeroes in on Shaanxi Province, comprehensively
analyzing the spatiotemporal distribution and evolution of land-use carbon emissions
specific to its counties. In terms of land-use carbon emission driving factors, traditional
econometric methods like the logarithmic mean divisia index (LMDI) decomposition
method [37], stochastic impacts by regression on population, affluence, the technology
(STIRPAT) model [38], and the grey correlation model [39] are commonly used, but often
fail to consider spatial differences among influencing factors and the interactive effects of
these factors on the spatial differentiation of land-use carbon emissions, thereby not fully
elucidating the drivers behind spatial disparities. Geodetector [40], by contrast, offers
a more robust mechanism for detecting and quantifying the distinct contributions and
interplays of diverse factors affecting the spatial variance in land-use carbon emissions,
thus facilitating a deeper exploration of the intricate causal networks embedded within
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spatial datasets. Regarding land-use carbon emission optimization, regional discrepancies
and ecological complexity limit the generalizability of existing findings [41]. Moreover,
the complexity of land-use policy implementation and insufficient consideration of socio-
economic factors impede a comprehensive understanding of the multifaceted influences
on carbon emission optimization [27,42]. Current optimization outcomes are not read-
ily applicable at the county level, necessitating more localized, nuanced research and
strategy formulation that better accommodates local characteristics, policy practices,
and socio-economic contexts. There exists an acute necessity to delve into the effective
translation of the dual carbon objectives into concrete land-use units, thereby steering
spatial planning and development via carbon emission abatement, which is yet to be
thoroughly investigated.

This study is dedicated to revealing the spatiotemporal effects of land-use carbon
emissions at the county level and exploring effective optimization pathways to achieve dual
carbon targets. Through an in-depth examination of the dynamic changes and optimization
of land-use carbon emissions across 107 counties in Shaanxi Province, the aim is to eluci-
date the characteristics of land-use change and transfer, spatiotemporal effects of carbon
emissions, and driving mechanisms at the county level, and propose tailored emission
reduction strategies for counties exhibiting distinct clustering attributes. The outcomes of
this research are poised to facilitate the advancement of emission mitigation and carbon
sequestration across diverse types of land utilization, steering regional economies towards
a path of low-carbon metamorphosis and sustainable growth.

2. Materials and Methods
2.1. Study Area

Located in the heart of China, Shaanxi Province holds substantial geographical, eco-
logical, and economic significance, serving as a key player in the strategic “Belt and Road”
initiative [43]. The province boasts a diverse landscape characterized by a topographic
gradient that descends from elevated northern and southern territories towards the central
lowlands, generally classified into three primary geographic regions: the Loess Plateau, the
Weihe Plain, and the QinBa Mountain. This array of unique terrains, geomorphological
features, climatic conditions, and natural endowments has engendered significant economic
disparity within Shaanxi. The northern section of the province is renowned for its copious
energy resources, with the energy industry exercising considerable sway. This region’s coal
and oil production figures rank amongst the nation’s highest, making substantial contri-
butions to the energy needs not only of Shaanxi but also the broader national context. By
contrast, Central Shaanxi represents the economic nucleus of the province, commanding the
largest GDP and boasting a multifaceted industrial setup that encompasses conventional
agriculture, cutting-edge manufacturing, contemporary service sectors, as well as high-tech
industries. The southern area, recognized for its extensive natural reserves, is focusing on
eco-tourism development, harnessing its unique environmental qualities as precious assets
for its eco-tourism market. It is pertinent to mention that about 93% of China’s carbon
emissions are attributed to the consumption of fossil fuels. As a major energy-producing
province with the third-highest coal output and the first-ranked equivalent of oil and
gas production nationwide, Shaanxi faces considerable challenges in controlling carbon
emissions. Furthermore, given the imperative for energy structure transformation and the
pursuit of green development, Shaanxi must actively explore low-carbon and sustainable
development pathways while ensuring economic growth. The study area’s location is
depicted in Figure 1.
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2.2. Data

This study utilized seven distinct types of data, specifically encompassing land use,
population, nighttime light imagery, the vegetation index, GDP, carbon emission, and the
administrative boundary. Table 1 provides detailed information on all the data used. The
GlobeLand30 data, featuring a 30 m resolution, was predominantly utilized for scrutiniz-
ing changes in land use and computing two pivotal factors: land-use intensity and the
per capita area of construction land. Worldpop data [44], NPP-VIIRS-like nighttime light
data [45], MOD13Q1, and 1 km grid GDP data of China [46] were utilized for determining
population density, nighttime light intensity, annual average normalized difference vegeta-
tion index (NDVI), and per capita GDP, respectively. To surmount the challenges posed
by years of administrative boundary changes and discrepancies in statistical standards,
WorldPop data have been utilized instead of official census data to ensure the integrity
and continuity of population data analysis. The WorldPop dataset integrates census data
with multiple sources of information, including land cover, nighttime light, and topogra-
phy, and has been widely adopted across various disciplines such as social sciences and
geosciences [44]. Furthermore, the Open-source Data Inventory of Anthropogenic CO2
Emissions (ODIAC) [47] was employed for estimating carbon emissions associated with
construction land use. It is important to highlight that, in the data processing phase, we
utilized the resampling functionality within ArcGIS 10.3 software to resample the spatial
resolution of the data to 100 m.

Table 1. The detailed information of databases.

Data Type Year Resolution
(m) Download Link

GlobeLand30 2000, 2010, 2020 30 http://www.globallandcover.com (accessed on 2 August 2023)

Woldpop 2000, 2010, 2020 100 https://www.worldpop.org.uk (accessed on 10 October 2023)

NPP-VIIRS-like NTL data 2000, 2010, 2020 500 http://nnu.geodata.cn/data (accessed on 12 October 2023)

MOD13Q1 2000, 2010, 2020 250 https://ladsweb.modaps.eosdis.nasa.gov/search (accessed on
15 October 2023)

1 km grid GDP data of China 2000, 2010, 2020 1000 https://www.resdc.cn/ (accessed on 20 October 2023)

ODIAC 2000, 2010, 2020 1000 https://db.cger.nies.go.jp (accessed on 24 October 2023)

Administrative boundary 2020 \ http://www.dsac.cn/ (accessed on 10 August 2023)
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3. Methodologies

This study’s technical flowchart was delineated into four primary steps, as illustrated
in Figure 2. In the initial step, the spatiotemporal change characteristics of land use
were examined. Based on the GlobeLand30 data spanning from 2000 to 2020 for Shaanxi
Province, temporal variations and spatial transitions among different land-use types within
the study area were scrutinized using geostatistical tools in ArcGIS and the transition matrix
method. The second step involved scrutinizing the spatiotemporal dynamics of carbon
emissions from land use. A model for estimating land-use carbon emissions was formulated
by referencing pertinent research [48] while ensuring the precision and availability of
actual data. Specifically, direct carbon emission coefficients were utilized to quantify
emissions from forest, grassland, cultivated land, shrubland, wetland, water, and bareland.
For construction land, carbon emissions were estimated using ODIAC data. The third
step entailed identifying the driving factors influencing land-use carbon emissions. In
consideration of data accessibility and precision, and drawing upon the foundation of
existing research [49,50], our study thoughtfully selected six key indicators to construct
the driving factor indicator system. These indicators were chosen for their significant
impact on land use and environmental change, including I (population density), II (per
capita GDP), III (land-use intensity), IV (nighttime light intensity), V (NDVI), and VI (per
capita construction land area). GeoDetector’s factor detector and interaction detector were
further applied to scrutinize the underlying drivers of spatial heterogeneity in land-use
carbon emissions at the county scale. Finally, in the fourth step, clustering and optimization
strategies for county-level land-use carbon emissions were investigated. The K-means
clustering algorithm was employed to categorize and summarize the carbon emission status
across counties. Tailored optimization strategy recommendations were then proposed for
each cluster based on the unique characteristics of land-use carbon emissions within those
clusters. It should be noted that this study evaluated the temporal changes and spatial
transitions of land use in Section 4.1, explored the spatiotemporal effects of county-level
carbon emissions in Section 4.2, and clarified the underlying drivers of spatial differentiation
for land-use carbon emissions in Section 4.3. Based on the analyses above, in the Discussion
section, this study investigated the clustering characteristics and optimization strategies for
land-use carbon emissions at the county level.
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3.1. Land Use Carbon Emission Estimation Model

Carbon emissions from land use encompass both direct and indirect emissions [51].
Direct carbon emissions specifically arise from land use activities, while indirect emissions
predominantly result from the aggregate of anthropogenic carbon emissions associated
with diverse land-use types. Cultivated land, forest, grassland, shrubland, wetland, water,
and bareland are typically evaluated using direct carbon emission coefficients, whereas
construction land is assessed through indirect carbon emission estimation methods. Car-
bon emissions from construction land are commonly represented by the volume of CO2
produced from energy consumption in industrial and daily life processes. Given the lack
of long-term county-level energy consumption statistics for Shaanxi Province, this study
utilized monthly fossil fuel emission data from ODIAC [47] to estimate carbon emissions
from construction land.

The direct carbon emission coefficient method can be expressed as follows:

Ek = ∑ ei = ∑ Tiδi (1)

where Ek represents the direct carbon emissions, ei signifies the emissions from land use
type i, Ti represents the total area of the land use type i, and δi is the coefficient for carbon
emissions associated with land use type i. Coefficients for carbon emissions of various land
use categories have been established with reference to the extant literature, as delineated
in Table 2.

Table 2. The carbon emission coefficients for different land-use types.

Land Use Type Carbon Emission Coefficients (kg·m−2·a−1)

Cultivated land 0.0422 [17]
Forest −0.0644 [17]

Grassland −0.0022 [17]
Shrubland −0.02300 [52]
Wetland −0.000006132 [53]

Water −0.0253 [54]
Bareland −0.0005 [55]

The formula employed in this study to calculate carbon emissions from construction
land is as follows:

E = ∑ Ei (2)

where E represents the total indirect carbon emissions, and Ei is the carbon emission
amount for month i as recorded in the ODIAC dataset. This study established a land-
use carbon emissions assessment model through the amalgamation of the direct carbon
emission coefficient method with the construction land carbon emission calculation method
(Formula (2)), thus effectively circumventing the challenge of missing long-term energy
statistical data.

3.2. Geodetector

The Geodetector comprises a suite of statistical tools tailored for identifying spatial
heterogeneity and discerning the driving mechanisms beneath [40]. It encompasses several
modules: the factor detector, the risk detector, the interaction detector, and the ecological
detector. The goal of the factor detector is to investigate the spatial variability of the
dependent variable Y and to quantify the explanatory power of an independent factor X
on Y, represented by the q value. The equation to calculate q is presented below:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST (h = 1, 2 . . .)

SSW =
L
∑

h=1
Nhσ2

h , SST = Nσ2
(3)
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where L denotes the stratification or categorization of variable Y or factor X; h represents
the count of partitions or classifications of Y or factor X; Nh and N are the number of
units in class h and the entire region, respectively; σ2 and σ2

h are the variances of Y in the
entire study area and class h, respectively; and SSW and SST, respectively, represent the
within-class sum of squares and the overall total sum of squares. The q-statistic varies
from 0 to 1, and as its magnitude increases, it indicates a heightened spatial variation in
the attribute Y. When partition h arises from factor X, a higher q-value conveys that factor
X has a more impactful effect on the variable Y. Conversely, a smaller q suggests that its
explanatory power over variable Y is less pronounced.

The interaction detector is employed to evaluate the combined effect between factors Xi
and Xj, reflecting how their joint influence either enhances, weakens, or acts independently
on the variable Y. This process typically involves calculating the explanatory power,
denoted as q(X1) and q(X2), of the two influencing factors Xi and Xj on the attribute
Y independently. Subsequently, the interaction value q(X1 ∩ X2) is computed. The risk
detector is used to ascertain whether there is statistical significance in the average attributes
across different regions. The ecological detector’s function is to ascertain the presence
of substantial variances in the impacts that different determinants have on the spatial
distribution of attribute values. In this study, the factor and interaction detectors were
utilized to investigate the driving forces of carbon emissions originating from land use at
the county scale.

3.3. K-Means Clustering Algorithm

The K-Means clustering algorithm, an unsupervised clustering technique, is designed
to partition a dataset into K clusters, emphasizing tight intra-cluster connectivity and
maximal separation between distinct clusters [56]. The primary goal is to categorize
samples into mutually exclusive clusters, where high intra-cluster similarity prevails, and
low inter-cluster similarity exists. To compute the Euclidean separation between spatial
data entities and their respective cluster centroids, the following equation is employed:

d(X, Ci) =

√√√√ m

∑
j=1

(
Xj − Cij

)2 (4)

where X is the data objects, Ci represents the i-th cluster center, m represents the dimen-
sionality of the data object, and Xj and Cij denote the j-th attribute values of X and Ci,
respectively. The aggregate sum of squared error (SSE) across the entire dataset can be
computed using the following mathematical expression:

SSE =
k

∑
i=1

∑
X∈Ci

|d(X, Ci)|2 (5)

where the magnitude of SSE signifies the clustering outcome’s quality, and k denotes the
total number of clusters.

4. Results
4.1. Spatiotemporal Analysis of Land-Use Change

Figure 3 illustrates the changes in area and change rates of different land-use types
from 2000 to 2020. The figure revealed significant disparities in the area changes among
different land-use categories. Construction land, forest, shrubland, and water demon-
strated an ascending trend, with the degree of increase ranked as follows: construction
land > shrubland > water > forest. Notably, there was a significant expansion in construc-
tion land, escalating from 3338.24 km2 to 6597.07 km2, reflecting a remarkable growth rate
of 97.62%. Similarly, shrubland exhibited a rapid increment, growing by 59.30%. In contrast,
cultivated land, grassland, wetland, and bareland manifested a decreasing tendency, with
the magnitude of decrease ordered as follows: wetland > bareland > grassland > cultivated
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land. Of particular significance, both cultivated land and grassland areas experienced
reductions exceeding 1500 km2.

Through analyzing the spatial distribution pattern of land use in Shaanxi Province
from 2000 to 2020 (Figure 4) and the characteristics of land-use changes (Tables 3 and 4),
it was found that the dominant land-use types in Shaanxi Province were cultivated land,
forest, and grassland, with their combined area exceeding 95% of the total provincial area.
Land-use transitions primarily occurred among these three land uses and construction
land. The ranking of land-use types based on their area was as follows: forest > cultivated
land > grassland > construction land > bareland > water > shrubland > wetland. From 2000
to 2020, the total transfer area among various land-use types in Shaanxi Province amounted
to 26,381.26 km2. Among these, the transferred areas from cultivated land, forest, and grass-
land accounted for 35.13%, 21.30%, and 33.76% of the total transferred area, respectively,
while the remaining land-use types contributed only 9.81%. Cultivated land was mainly
distributed in the Guanzhong Plain (in Weinan, Xianyang, and Baoji cities) and certain
regions of the Loess Plateau in Shanbei (specifically in Yulin City). Over the 20-year period,
cultivated land experienced the largest transfer, amounting to 9266.57 km2, predominantly
converting to construction land, grassland, and forest. The conversion of cultivated land
to construction land was concentrated in the Guanzhong region and along the Hanjiang
River Basin urban agglomerations, whereas transfers to grassland and forest mainly took
place in the northern Loess Plateau and the river valley areas of the Qinba Mountains in
Shannan. Forest was concentrated mainly in the Qinba Mountains and the central-northern
Loess Plateau region (including Huanglong Mountain and Ziwu Mountain). The Qinba
Mountains are abundant in water resources and boast an exceptionally high forest coverage
rate, serving as a crucial ecological security barrier in China, with vital functions such as
biodiversity conservation and water retention. The land-use types in the Ziwu Mountain
and Huanglong Mountain areas are largely consistent with those in the Qinba Mountains,
featuring comparably high vegetation cover. From 2000 to 2020, approximately 5621.95 km2

of forest was converted from cultivated land and grassland, representing 98.69% of the
total forest expansion. Grassland was predominantly located in the Loess Plateau region of
Shanbei. Over the 20-year period, grassland transitioned to cultivated land by 4086.25 km2

and to forestland by 3108.97 km2. With the continuous advancement of urbanization and in-
dustrialization processes, construction land expanded rapidly during 2000–2020, especially
in the urban agglomerations of the Guanzhong Plain. The expansion of construction land
was primarily sourced from cultivated land, contributing to 78.22% of the total construction
land increase.
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Table 3. The total area of different land-use types from 2000 to 2020. (km2).

Year Cultivated Land Forest Grassland Shrubland Wetland Water Construction Land Bareland

2000 64,148.62 91,486.90 44,172.23 458.97 247.33 759.57 3338.24 1453.15
2010 63,141.59 91,790.55 43,416.98 763.23 209.79 789.04 4486.25 1467.58
2020 62,580.83 91,566.22 42,182.08 731.14 196.73 844.08 6597.07 1366.86

Table 4. The transition matrix of land use in Shaanxi Province from 2000 to 2020 (km2).

2020
2000 Cultivated

Land
Forest Grassland Shrubland Wetland Water Construction

Land Bareland

Cultivated land 54,878.04 2512.98 3253.37 84.41 32.26 188.73 3168.40 26.42
Forest 2453.69 85,852.26 2837.83 114.77 4.02 124.43 80.11 5.56

Grassland 4086.25 3108.97 35,259.45 435.71 20.62 99.71 725.79 428.01
Shrubland 57.60 21.12 283.99 86.84 0.14 2.32 4.82 1.95
Wetland 75.56 3.58 27.12 0.45 83.72 44.74 4.48 6.76

Water 180.90 37.36 75.91 3.85 54.30 373.20 21.19 7.78
Construction land 749.35 9.50 25.96 0.63 0.08 6.10 2546.32 0.29

Bareland 95.62 3.00 413.27 4.30 0.03 0.57 45.70 889.85

4.2. County-Level Spatiotemporal Effects Analysis of Land-Use Carbon Emissions

Analyzing the carbon emissions from land use at different time periods (Table 5),
it was evident that Shaanxi Province qualifies as a carbon source region. From 2000 to
2020, its carbon emissions exhibited a significant upward trend, surging from 2.65 × 107 t
to 1.00 × 108 t, representing an almost fourfold increase. This growth trajectory can be
delineated into two phases: a period of rapid increase (2000–2010) and a period of gradual
growth (2010–2020). Among various land-use types, forests emerged as the predominant
carbon sink, contributing over 97% to the total carbon sink and playing a pivotal role in
regional carbon uptake. In contrast, cultivated land consistently experienced a gradual
reduction in carbon emissions, constituting 9.08% of total emissions in 2000, 3.26% in 2010,
and 2.53% in 2020. Conversely, construction land served as the primary carbon source,
contributing significantly to the overall carbon emissions resulting from land-use activities.
The substantial increase in carbon emissions from these construction lands stood out as the
principal factor propelling the noteworthy overall surge in carbon emissions within the
study area during this period.

Table 5. Land-use carbon emissions in Shaanxi Province from 2010 to 2020 (×104 t).

Year

Carbon Source Carbon Sink
Total Carbon

EmissionsCultivated
Land

Construction
Land Forest Grassland Shrubland Wetland Water Bareland

2000 270.6975 2982.3491 −589.1127 −9.7170 −1.0554 −0.0002 −1.9140 −0.0726 2651.1747
2010 266.4473 8173.5850 −591.0677 −9.5509 −1.7551 −0.0001 −1.9889 −0.0734 7835.5962
2020 264.0798 10,425.9585 −589.6232 −9.2792 −1.6813 −0.0001 −2.1289 −0.0683 10,087.2573

The spatial distribution pattern of county-level land-use carbon emissions in Shaanxi
Province between 2000 and 2020 (depicted in Figure 5a–c) revealed outstanding spatial
heterogeneity in total carbon emissions among counties, presenting an overall gradient
of northern > central > southern regions, along with distinct temporal variations over the
period. Regions with high-value carbon emissions are predominantly concentrated in the
northern and northwestern parts of the Shanbei region and some areas in the Guanzhong
Plain. Conversely, regions with low-value emissions were mainly found in the Qinba
Mountains of Shannan and the middle-northern Loess Plateau. Over the 20-year period,
all counties experienced increases in total carbon emissions, with particularly pronounced
growth occurring between 2000 and 2010. From 2000 to 2020, there was a dramatic decrease
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in the number of counties that were overall carbon sinks, declining from 28 to 12, primarily
located in the Shannan region. Conversely, there was a substantial increase in the number
of counties where carbon emissions exceeded 5 × 105 t, rising from 14 to 44, primarily
concentrated in energy-rich counties of Shanbei and those with higher urbanization levels
in the Guanzhong area.
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Based on the spatial differentiation pattern revealed by the standard deviation ellipse
analysis (Figure 5d), the overall carbon emission distribution in Shaanxi Province was
predominantly oriented along a northeast-southwest axis, with an observed trend of the
spatial distribution center shifting towards the southwest and an expansion of the spatial
distribution range. From 2000 to 2020, the spatial center of land-use carbon emissions in
Shaanxi moved 27.50 km from the northeast to the southwest, with the most pronounced
movement occurring between 2000 and 2010, amounting to 25.77 km. During 2000–2010,
there was a noticeable trend of increasing ratios between the minor and major axes of the
standard deviation ellipse representing the spatial distribution of carbon emissions across
the province. Subsequently, from 2010 to 2020, these ratios remained relatively constant.
In terms of shape differentiation, the azimuth of the standard deviation ellipse for carbon
emissions in the province continuously narrowed from 15.19◦ in 2000 to 14.18◦ in 2020,
indicating an enhanced impact of the southwestern region of Shaanxi Province on the
spatial pattern of carbon emissions over the 20-year period.

4.3. Analysis of Driving Factors for Spatial Differentiation of Carbon Emissions

To unravel the mechanisms driving the spatial differentiation of county-level carbon
emission totals in the study area, we employed Geodetector to conduct analyses on factor
detection and interaction detection, exploring the spatial heterogeneity of carbon emissions.
The results obtained from the factor detector revealed the individual explanatory capacities
of each factor in accounting for the spatial disparities of carbon emission totals at the
county scale, represented by the parameter q. A heightened q-value signifies that the
factor exercises a more substantial impact on the spatial patterning of carbon emissions
within counties. Analysis of the results of the factor detector (Figure 6a) revealed that
the ranking of the explanatory power of different factors for the spatial heterogeneity
of county-level carbon emissions in Shaanxi Province was as follows: per capita GDP
(II) > nighttime light intensity (IV) > land-use intensity (III) > per capita construction
land area (VI) > population density (I) > NDVI (V). The q-values for per capita GDP,
nighttime light intensity, land-use intensity, and per capita construction land area exceeded
0.32, signifying the significant impact of these four factors on the spatial distribution
pattern of county-level carbon emissions. Per capita GDP can reflect the level of economic
development in a region, with higher energy consumption and carbon emissions generally
corresponding to more advanced economic development [57]. Given the considerable
economic development disparities across Shaanxi Province, per capita GDP exhibited
a strong explanatory power for the spatial variation of county-level carbon emissions.
In regions with higher urbanization levels and economic development, night-time light
intensity tends to be greater [58,59]. These areas typically host more intense economic and
human activities, likely leading to elevated carbon emissions. Land-use intensity reflects the
degree of development and utilization of land resources, with variations in land resource
utilization across different counties. Higher land-use intensity often signifies increased
energy consumption. During the rapid urbanization process, the total area of construction
land has been continually expanding, particularly the construction of new residential areas,
factories, and commercial facilities, which has led to an increase in carbon emissions.

The interactive detection method was pivotal for unraveling the complex synergies
among various determinants that drive the patterns of spatial variance in county-level
carbon emissions. Examination of the results from interactive detection (Figure 6b) indi-
cated that the interplay among factors consistently exhibited amplification, either bilinear
or nonlinear, without any evidence of neutral or diminishing interrelations. Specifically,
except for the interaction between per capita GDP and the three factors of land-use inten-
sity, nighttime light intensity, and per capita construction land area, which exhibited a
bilinear enhancement, the interactions among the remaining factors were all characterized
by nonlinear enhancement. The q-values associated with the interactions between different
factors were notably greater than the q-values for individual factors. The majority of inter-
action q-values between factors surpassed 0.6, constituting over 93% of the total considered
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interactions. The interplay between nighttime light intensity and per capita construction
land area showcased the highest q-value, having reached 0.8455. The minimum interaction
q-value was noted for the interplay between population density and NDVI, reaching 0.5434,
yet this value still exceeded the maximum q-value for any single factor. The experimental
results highlighted that the explanatory power of interactive effects among factors for
the spatial variation in county-level carbon emissions was enhanced to varying degrees
compared to individual factor effects. Each combination of interactions between different
factors exerted distinct influences on the spatial differentiation of total carbon emissions.
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5. Discussion
5.1. Optimization Strategies for Land-Use Carbon Emissions under Dual Carbon Targets

Amidst the escalating severity of global climate change, carbon emissions have become
a pivotal factor impacting human survival and development [60]. Land use, as one of the
major sources of carbon emissions, its optimization strategies are of crucial significance
for achieving dual carbon goals [20]. County-level land-use systems, acting as a crucial
tier in national carbon emission management and control, bear essential responsibilities
by embodying overarching layout requirements from higher levels and guiding specific
implementations at lower administrative divisions [10]. In the pursuit of dual carbon
targets, a fundamental step involves improving and optimizing land-use patterns to facili-
tate low-carbon economic and social transformation and attain sustainable development
objectives [61]. Current strategies for optimizing carbon emissions related to land use
predominantly focus on multi-dimensional influencing factors, including adjustments to
land-use types, reforms in industrial structures, improvements in energy consumption effi-
ciency, and planning urban-rural construction layouts [27]. However, these strategies have
yet to fully integrate spatial configurations of carbon sink potential, particularly lacking
refined research tailored to different county scales. Within Shaanxi Province, distinct spatial
variations in geographical features, economic development models, and land-use patterns
contribute to unique characteristics among various types of counties in terms of land-use
structures, the distribution of emission sources, and the spatiotemporal dynamics of total
carbon emissions. Consequently, the formulation of tailored carbon emission optimization
strategies for different types of counties is of paramount importance.

Based on the 2020 county-level land-use carbon emission results in Shaanxi Province,
the carbon emission proportions for various land-use types in each county were computed.
Range normalization was applied to standardize the data, followed by the utilization of
K-means clustering for the categorization of counties. The K-means algorithm ensured
that the proportions of carbon emissions for different land-use types are most similar,
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maximizing their resemblance. According to the clustering results, Shaanxi Province’s
counties can be categorized into low-carbon emission (Type I), medium-carbon emission
(Type II), and high-carbon emission (Type III) (Table 6 and Figure 7).

Table 6. Clustering results of county-level land-use carbon emissions in Shaanxi province in 2020.

Emission Type Number Proportion (%) County Name

Low-carbon emission
(Type I) 14 13.08

Danfeng County, Feng County, Foping County, Huanglong County,
Langao County, Liuba County, Linyou County, Ningshan County,
Ningqiang County, Pingli County, Taibai County, Zhen’an County,
Zhenba County, Zhenping County.

Medium-carbon emission
(Type II) 25 23.37

Baihe County, Chenggu County, Chunhua County, Fufeng County,
Ganquan County, Hanyin County, Long County, Luonan County,
Qianyang County, Shiquan County, Shanyang County, Xixiang
County, Xunyi County, etc.

High-carbon emission
(Type III) 68 63.55

Baishui County, Baota District, Beilin District, Binzhou City,
Chang’an District, Changwu County, Chengcheng County,
Chencang District, Jingbian County, Fugu County, Hengshan
County, Shenmu County, etc.
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The number of Type I counties was the smallest, primarily located in the southern
region of Shaanxi with relatively high vegetation coverage and lower industrial activity.
These counties were predominantly carbon sink regions, constituting over 85% of the total,
with only Linyou County and Zhen’an County being non-carbon sink counties. Type I
counties exhibited a relatively extensive original area of carbon sink land, consisting mainly
of land-use types with high carbon sink coefficients, such as forest and shrubland. Owing
to factors like county economic development and urban expansion, the overall carbon
emissions in these counties consistently increased from 2000 to 2020, particularly notable
in Feng County and Zhen’an County. The central focus of optimizing land-use carbon
emissions in low-carbon emission counties involved reinforcing ecological protection and
promoting rational utilization. For these countries, further pursuit of enhancing regional
carbon sink capacity should involve three key aspects: ecological land-use protection,
optimization of land management mechanisms, and refinement of carbon sink trading
mechanisms (Table 7).

Table 7. Optimization strategies for carbon emissions in counties of different types.

Emission Type Optimization Strategies

Low-carbon emission
(Type I)

Enforce rigorous regulations to safeguard ecological land use, preventing the transformation of
carbon sink land into non-carbon sink land.
Optimize land management systems to sustain and enhance the carbon sequestration capabilities
of currently established carbon sink zones.
Improve carbon sink trading mechanisms to encourage and promote the expansion of the carbon
sink industry.

Medium-carbon emission
(Type II)

Optimize the industrial structure to direct industrial layouts toward green and low-carbon
transitions.
Plan and implement ecological corridors to enhance the integrity and connectivity of existing
carbon sink areas.
Enhance land-use efficiency, fostering conservation-oriented and intensive land utilization.

High-carbon emission
(Type III)

Encourage the development and utilization of green energy to build a low-carbon and efficient
energy supply system.
Promote the conversion of some non-carbon sink lands into carbon sink lands, optimizing the
regional ecological spatial structure.
Implement stringent carbon emission standards and establish a comprehensive reward-penalty
system for carbon emissions.

Type II counties comprised a total of 25, accounting for 23.37%, with an overall
distribution pattern that was relatively dispersed. Differently from the remaining two
types, type II counties displayed a relatively even distribution between carbon sink and
carbon emission land-use categories, despite their spatial distribution being more scattered.
Optimization strategies for counties with moderate carbon emissions should prioritize the
harmonization of economic development and environmental protection. For these counties,
efforts should be directed at upgrading industrial structures, improving connectivity among
carbon sink lands, and enhancing land-use efficiency to promote the reduction of carbon
emissions and increase carbon sink in land use (Table 7).

Type III counties were the most numerous and concentrated, representing 63.55% of
the total distribution and predominantly situated in the Guanzhong and Shanbei areas.
The Shaanbei region boasts abundant coal and petroleum resources and has a significant
concentration of energy-intensive chemical industries. In contrast, the Guanzhong area
features a high population density and a more advanced economy. As these economies
advanced through industrialization, the pivotal forces governing land-use transitions
stemmed from the market forces of land commodities/services and the relative economic
gains associated with distinct land uses. This led to a marked shift of land towards more
economically productive secondary and tertiary industries, which in turn precipitated a
swift contraction of ecological habitats, idle lands, and agricultural areas, thus giving rise
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to a dramatic escalation in carbon emissions. For counties characterized by high carbon
emissions, optimization strategies should focus on deep emission reduction and structural
transformation. When addressing the issues in these counties, measures should be taken to
optimize land-use patterns and associated carbon emissions, including the development
of green energy sources, conversion of land-use types into carbon sink lands, and the
implementation of carbon emission reward and penalty systems (Table 7).

5.2. Advantages and Limitations of Research

This study disclosed profound alterations in land-use patterns within Shaanxi Province
between 2000 and 2020, most notably an accelerated expansion of construction land, cul-
minating in a substantial surge of carbon emissions. This aligns with the findings of Zhao
et al. [62] and Wei et al. [63]. Additionally, the data from this study also demonstrated
that Shaanxi Province acted as an overall carbon source region, a notion supported by Cai
et al. [64] in their analysis of carbon emission characteristics in northern provinces of China.
Additionally, they highlighted that industrialization and urban growth constituted the
primary origins of carbon emissions, particularly within the northern counties. This study
further refined these findings, focusing on elucidating the distinctive spatial variations in
carbon emissions at the county scale and exploring the intricate interplay among multiple
influential factors. To address these issues, this study proposed differentiated optimization
strategies, echoing the call for region-specific low-carbon development strategies made
by Balta-Ozkan et al. [65] in their research. Moreover, this study placed special emphasis
on formulating suitable management measures according to the unique carbon emission
characteristics of different counties, a topic relatively under-emphasized in previous stud-
ies, possibly due to an overarching focus on macroscale research. In summary, the study
underscored the intricate relationship between alterations in land use and carbon emissions
observed at the county scale. The regional analysis and recommendations reflected in this
study signaled a new trend in scientific literature, shifting carbon management from a
macro-policy framework towards more detailed and targeted local interventions. This not
only offered a fresh perspective for theoretical studies but also provided more effective
strategies for achieving sustainable low-carbon objectives in practice.

Although our research focused on Shaanxi Province, the results have potential in-
ternational reference value. Globally, many countries and regions also face challenges in
land-use and carbon-emission management, especially under carbon reduction targets,
how to develop tailored land-use optimization strategies is particularly critical. The the-
oretical framework of this study can provide practical reference for other countries and
regions, helping them scientifically assess the current status of land-use carbon emissions,
rationally divide region types, and design targeted carbon emission optimization pathways.
Nevertheless, this study also has certain shortcomings, for instance, it did not fully explore
the potential challenges and solutions that different strategies may encounter during im-
plementation. Future research could expand to more detailed scales, such as the township
level, and explore the adaptability and effectiveness of different strategies under various
stages of development and environmental conditions.

6. Conclusions

This study conducted an in-depth investigation of land use in 107 counties in Shaanxi
Province, revealing the spatiotemporal effects and optimization strategies for land-use
carbon emissions at the county level. The results demonstrated the following: (1) From
2000 to 2020, significant spatiotemporal changes occurred in land use in Shaanxi Province.
Construction land, forest, shrubland, and water exhibited increasing trends, with construc-
tion land experiencing the most significant growth, expanding by 97.62%. Conversely,
cultivated land, grassland, wetland, and bareland decreased, with both cultivated land and
grassland experiencing a cumulative reduction of over 1500 km2 each. Cultivated land,
forest, and grassland dominated the provincial land composition, with prominent transi-
tions occurring among them and construction land. Cultivated land predominantly shifted



Sustainability 2024, 16, 4104 17 of 20

to construction land, especially in the urbanizing regions of the Guanzhong Plain and
Han River Basin. Forest mainly resulted from the conversion of grassland and cultivated
land, contributing to 98.69% of forest expansion. (2) From a carbon emission perspective,
Shaanxi Province acted as an overall carbon source region, demonstrating a spatial pattern
of higher emissions in the northern counties, followed by the central and then southern
areas. From 2000 to 2020, driven primarily by the continuous expansion of construction
land, the total carbon emissions within the province increased nearly fourfold, reaching
1.00 × 108 tons. Forest played a vital role as the main carbon sink area, contributing
positively to regional carbon balance. The spatial distribution of county-level carbon emis-
sions was significantly influenced by the interaction of various factors. (3) Differentiated
optimization strategies were recommended for counties with distinct carbon emission
profiles: low-emission counties should enhance ecological conservation and rational land
use, improving carbon sink capacities; mid-emission counties need to balance economic
development and environmental protection, promoting industrial structure upgrades and
enhancing land-use efficiency; and high-emission counties should prioritize deep emission
reduction and structural transformation, fostering green energy development, protecting
and expanding carbon sink lands, and implementing carbon emission reward and penalty
systems. The research findings carry profound theoretical and practical implications for
strengthening carbon emission management and optimization at the county level, thereby
supporting regional carbon reduction efforts. Furthermore, they provide a scientific founda-
tion for achieving low-carbon transition and sustainable development under the framework
of dual carbon objectives.
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