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Abstract: Public bicycle systems (PBSs) serve as the ‘last mile’ of public transportation for urban
residents, yet the problem of the difficulty in borrowing and returning bicycles during peak hours
remains a major bottleneck restricting the intelligent and efficient operation of public bicycles.
Previous studies have proposed reasonable models and efficient algorithms for optimizing public
bicycle scheduling, but there is still a lack of consideration for actual road network distances between
stations and the temporal characteristics of demand at rental points in the model construction
process. Therefore, this paper aims to construct a public bicycle dispatch framework based on the
spatiotemporal characteristics of borrowing and returning demands. Firstly, the spatiotemporal
distribution characteristics of borrowing and returning demands for public bicycles are explored, the
origin–destination (OD) correlation coefficients are defined, and the intensity of connections between
rental point areas is analyzed. Secondly, based on the temporal characteristics of rental point demands,
a random forest prediction model is constructed with weather factors, time characteristics, and rental
point locations as feature variables, and station bicycle-borrowing and -returning demands as the
target variable. Finally, bicycle dispatch regions are delineated based on actual path distances between
stations and OD correlation coefficients, and a public bicycle regional dispatch optimization method
is established. Taking the PBS in Ningbo City as an example, the balancing optimization framework
proposed in this paper is validated. The results show that the regional dispatch optimization
method proposed in this paper can achieve optimized dispatch of public bicycles during peak hours.
Additionally, compared with the Taboo search algorithm (TSA), the genetic algorithm (GA) exhibits a
11.1% reduction in rebalancing time and a 40.4% reduction in trip cost.

Keywords: public transportation; public bicycle; spatiotemporal characteristics; demand prediction;
dispatch optimization

1. Introduction

The increasing severity of traffic congestion and pollution demands that governments
develop a ‘low-carbon transportation development model’ wherein public transportation
stands as a typical effective solution [1,2]. Moreover, previous research indicates that taking
the Meituan public bicycle system as an example, public bicycle users have cumulatively
reduced carbon dioxide emissions by 1.187 million tons since its operation begun [3].
High-capacity and rapid public transportation modes such as metro and buses address
the long-distance travel needs of urban residents [4]. However, the site selection results
of existing public transportation hubs evidently fail to meet residents’ ‘last-mile’ travel
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demands [5]. Hence, public bicycles emerge as the optimal solution to address the ‘last-
mile’ travel issue [6]. Nevertheless, during peak travel times, public bicycle stations exhibit
significant imbalance between rental and return, manifesting as the problem of ‘no bikes
available, no docks to return’. Discrepancies in user travel times and locations exacerbate
the imbalance in station bicycle borrowing and returning, severely impacting the efficiency
of public bicycle system (PBS) usage and user satisfaction. In response to this issue, some
cities resort to manual patrols for bicycle redistribution, a method that proves relatively
inefficient and fails to meet the rental and return demands of public bicycles during peak
periods [7].

Considerable analysis has been conducted in existing research on the imbalance of
inventory at public bicycle stations. Most studies focus on minimizing the cumulative costs
associated with the bicycle redistribution process [8–10], including time costs, economic
costs, personnel costs, and emission costs of vehicle dispatch. Moreover, further research
has addressed the stochastic demand characteristics of bicycle borrowing and returning,
employing demand forecasting methods to address the uneven distribution of bicycles at
rental stations [11–13]. Some scholars have considered the issue of potentially damaged bi-
cycles within public bicycle systems and have conducted research on bicycle redistribution
methods under such circumstances [14]. To alleviate the complexity of solving the problem,
scholars have approached the issue from a spatial perspective, constructing hierarchical
public bicycle redistribution methods based on ‘station-cluster’ structures [15–17]. For
instance, R. Hu developed a dynamic optimization and rebalancing model for bike-sharing
systems based on demand prediction, aiming to minimize operational costs while maxi-
mizing user satisfaction [18]. However, existing research overlooks considerations of the
actual distances between stations and lacks analysis of the varying strengths of connections
between different stations. These oversights may lead to the departure of bicycle redistri-
bution optimization models from reality, rendering the optimization results inapplicable to
actual engineering demands.

Therefore, various data analysis methods are employed in this paper to address the
peak-hour ‘difficulty in borrowing and returning bicycles’ issue. Based on operational data
from public bicycle systems and air quality data, the paper delves into the usage character-
istics and demand patterns of public bicycles, subsequently conducting demand forecasting
studies for borrowing and returning at each rental point. Subsequently, bicycle dispatch
regions are delineated based on actual path distances between stations and OD correlation
coefficients, and a method for optimizing public bicycle dispatch in segmented regions is
established to enhance the efficiency of public bicycle usage during peak hours. Here, the
OD correlation coefficient between two stations refers to the degree of interrelation between
the stations, taking into account both the spatial distance parameters and the borrowing
and returning demands for bicycles between the stations. The main contributions of this
paper are as follows:

1. Constructing a real-time decision-making framework for public bicycle dispatch based
on demand forecasting.

2. Developing a method for segmenting dispatch regions based on the spatial clustering
of rental points, considering actual road network distances.

3. Establishing an optimization model for dispatch schemes that simultaneously con-
siders the geographical locations of rental points and the strength of connections
between stations.

2. Literature Review

The majority of PBS dispatch optimization studies focus on minimizing the cumulative
costs associated with the public bicycle redistribution process. For instance, a bottom-up
cluster-based static dispatch model for PBSs was proposed by B. Lahoorpoor et al. [19].
A decision support tool developed by B. Legros assists dispatchers in determining which
stations to prioritize at any given time and how many bicycles to add or remove from
each station [20]. Q. Tang studied the problem of locally repositioning bicycles, taking into
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account the dissatisfaction of users at different stations [21]. Y. Ren assumed that PBSs
operate when public bicycles are scarce or during nighttime and investigated scheduling
models aimed at minimizing warehouse inventory costs and travel costs [22]. D. Zhang
developed an adaptive Taboo search algorithm (TSA) incorporating six neighborhood
structures to solve the static rebalancing problem of PBSs based on an integer linear
programming model [23]. Z. Wu et al. proposed a multi-objective optimization and
predictive control approach to address bicycle rebalancing problems, where the optimal
redistribution strategy maximizes the operational efficiency of public bicycles in terms
of balance and redistribution costs [24]. Z. Wei et al. introduced a hybrid rebalancing
strategy considering both truck-based rebalancing costs and emission factors [25], as well
as worker-based rebalancing efficiency, aiming to achieve optimization in terms of both
cost and efficiency dimensions.

However, the aforementioned studies lack consideration of the stochastic demands
for borrowing and returning bicycles, making it difficult to accurately reflect real-world
engineering scenarios. A public bicycle dispatch optimization model was constructed by
F. Maggioni based on given station capacities and time-varying stochastic demands for
borrowing and returning bicycles [26]. D. Huang addressed the static bicycle repositioning
problem by embedding a short-term demand prediction process using a random forest
model to account for dynamic demand during the day [27]. R. Hu developed a dynamic
optimization and rebalancing model for bike-sharing systems based on demand prediction,
aiming to minimize operational costs while maximizing user satisfaction [18]. Some
scholars investigated the static bicycle rebalancing problem with optimal user incentives,
formulated as a mixed-integer nonlinear and non-convex programming model to minimize
total costs, including travel costs, imbalance penalties, and incentive costs [28,29]. L.
Martin et al. developed an optimal mode prediction model for public bicycle rebalancing
considering logistic regression and decision tree methods [30]. M. Hua et al. explored the
bicycle inventory status change mechanism based on real travel data from Nanjing and
proposed an optimization framework to address large-scale public bicycle repositioning
problems [31]. Y. Zhang et al. proposed a user-based PBS scheduling method based on a
two-level planning model to achieve a balance between station rental fees and returns [32].
Scholars devised a visual method to analyze rebalancing in the system and established a
coarse-grained approach to study dynamic rebalancing during peak periods [33,34]. W.
Wu et al. established a multi-period bicycle relocation model within an overall framework
and derived a shortage formula coupling relocation decisions with mid-term demand [35].
X. Wang et al. proposed a multi-objective optimization scheduling method combining
massive spatiotemporal trajectory data of shared bicycles with user travel demands [36].
X. Wang et al. studied the bike-sharing rebalancing problem based on variable demand,
considering the impact of the number of bikes allocated by operators on user demand,
aiming to maximize profits for PBS operators through route planning for transport vehicles
and determining the target number of bicycles for redistribution at each station post-
operation [37,38].

Furthermore, consideration has been given by some scholars to the issue of damaged
bicycles in PBSs, leading to research on bicycle dispatch methods in such special scenar-
ios [14]. An optimization framework addressing dynamic relocation operations of damaged
bicycles was proposed by X. Chang. Initially, a deep learning algorithm was employed
to predict the quantity and location of public bicycles, followed by the construction of a
data-driven optimization model for public bicycle relocation [39]. To address the issue
of imbalanced demand between stations caused by faulty bicycles in PBSs, Y. Cai et al.
determined the scale of relocation vehicle fleets, the allocation of service bicycles to them,
and effective route planning considering the quantity of faulty bicycles at each station to
ensure timely restoration of bicycle inventory to satisfactory levels at each station [40,41].

From a spatial perspective, a hierarchical public bicycle dispatch method based on
‘station-cluster’ structures has been constructed by scholars [15–17]. A public bicycle
rebalancing framework considering both dynamic rebalancing within each station and
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static rebalancing between stations was devised by Z. Tian [9]. Y. Cheng et al. devised a
user-based bicycle rebalancing strategy to address bicycle imbalance in free-floating bike-
sharing systems, considering dynamic user arrivals and incentive budget allocation [42]. C.
Fu et al. proposed a planning framework by integrating comprehensive station siting and
rebalancing vehicle service design models, aiming to enhance system revenue given fixed
station locations and total investment in bicycle procurement [43].

Furthermore, addressing the dispatching vehicles of public bicycles, a public bicycle
rebalancing method considering the positioning of charging stations was proposed by Y.
Wang et al., wherein electric vehicles are utilized as the carriers for bicycle dispatch [10]. To
tackle improper parking issues, L. Jia et al. introduced electric fences to guide users to park
bicycles in designated areas, proposing an intelligent scheduling method for dockless bike-
sharing systems based on electric fences [44]. C. Ren et al. presented a hybrid scheduling
method incorporating trucks and users [45], solved by using the MLP-GA algorithm. X.
Luo et al. studied a bicycle redistribution strategy among collection points under random
demand, formulated as a Markov decision process [46]. D. Chen aimed to minimize vehicle
rebalancing costs and reduce system imbalance by determining rebalancing routes and
the number of bicycles loaded and unloaded at different locations. The decision process
involves two stages: a pre-planning stage solving pre-planned solutions based on historical
data and a real-time stage solving real-time dynamic rebalancing solutions [47].

The literature review (see Table 1) reveals that existing research on public bicycle
redistribution optimization has neglected to consider the actual road network distances,
which can lead to deviations in the design of redistribution schemes. The short straight-
line distance between two stations does not necessarily indicate a short actual travel time
between them. Additionally, the current models lack a comprehensive assessment of the
connectivity strength between public bicycle stations, failing to integrate both the spatial
distance attributes and the borrowing and returning demand characteristics of stations.

Table 1. A review of PBS rebalancing optimization.

Research Scenario Authors and Time Case City Major Contributions

Static PBS rebalancing

B. Lahoorpoor et al. [19] Chicago
A bottom-up cluster-based
static dispatch model for PBSs
was proposed.

B. Legros et al. [20] Paris

A decision support tool was
developed to assist
dispatchers in determining
which stations to prioritize at
any given time and how many
bicycles to add or remove at
each station.

Q. Tang et al. [21] /

This paper studied the
problem of locally

repositioning bicycles,
considering the dissatisfaction
of users at different stations.

Y. Ren et al. [22] Reggio Emilia

This paper assumed that PBSs
operate when public bicycles
are scarce or during nighttime
and investigated scheduling
models aimed at minimizing
warehouse inventory costs
and travel costs.
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Table 1. Cont.

Research Scenario Authors and Time Case City Major Contributions

Static PBS rebalancing

D. Zhang et al. [23] New York

This paper developed an
adaptive TSA incorporating
six neighborhood structures to
solve the static rebalancing
problem of PBSs based on an
integer linear programming
model.

Z. Wu et al. [24] New York

This paper proposed a
multi-objective optimization
and predictive control
approach to address bicycle
rebalancing problems, where
the optimal redistribution
strategy maximizes the
operational efficiency of
public bicycles in terms of
balance and redistribution
costs.

Z. Wei et al. [25] Beijing

This paper introduced a
hybrid rebalancing strategy
considering both truck-based
rebalancing costs and
emission factors, as well as
worker-based rebalancing
efficiency.

PBS rebalancing considering
borrowing and

returning demands

F. Maggioni et al. [26] Bergamo

A public bicycle dispatch
optimization model was
constructed based on given
station capacities and
time-varying stochastic
demands for borrowing and
returning bicycles.

D. Huang et al. [27] Nanjing

This paper addressed the
static bicycle repositioning
problem by embedding a

short-term demand prediction
process using a random forest
model to account for dynamic

demand during the day.

R. Hu et al. [18] Nanjing

This paper developed a
dynamic optimization and
rebalancing model for
bike-sharing systems based on
demand prediction, aiming to
minimize operational costs
while maximizing user
satisfaction.

L. Martin et al. [30] /

This paper developed an
optimal mode prediction
model for public bicycle
rebalancing considering
logistic regression and
decision tree methods.
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Table 1. Cont.

Research Scenario Authors and Time Case City Major Contributions

PBS rebalancing considering
borrowing and

returning demands

M. Hua et al. [31] Nanjing

This paper explored the
bicycle inventory status
change mechanism and
proposed an optimization
framework to address
large-scale public bicycle
repositioning problems.

Y. Zhang et al. [32] Philadelphia

This paper proposed a
user-based PBS scheduling
method based on a two-level
planning model to achieve a
balance between station rental
fees and returns.

W. Wu et al. [35] New York

This paper established a
multi-period bicycle
relocation model within an
overall framework and
derived a shortage formula
coupling relocation decisions
with mid-term demand.

X. Wang et al. [36] Xiamen

This paper proposed a
multi-objective optimization
scheduling method combining
massive spatiotemporal
trajectory data of shared
bicycles with user travel
demands.

PBS rebalancing considering
damaged bicycles

M. Du et al. [14] South Florida

Consideration has been given
by some scholars to the issue
of damaged bicycles in PBSs,
leading to research on bicycle
dispatch methods in such
special scenarios.

X. Chang et al. [39] Beijing

An optimization framework
addressing dynamic
relocation operations of
damaged bicycles was
proposed.

Y. Cai et al. [40,41] /

These papers determined the
scale of relocation vehicle
fleets, the allocation of service
bicycles to them, and effective
route planning considering
the quantity of faulty bicycles
at each station to ensure
timely restoration of bicycle
inventory to satisfactory levels
at each station.

PBS rebalancing based on
area division

Z. Tian et al. [9] Nanjing

A public bicycle rebalancing
framework considering both
dynamic rebalancing within
each station and static
rebalancing between stations
was devised.
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Table 1. Cont.

Research Scenario Authors and Time Case City Major Contributions

PBS rebalancing based on
area division

Y. Cheng et al. [42] Washington

This paper devised a
user-based bicycle rebalancing
strategy to address bicycle
imbalance in free-floating
bike-sharing systems,
considering dynamic user
arrivals and incentive budget
allocation.

C. Fu et al. [43] Beijing

This paper proposed a
planning framework by
integrating comprehensive
station siting and rebalancing
vehicle service design models,
aiming to enhance system
revenue given fixed station
locations and total investment
in bicycle procurement.

PBS rebalancing considering
dispatching vehicles

Y. Wang et al. [10] Washington

A public bicycle rebalancing
method considering the
positioning of charging
stations was proposed,
wherein electric vehicles are
utilized as the carriers for
bicycle dispatch.

L. Jia et al. [44] Beijing

This paper introduced electric
fences to guide users to park
bicycles in designated areas,
proposing an intelligent
scheduling method for
dockless bike-sharing systems
based on electric fences.

C. Ren et al. [45] Chicago

This paper presented a hybrid
scheduling method
incorporating trucks and
users, solved by using the
MLP-GA algorithm.

X. Luo et al. [46] Beijing

This paper studied the
redistribution strategy of
bicycles among collection
points under random demand,
formulated as a Markov
decision process.

D. Chen et al. [47] Shanghai

This paper aimed to minimize
vehicle rebalancing costs and
reduce system imbalance by
determining rebalancing
routes and the number of
bicycles loaded and unloaded
at different locations.

3. Methodology

Existing research has overlooked considerations regarding the actual distances be-
tween stations and lacks analysis on the strength of connections between different stations,
as follows:

1. Traditional methods for partitioning PBS scheduling areas typically rely on straight-
line distances between two points rather than actual road network distances.
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2. Previous studies have treated the spatial location and connection strength of rental
points separately, while the connection strength between rental points is somewhat
related to the spatial location. Integrating geographical location and connection
strength attributes into a unified spatial distance measure will help improve bicycle
dispatch efficiency.

Therefore, this paper addresses the mismatch between PBS inventory distribution and
the dynamic renting–returning of bicycles under traditional bicycle rebalancing schemes
by constructing a real-time decision-making framework for public bicycle dispatch based
on rental demand prediction (see Figure 1).
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Figure 1. Public bicycle dispatch framework based on the spatiotemporal characteristics of borrowing
and returning demands.

3.1. Prediction Method for Public Bicycle-Borrowing and -Returning Demands
3.1.1. Prediction Indicator Screening

To avoid multicollinearity among characteristic variables of public bicycle-borrowing
and -returning demands, the Pearson correlation coefficient is used to measure the correla-
tion among bicycle use frequency, meteorological indicators, and air quality indicators (see
Equation (1)).

RX,Y =
∑n

i=1(xi − µx)
(
yi − µy

)√
∑n

i=1(xi − µx)
2
√

∑n
i=1

(
yi − µy

)2
(1)

The correlation coefficient, RX,Y, represents the correlation between variable X and
variable Y. When RX,Y > 0, there is a positive correlation between the variables. When
RX,Y < 0, there is a negative correlation between the variables. The larger the absolute
value of RX,Y, the higher the degree of correlation between the variables. xi and yi are the
observed values of variables X and Y, respectively; µx and µy are the sample means of
variables X and Y.

Based on the results of the correlation coefficient calculation between variables, vari-
ables with a low correlation to bicycle usage frequency and those with multicollinearity are
screened out.
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3.1.2. Random Forest Regression Prediction Method

The random forest method can address both classification and regression problems,
which primarily depend on whether each tree in the random forest is a classification tree
or a regression tree. For regression trees, the principle employed is minimizing the mean
squared error. Specifically, for any split feature T, given datasets D1 and D2 generated by
any split point p, the final feature and feature value split point are determined to minimize
the mean squared error of the collections in D1, and D2, while also minimizing the sum of
the mean squared errors of D1 and D2 (see Equation (2)).

min︸︷︷︸
T,p

min︸︷︷︸
m1

∑
xiϵD1(T,p)

(yi − m1)
2 + min︸︷︷︸

m2

∑
xiϵD2(T,p)

(yi − m2)
2

 (2)

where m1 is the sample output mean of dataset D1 and m2 is the sample output mean of
dataset D2. The regression prediction of a random forest is the mean of the predictions of
all trees.

3.2. Dispatch Area Division Method

The division of public bicycle dispatch areas aims to balance each area so that dispatch
vehicles can complete their tasks in the shortest time possible, meeting the demands for
bike borrowing and returning within peak periods. To minimize the travel costs of dispatch
vehicles, it is advisable to include stations that are close in distance and relatively concen-
trated within the same area. However, both public bicycles and dispatch vehicles operate
within the actual road network. Therefore, when dividing the areas, the measurement of
the spatial distance between rental points should use the road network distance between
the rental points, which is more realistic than straight-line distance.

On the other hand, public bicycles exhibit significant self-flow characteristics. The
borrowing and returning behaviors of users cause bikes to flow between stations, and this
flow is generally bidirectional, resulting in certain correlations between rental points. To
adhere to the rules of PBS operation, it is advisable to ensure balance between borrowing
and returning bikes within the same area, avoiding cross-area dispatching and including
rental points with strong correlations in the same dispatch area.

In summary, factors considered when dividing dispatch areas in this paper include
road network distance between rental points, correlation strength, and balance of borrowing
and returning demands within the area. This paper simultaneously considers the goals of
road network distance between rental points, correlation strength, and balance of borrowing
and returning demands within the area. By defining a distance measurement parameter
that integrates rental point coordinates and correlation strength attributes, a dispatch
area division model is constructed; then, the affinity propagation (AP) spatial clustering
algorithm is used to solve it. Subsequently, adjustments are made based on the directional
borrowing and returning demands at rental points in each divided area, land use types, and
other characteristic attributes to ensure balance in dispatch demand within the area and
obtain the final dispatch area division scheme. Figure 2 illustrates the process of dispatch
area division.
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3.2.1. Definition of Parameters

The division of dispatch areas is aimed at enhancing vehicle dispatch efficiency. While
considering the path distance between stations, it is essential to fully leverage the self-
balancing characteristics of public bicycle flow, ensuring minimal imbalances in borrowing
and returning within the same dispatch area, thus avoiding long-distance cross-area dis-
patching. The identification of the shortest paths between rental points and the calculation
of path distances must be based on real road network data. In this paper, the calculation
of path distances between stations is performed by using the cycling route planning and
distance calculation functionalities provided by Baidu Maps Open Platform.

Let us assume that there are n public bicycle rental points involved in the division of
dispatch areas and that the number of divided dispatch areas is k. B represents the set of
stations, and Q denotes the set of dispatch areas. D represents the matrix of shortest-path
distances between stations, where dij represents the shortest-path distance from station
i to j. C represents the matrix of OD correlation coefficients between stations, where cij
represents the OD connectivity count from station i to j.

D =


d11 d12 d13 · · · d1n
d21 d22 d23 · · · d2n
d31 d32 d33 . . . d3n
. . . . . . . . . . . . . . .
dn1 dn2 dn3 . . . dnn

 (3)

C =


c11 c12 c13 · · · c1n
c21 c22 c23 · · · c2n
c31 c32 c33 . . . c3n
. . . . . . . . . . . . . . .
cn1 cn2 cn3 . . . cnn

 (4)

The interrelationship between stations essentially represents the correlation between
the borrowing and returning of bicycles between two stations. In this paper, the interstation
OD connectivity count is defined to reflect the frequency of bicycle flow between stations. A
higher connectivity count, denoted by cij(t), indicates a stronger borrowing and returning
relationship between the stations. The calculation of the interstation connectivity count
(cij(t)) between stations i and j within unit time t is shown in Equation (5).

cij(t) = cin
i,j(t) + cout

i,j (t) =
vji(t)

vin
i (t)

+
vij(t)

vout
i (t)

(5)
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where cin
i,j(t) and cout

i,j (t) represent the returning and borrowing correlation coefficients,
respectively, from station i to j. Subsequently, aiming to minimize the imbalance between
borrowing and returning within the designated dispatch areas, the imbalance rate (R) of
borrowing and returning in the public bicycle system is established (see Equation (6)).

R =
∑k

j=1

∣∣∣Qout
j − Qin

j

∣∣∣
∑k

j=1(Q
out
j + Qin

j )
(6)

where Qout
j and Qin

j denote the quantity of bicycles borrowed and returned, respectively,
within dispatch area j. For set of dispatch areas Q, the total borrowing and returning volume

across all areas is represented as
k
∑

j=1
(Qout

j + Qin
j ) , and the sum of borrowing and returning

imbalances is
k
∑

j=1

∣∣∣∣∣Qout
j − Qin

j

∣∣∣∣∣. The imbalance rate (R) reflects the overall borrowing and

returning imbalances among the k areas. A higher R indicates larger imbalances between
borrowing and returning within each dispatch area, suggesting higher demand for inter-
area dispatch. Conversely, a lower R indicates smaller imbalances within each dispatch
area, implying a relatively balanced state of borrowing and returning within the areas, thus
indicating a more reasonable division of dispatch areas.

3.2.2. Station Similarity Matrix

Next, an approach is proposed in this paper to combine the spatial relationship
between stations with the correlation between the borrowing and returning of bicycles. It is
achieved by integrating the actual distance between stations with their associated attributes
to establish the station similarity (sij) (see Equations (7) and (8)).

µij = 1 −
cij − cmin

cmax − cmin
(7)

sij = µij ∗ dij (8)

where cij denotes the correlation coefficients between stations i and j, cmax and cmin represent
the maximum and minimum values of correlation coefficient matrix between stations, and
µij represents the intensity coefficient of borrowing and returning vehicles between stations
i and j.

In essence, sij expresses the spatial distance between rental stations, where a larger
value indicates a greater distance between stations, fewer borrowing and returning transac-
tions, and lower similarity between rental stations. This contradicts mathematical logic.
To ensure consistency between numerical values and mathematical logic, the association
matrix is constructed by taking the negative of the similarity (see Equation (9)).

S =


−µ11 ∗ d11 −µ12 ∗ d12 −µ13 ∗ d13 . . . −µ1n ∗ d1n
−µ21 ∗ d21 −µ22 ∗ d22 −µ23 ∗ d23 . . . −µ2n ∗ d2n
−µ31 ∗ d31 −µ32 ∗ d32 −µ33 ∗ d33 . . . −µ3n ∗ d3n

. . . . . . . . . . . . . . .
−µn1 ∗ dn1 −µn2 ∗ dn2 −µn3 ∗ dn3 . . . −µnn ∗ dnn

 (9)

3.2.3. AP Clustering Algorithm

The dispatch area division based on the association matrix in this paper results in a
concentrated distribution of stations within each class, while also ensuring strong borrow-
ing and returning relationships between stations within the region. Furthermore, efforts are
made to balance the borrowing and returning demands within the dispatch region to reduce
the frequency of inter-regional dispatching and decrease the workload of dispatching.
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Cluster adjustment primarily involves exchanging stations between different regional
classes to achieve a balance in the borrowing and returning demands within each dispatch
region. Initially, the total difference in borrowing and returning demands for each class is
calculated separately. Based on the positive or negative sign of the differences, adjustments
are made between complementary regional classes, ensuring that the exchanged stations
do not overly increase the dispersion within the new class and that the spatial distance
between rental points within each dispatch region remains within acceptable ranges. The
AP clustering algorithm is adopted for dispatch area division, with the algorithm’s main
process being outlined as follows:

Step 1: Construct the similarity matrix (S) among data points.
Step 2: Initialize the algorithm with the given parameter values.
Step 3: Compute and update the attractiveness matrix.

rn+1(i, k) =
{

S(i, k)− maxj ̸=k{ an(i, j) + rn(i, j)} , i ̸= k
S(i, k)− maxj ̸=k{S(i, j)} , i = k

(10)

Step 4: Compute and update the attribution matrix.

an+1(i, k) =

{
min

{
0, rn+1(k, k) + ∑j ̸=i,k max{rn+1(j, k), 0

}}
, i ̸= k

∑j ̸=k max{rn+1(j, k), 0}, i = k
(11)

Step 5: Update the attractiveness and attribution matrices based on the convergence
coefficient (γ).

rn+1(i, k) = γ × rn(i, k) + (1 − γ)× rn+1(i, k) (12)

an+1(i, k) = γ × an(i, k) + (1 − γ)× an+1(i, k) (13)

Determine whether a data point is a cluster center based on the value of a + r. Repeat
steps 2, 3, and 4 until matrix stability is achieved or the maximum number of iterations is
reached, terminating the algorithm.

3.3. Dispatch Demand Analysis

Conducting public bicycle dispatching requires clear delineation of three crucial
parameters: station status, time windows, and dispatch demand. This involves determin-
ing whether a station needs bicycles to be dispatched in or out based on its status and
borrowing–returning trends, as well as establishing the time windows and quantities for
bicycle redistribution at each station.

3.3.1. Station Status Determination

Station status can be described by the ratio of available bicycles to station capacity,
reflecting the status of empty or full docks at each station. Station status can be categorized
into three situations, full, empty, and normal, detailed as follows:

1. Full: This occurs when the number of available bicycles at a station equals its capacity.
In this state, the station can provide bicycle-borrowing services but cannot accept
returned bicycles from users. If users need to return bicycles, they either rely on others
to borrow bikes or seek nearby stations with available docks, which can inconvenience
users significantly. When formulating dispatch optimization plans, it is essential to
avoid stations reaching full capacity and to conduct advance dispatching to ensure
available docks for bicycle returns.

2. Empty: This happens when the number of available dock spaces equals zero at a
station. In this scenario, the station can accept returned bicycles but cannot provide
bicycles for borrowing. If users need to borrow bicycles, they must wait for others
to return bicycles or find nearby stations with available bicycles to borrow. Similarly,
dispatch optimization plans should avoid situations where stations run out of dock
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spaces, and bicycle replenishment should occur before stations become completely
empty.

3. Normal: This state indicates that the number of bicycles and available dock spaces at
a station can facilitate regular bicycle-borrowing and -returning activities by users.
The goal of bicycle dispatching is to transition stations from a near-empty or -full state
back to a normal state.

3.3.2. Time-Window Determination

During peak hours, public bicycle systems experience heightened mobility, leading
to stations frequently entering abnormal states of ‘no bikes available for borrowing, no
docks available for returning’. Hence, the proactive balancing of bicycles is necessary.
The dispatch time window refers to the timeframe during which stations are available
for redistribution services, and it can be divided into an expected time window and an
acceptable time window. If the dispatch service provided by dispatching vehicles exceeds
the expected time window, it will decrease the efficiency of the public bicycle system.

Let us assume that the initial dispatch time is t0, the initial number of bicycles at
station i is qi(t0), and the capacity of the station is Qi. The time when dispatching vehicles
arrive at station i is ti, and the imbalance of bicycle borrowing and returning at station i per
unit time is denoted by Vi.

When Vi(t) exceeds 0, indicating station i requires bicycles to be transferred in, ti
should satisfy

ti < t0 +
qi(t0)

Vi
(14)

When Vi(t) falls below 0, indicating station i requires bicycles to be transferred out, ti
should satisfy

ti < t0 +
qi(t0)− Qi

Vi
(15)

When station i is in a normal state, the ratio of the number of bicycles to the station’s
capacity (Ei) should remain within a reasonable range, [Emin, Emax]. As Ei(t) approaches
the upper or lowerlimit of the station’s dispatch time window, the expected dispatch time
window can be calculated based on the predicted borrowing and returning demands of
the station.

3.3.3. Dispatch Demand Analysis

The dispatching demand denotes the number of public bicycles that the station needs
to transfer in or out in a certain period of time. It can be analyzed according to the current
situation and the historical law of borrowing and returning vehicles of the station. When
bicycle mobility is high, accurately calculating the optimal redeployment demand becomes
challenging. In practical applications, it is essential to maintain the ratio of bicycle docks
to available bicycles at stations within the range of [Emin, Emax] after redeployment. The
redeployment demand for station i should satisfy Equation (16), and Equation (16) can be
further expressed as Equation (17).

qi(t)− EmaxQi ≤ di ≤ qi(t)− EminQi (16)

di = µ[qi(t)− EminQi] + (1 − µ)[qi(t)− EmaxQi], µ ∈ [0, 1] (17)

The range of values for station redistribution can be determined by using Equation (17).
When determining the specific amount of redistribution, stations with inbound redistribu-
tion demands are prioritized, followed by determining the outbound redistribution amount
for stations based on proximity. The goal is to ensure that the total inbound redistribution
quantity equals the total outbound redistribution quantity within the dispatch area.
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3.4. Regional Dispatch Vehicle Route Optimization Model

Public bicycle dispatching should reduce dispatching costs while ensuring efficiency,
and whether bike-borrowing and -returning operations can be conducted within the target
time period is of concern to users. Therefore, when determining dispatch optimization
objectives, this paper simultaneously considers the optimization of dispatch vehicle activa-
tion, operational costs, and time penalty costs, with a focus on time costs. In summary, the
optimization problem of peak-period vehicle dispatch can be described as follows: Given
the predicted dispatch demands of each station, dispatch vehicles depart from the dispatch
center, travel to stations with dispatch demands to redistribute bicycles, and finally return
to the dispatch center. The goal is to determine the number of dispatch vehicles and their
routes to minimize total dispatching costs. Based on historical operation data of public
bicycles, this paper makes the following assumptions before establishing the mathematical
model for optimizing dispatch vehicle routes:

1. We assume that the location of the regional dispatch center, the capacity of dispatch
vehicles, and the maximum travel distance are all known parameters.

2. To simplify the solution process, we assume that the maximum carrying capacity of
dispatch vehicles exceeds the dispatch demand of each station.

3. We assume that dispatch vehicles depart from the regional dispatch center, complete
their dispatch tasks, and finally return to the center.

4. Each station is served once in a single dispatch operation and is only served once.
5. We assume good road traffic conditions during dispatching and do not consider

special situations such as traffic congestion.

3.4.1. Definition of Parameters

1. Vehicle Activation and Operating Costs

The vehicle activation cost is determined by multiplying the required number of
dispatch vehicles by the fixed activation cost per vehicle. The dispatch vehicle operating
cost equals the product of the vehicle’s travel distance and the unit travel cost per distance,
as expressed in Equation (18).

c1

K

∑
k=1

n

∑
j=1

x0jk + c2

K

∑
k=1

n

∑
i=1

n

∑
j=1

dijxijk (18)

xijk =

{
1, Dispatch vehicle k travels from station i to j
0, otherwise

(19)

where c1 denotes the activation cost of a dispatch vehicle, K and k are the amount and
number of dispatch vehicles, and c2 represents the cost of dispatch vehicle in unit distance.

2. Penalty Function

In the optimization of dispatch vehicle routes during peak commuting hours, where
users are particularly sensitive to time constraints, failure to meet users’ demands implies a
decrease in the system’s service level. Therefore, it is necessary to constrain the arrival time
of dispatch vehicles within an acceptable range for users. This study introduces a penalty
cost for deviation from the required arrival time. The penalty increases proportionally
with the deviation from the time window, reflecting the degree of departure from user
expectations. The penalty cost for deviation from the arrival time window also reflects user
satisfaction with the use of public bicycles. The following assumptions are made regarding
the penalty function:

• When a dispatch vehicle arrives at the station within the required time window, the
penalty is zero.

• If a dispatch vehicle arrives at the station within the acceptable time window, the
penalty is linearly related to the deviation from the expected time window.
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• If a dispatch vehicle arrives after the station’s acceptable time window, a significant
penalty is applied to emphasize the importance of timely arrivals during peak hours.

Based on these assumptions, a penalty function for deviation from the expected arrival
time is established.

f(ti)
=


M ti ≤ t′l

γl
(
ti − t′l

)
t′l < ti < tl

0 tl ≤ ti ≤ tr
γr(ti − tr) tr < ti < t′r

M ti ≥ t′r

(20)

The time penalty cost incurred by dispatch vehicles serving station i is represented
by f(ti)

, where ti denotes the arrival time of the dispatch vehicle at station i. M represents
the penalty cost incurred when the arrival time of the dispatch vehicle falls outside the
acceptable time window, set to a sufficiently large positive value to prevent the algorithm
from sacrificing service at stations within the time window to reduce dispatch vehicle
operating costs. tl and tr denote the lower and upper bounds, respectively, of the expected
demand scheduling time window for the station. t′l and t′r represent the lower and upper
bounds, respectively, of the acceptable demand scheduling time window for the station.
γl and γr represent the penalty cost coefficients when the dispatch vehicle arrives early
or late.

3.4.2. Model Construction

1. Objective Function

Considering the aforementioned analysis, the objective function of the dispatch opti-
mization model is formulated as shown in Equation (21).

Ymin = c1

K

∑
k=1

n

∑
j=1

x0jk + c2

K

∑
k=1

n

∑
i=1

n

∑
j=1

dijxijk +
n

∑
i=1

f(ti)
(21)

where Ymin indicates the sum of activation cost, operation cost and penalty cost of dispatch
vehicles. The penalty cost represents the cost incurred when dispatch vehicles fail to arrive
within the expected time window.

2. Constraints

The definitions of relevant parameters in the vehicle dispatch model based on regional
division include the following: The maximum carrying capacity of dispatch vehicles,
denoted by Q. There are n stations within the corresponding dispatch region. The dispatch
demand at station i is represented by qi. When qi > 0, station i has a dispatch demand for
outgoing bicycles; when qi < 0, station i has a dispatch demand for incoming bicycles. The
dispatch center for the region is denoted as 0. tiw represents the service time of dispatch
vehicles at station i, and tij represents the travel time of dispatch vehicles from station i to
station j. The following apply:

• The number of vehicles participating in the dispatch is no more than K.

K

∑
k=1

n

∑
j=1

x0jk ≤ K (22)

• At the beginning of dispatch, vehicles depart from the dispatch center and eventually
return to it.

n

∑
i=1

x0ik =
n

∑
i=1

xi0k ≤ 1 (23)
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• During the dispatch process, the number of bicycles on the dispatch vehicles remains
between 0 and the maximum capacity.

0 ≤
x

∑
i=1

qiyi + qx+1 ≤ Q, (x = 1, 2, · · · , n) (24)

yi =

{
1, station i has completed deployment
0, otherwise

(25)

• tj represents the moment when the dispatch vehicle arrives at station j, with the
previous station before arrival being i.

tj = ti + tiw + tij (26)

• Dispatch vehicles enter and exit the same station once during the dispatch process.

n

∑
i=0, i ̸=j

xijk = 1 (27)

n

∑
j=0, j ̸=i

xijk = 1 (28)

• Dispatch vehicles must leave after arriving at a station.

n

∑
j=0

xipk −
n

∑
j=0

xpjk = 0 (29)

3.4.3. Solution Algorithm

Most traditional search and optimization algorithms, especially those based on gradi-
ent descent, tend to converge prematurely into local optima rather than finding the global
optimal solution. In contrast, the GA can search for the optimal solution with greater ease
and efficiency. Therefore, the genetic algorithm is utilized in this study to solve the regional
dispatch vehicle route optimization model. The specific algorithm design is outlined below.

1. Encoding and decoding method

Vehicle dispatch entails a sequence-based combinatorial optimization problem, and a
natural number encoding method is employed. Let us assume that there are K dispatch
vehicles at the dispatch center and n stations in the dispatch region, with 0 denoting the
dispatch center. As the required number of dispatch vehicles is uncertain beforehand, 0 is
not integrated as a path delimiter into the chromosome structure during encoding. Instead,
stations with dispatch demands are sequentially added to a chromosome. This intuitive
encoding method based on station permutation ensures that each station is serviced only
once, simplifying the handling of model constraints and facilitating genetic operations.
The decoding process follows a procedure similar to encoding, where values from the
chromosome are sequentially inserted into a newly initialized path. When the insertion of
a value leads to the total demand of the path exceeding the maximum carrying capacity of
the dispatch vehicles, it is replaced by 0, initiating the construction of a new path until all
stations are accommodated in the path.

2. Population initialization

The initial population serves as the starting point for genetic algorithm evolution.
It is generated randomly to achieve a uniformly distributed initial population across the
solution space. The size of the population often influences the algorithm’s execution
efficiency and the final optimization outcomes. A population that is too small may result in
the algorithm getting trapped in local optima with poor optimization performance, while
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an excessively large population would increase the temporal and spatial complexity of
algorithm execution. When the chromosome length is not excessive, a population size
ranging from 20 to 200 is deemed suitable.

3. Constraint handling and fitness evaluation

Considering the characteristics of the dispatch model constraints, constraints such as
stations being serviced only once are manifested in the chromosome encoding. Additionally,
time-window constraints and the constraint of the maximum carrying capacity of the
dispatch vehicles need to be addressed. Time-window constraints are incorporated into
the objective function in the form of time penalty costs, while the constraint of maximum
carrying capacity is handled by using a penalty function defined as follows:

Pk =


M1

(
0 − qijk

)
qijk < 0

0 0 ≤ qijk ≤ Q

M1

(
qijk − Q

)
qijk > Q

(30)

Zi = Yi +
K

∑
k=1

P(k) (31)

The fitness evaluation of individuals in the population is a crucial basis for genetic
operations. The fitness function value is a non-negative number, with larger values in-
dicating a higher probability of individuals producing offspring. As the optimization
objective of this study is to minimize the function value, the fitness function is represented
as Equation (32).

Fi =
1
Zi

(32)

where i represents the i-th chromosome in the population; M1 denotes the penalty cost
coefficient for the maximum carrying capacity; Pk represents the penalty function value
for the maximum carrying capacity; qijk denotes the load from station i to station j for
dispatch vehicle k; Yi indicates the objective function value corresponding to chromo-
some i, representing the dispatch cost in this paper; and Fi denotes the fitness value of
chromosome i.

4. Genetic Operations

Genetic operations encompass selection, crossover, and mutation. This paper adopts
the roulette wheel selection method based on stochastic sampling as the selection operator.
The crossover operator employs the partially matched crossover method suitable for integer
encoding problems, along with an inversion mutation operator to prevent the premature
convergence of the algorithm.

5. Termination Condition

This study controls the algorithm’s execution time and solution accuracy by predefin-
ing the number of evolution generations. When the number of evolution generations
reaches the preset value, the iteration ceases, and the optimal chromosome corresponding
to the dispatch path is output.

4. Results
4.1. Prediction of Public Bicycle Demand
4.1.1. Feature Variable Selection

1. Meteorological and Air Quality Indicators

The original meteorological and air quality data contain numerous data indicators,
some of which are evidently unrelated to the research objective. In this preliminary stage,
the data indicators shown in Table 2 are selected.
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Table 2. Indicator description of meteorological and air quality.

Indicator Description Indicator Description

T Atmospheric
temperature (◦C) W Weather: 0, heavy rain/snow; 1,

light rain; 2, no rain.
P Atmospheric pressure V Horizontal visibility (km)
H Relative humidity (%) AQI Air Quality Index

WS Wind speed (m/s) PM2.5 PM2.5 concentration (µg/m3)

This paper utilizes the Pearson correlation coefficient to screen an appropriate set of
parameters for public bicycle demand forecasting models, thereby constructing an accurate
prediction model. Initially, parameters with higher correlation to public bicycle demand
are prioritized for selection. Furthermore, parameters exhibiting multicollinearity are
eliminated to the greatest extent possible. The correlation coefficients between various
meteorological indicators and the frequency of bicycle usage (F) are calculated, as shown in
Figure 3. It can be observed that there is a strong correlation between AQI and PM2.5, as
well as between air pressure (P) and temperature (T). Similarly, there is a significant correla-
tion between relative humidity (H) and horizontal visibility (V) and between weather (W)
and relative humidity (H). Considering the overall correlation between each meteorological
factor and the frequency of usage (F), it is decided to eliminate the three indicators PM2.5,
air pressure (P), and horizontal visibility (V).
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2. Temporal Features

The demand for public bicycles varies at different times of the day and on weekdays
versus weekends (including holidays) and also shows seasonal differences across different
months. Therefore, different times of the day, days of the week, whether it is a weekday,
and the month are important feature variables for predicting bicycle demand.

Different times of the day refer to intervals from 5:00 to 22:00, with a data collection
interval of 30 min, resulting in a total of 34 time intervals. For example, 1 represents
5:00–5:30, and 34 represents 9:30–10:00, and so on. The selection of the time ranges from
5:00 to 22:00 is because the demand for public bicycles during other times is extremely
low, almost negligible, and thus not considered in this study. Regarding the selection
of the prediction time intervals, if the intervals are too small, there may be significant
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fluctuations in bicycle demand, leading to many samples with zero data and increased
random interference during prediction. Conversely, if the intervals are too large, it may
not accurately represent the changing trend of demand, resulting in delays in subsequent
scheduling. Hence, based on the actual changes in demand for public bicycles studied in
this paper, a time interval of 30 min is determined.

3. Station Locations

Public bicycle station locations vary, and so do the borrowing and returning demands,
exhibiting spatial distribution patterns. Additionally, stations in different land use types
demonstrate borrowing and returning volumes that align with the characteristics of differ-
ent land use types. Therefore, station locations and land use types are chosen as feature
variables for the predictive model.

In summary, the selected predictive factors in this study include meteorological factors,
temporal features, and station location features, as detailed in Table 3.

Table 3. Summary of predicted parameters.

Indicator Description Description

Atmospheric
factors

T Atmospheric temperature (◦C)
H Relative humidity (%)

WS Wind speed (m/s)
W Weather: 0, heavy rain/snow; 1, light rain; 2, no rain.

AQI Air Quality Index

Time factors

t Different prediction periods every 30 min within a day

d Day of the week (d = 1, 2, . . ., 7; representing Monday to
Sunday, respectively)

w Whether it is a working day (0 represents non-working days; 1
represents working days)

M Month (M = 1, 2, . . ., 12)

Location
factors

N Station number

L Land use type (L = 1, 2, 3, and 4, representing residential, office,
commercial, and transportation land, respectively)

Based on the selected influencing variables described above, feature vectors for each
time window at each station were constructed in this study. Station actual borrowing
and returning volumes were taken as target values, and random forest prediction models
were separately trained for station borrowing demand and returning demand. The public
bicycle-borrowing and -returning volume data from July 2016 to June 2017 in Ningbo City
were divided into training, validation, and test sets in an 8:1:1 ratio. The training set was
used for model learning and training, the validation set for model parameter adjustment,
and the test set for model performance evaluation.

4.1.2. Model Parameter Settings

The demand prediction model proposed in this paper is constructed based on the
predictive parameters outlined in Table 3. In Python, the GridSearchCV function was
invoked, with the model evaluation metric parameter ‘scoring’ being set to ‘r2′ and the
number of cross-validation folds being set to 5. Specifically, ‘mean_test_score’ represents
the average score of the validation set, serving as a measure of the predictive accuracy of
the prediction model. Figure 4 illustrates the model accuracy under different parameter
combinations of the random forest prediction model. The horizontal axis represents the
variable of the number of decision trees, while the vertical axis displays the model scores
obtained when experimenting with maximum feature numbers ranging from 3 to 7. The
parameter ‘n_estimators’ defines the number of trees, or estimators, in a random forest
model. When the value of ‘n_estimators’ is set too high, the model may overfit, meaning it
becomes too complex to generalize well to unseen data. Therefore, it is essential to select
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a smaller ‘n_estimators’ as a model parameter while still achieving a satisfactory level of
predictive accuracy. It can be observed that when ‘n_estimators’ exceeds 100, the increment
in model accuracy tends to plateau. Increasing ‘max_features’ generally improves the
classification ability of each tree since there are more features to choose from at each node.
However, it also increases the correlation between any two trees in the forest, leading to an
increase in classification error rates. Additionally, increasing ‘max_features’ can slow down
the algorithm. Therefore, a balanced value of ‘max_features’ should be selected. The highest
model accuracy is achieved when ‘max_features’ is set to 4, with the corresponding model
scores peaking at 300 and 450 decision trees, respectively. Considering both computational
efficiency and model accuracy, the parameter combination of ‘max_features’ as 4 and
300 decision trees was selected to build the model.
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4.1.3. Prediction Results

Taking the East Gate station in Ningbo City, which has the highest demand for bicycle
borrowing and returning, as an example, comparison graphs of the predicted and actual
demand for borrowing and returning bicycles at this station were plotted (see Figure 5).
The results indicate that for specific stations, the predicted demand closely approximates
the actual demand, meeting the accuracy requirements for vehicle dispatching. Figure 5
indicates the overall trends in bicycle-borrowing and -returning demands, both peaking
during morning and evening peak hours. Specifically, Figure 5a represents the pattern of
borrowing demand, indicating that the demand during the evening peak is significantly
higher than that during the morning peak. Concurrently, Figure 5b illustrates the pattern
of returning demand, showing that the returning demand during the evening peak is
noticeably lower than that during the morning peak. This disparity in patterns determines
the role of this public bicycle station within the PBS system.

To validate the effectiveness of the proposed prediction method in this paper, random
forest prediction models for both bicycle-borrowing demand and bicycle-returning demand
were constructed separately. The performance of the models was tested by using the
partitioned test dataset, and the results are presented in Table 4. In general, when the
goodness-of-fit R2 of a prediction model is greater than 0 and less than 1, a higher R2 value
indicates higher accuracy of the regression fit. When R2 exceeds 0.8, the linear relationship
of the prediction model is significant, indicating a high degree of fit for the predicted results.
The coefficients of determination (R2) are all above 0.8, indicating high prediction accuracy.
Moreover, both the mean absolute error and root mean square error of borrowing and
returning volumes fall within the allowable error range, indicating the reliability of the
random forest prediction models constructed in this paper.
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Table 4. Effect of prediction models of renting bikes and returning bikes.

R2 MAE RMSE

Renting bikes 0.809 2.14 3.93
Returning bikes 0.836 2.03 3.73

4.2. Management Area Division
4.2.1. Similarity Matrix Construction

In practice, the round-trip paths between two stations may not be the same, i.e., the
distances from station i to j and from station j to i should be calculated separately. However,
due to the large number of stations involved in this study, calculating round-trip distances
between all pairs of stations would significantly increase the number of requests to the
Baidu Maps 2024 server. Frequent data retrieval may face restrictions. Therefore, this
paper only computed the one-way path distances between stations. In this paper, the
actual distances between public bicycle stations were obtained through the Baidu Map
API. Within the Baidu Map API, the high-performance batch path calculation function,
along with real-time traffic conditions, was leveraged to batch-calculate the route distances
and travel times for multiple origin–destination pairs. The specific steps are as follows: A
Python program was developed to read all station coordinates and generate OD coordinate
lists by using a loop code. These OD coordinate lists were then used as input to access the
Baidu Maps API, obtaining the actual path distances between stations. Subsequently, the
distance data obtained were written into a distance matrix by using loop control, resulting
in a symmetric matrix of size 1093 × 1093. A summary of the matrix is presented in Table 5.

Table 5. Actual path distance matrix of Ningbo public bicycle stations (meters).

No. 1 2 3 4 5 . . . 1089 1090 1091 1092 1093

1 0 3456 2161 12,972 1307 . . . 2042 2776 3250 3316 2507
2 3466 0 2376 14,826 3137 . . . 2121 817 787 853 2856
3 2161 2376 0 13,166 1210 . . . 2472 1938 2085 2131 693
4 12,972 14,826 13,168 0 12,755 . . . 14,714 14,178 14,620 14,686 13,514
5 1307 3137 1210 12,755 0 . . . 2339 2343 2785 2851 1679
6 1323 2341 824 13,018 912 . . . 1970 1434 1878 1942 1583
7 3616 4353 2534 11,955 3417 . . . 4933 4177 4147 4213 2731
8 1675 2415 2102 13,888 1988 . . . 857 1591 2065 2131 2862
9 1968 2290 733 12,975 1140 . . . 1725 1189 1631 1697 1601

10 1142 2580 810 12,958 731 . . . 1745 1674 2116 2182 1523



Sustainability 2024, 16, 4293 22 of 28

The calculation method of the inter-station similarity matrix involves accessing the
database by using Python, where a loop control program is developed to sequentially tally
the total borrowings and returns for each station, as well as the borrowings and returns
for OD station pairs, thereby obtaining the borrowing matrix and returning matrix for OD
stations. Following the method described in Section 3.2 of this paper, matrix operations
were performed by using the Python extension library NumPy to compute the inter-station
connectivity matrix, as shown in Table 6.

Table 6. Similarity matrix of Ningbo public bicycle stations (meters).

No. 1 2 3 4 5 . . . 1089 1090 1091 1092 1093

1 0.00 3.12 0.00 0.00 10.94 . . . 6.25 6.25 0.00 0.00 1.56
2 4.54 0.00 0.00 0.00 0.00 . . . 0.00 13.64 29.55 0.00 2.27
3 0.00 0.00 3.96 0.00 7.92 . . . 6.93 3.96 2.97 1.98 18.81
4 0.00 0.00 0.00 4.25 0.00 . . . 0.00 0.00 0.00 0.00 0.00
5 5.15 0.00 4.41 0.00 8.82 . . . 0.74 0.74 0.00 0.00 8.82
6 0.00 0.97 3.40 0.00 1.94 . . . 0.49 0.97 0.00 0.00 14.08
7 0.00 0.00 0.00 0.00 0.00 . . . 0.00 0.00 0.00 0.00 0.00
8 5.26 0.00 1.05 0.00 1.05 . . . 16.84 0.00 1.05 2.11 2.11
9 2.56 5.00 5.13 0.00 0.00 . . . 0.00 0.00 0.00 0.00 10.26

10 0.49 1.00 10.19 0.00 8.25 . . . 1.46 1.00 0.49 0.49 7.77

4.2.2. Management Area Division

The scheduling region partitioning model was solved by invoking the Affinity Prop-
agation algorithm from the Python library. In the AP algorithm solving process, the
computed similarity matrix was used as input, with the reference preference set to the
median of the similarities. The affinity parameter was set to precomputed, and the damping
factor was set to 0.7. The scheduling region partitioning model was then solved, resulting
in the partitioning of 1093 stations into 33 sub-scheduling regions. The partitioning results
are illustrated in Figure 6, where each color-coded cluster represents a scheduling region,
and each radiating center denotes a cluster centroid.
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Cluster adjustment was completed according to the method described in Section 3.2
of this paper. To demonstrate the effectiveness of the scheduling region partitioning results
based on actual path distances, a scheduling region partitioning model based on Euclidean
distance was also established. Based on the two partitioning results, the imbalance rate
indicator (R) of borrowing and returning bikes in the scheduling regions was calculated
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(see Table 7). A smaller R value indicates a closer balance between borrowing and returning
bikes within the region and a lower rate of inter-regional travel, which is conducive to
scheduling balance. It can be observed that the scheduling regions partitioned based
on actual path distances exhibit a significantly greater reduction in the imbalance rate
compared with those based on Euclidean distance. It suggests that the scheduling region
partitioning model proposed in this paper is effective. The management area division
method that considers actual path distances is superior to the method that considers
Euclidean distances, indicating that the actual travel costs for OD pairs do not fully align
with the Euclidean distances between stations. This also demonstrates the significance
of considering the actual distance attributes between stations for the optimization of PBS
rebalancing.

Table 7. R value based on actual path distance and Euclidean distance.

Difference of Renting and Returning Euclidean Distance Actual Distance

R 0.0913% 0.0504%

4.3. PBS Rebalancing Scheme
4.3.1. Station Allocation Demand

1. Overview of Scheduling Regions

Based on the partitioning results of the public bicycle scheduling regions, the 26th
scheduling region in Haishu District of Ningbo City was selected as the research scope. This
region encompasses 22 stations, numbered sequentially, with the dispatch center numbered
as 0, as shown in Table 8.

Table 8. Location of stations.

Station No. Longitude Latitude Station Capacity

0 121.502646 29.822723 -
1 121.511498 29.827437 22
2 121.493447 29.822737 30
3 121.503811 29.831896 30
4 121.513188 29.830418 20
5 121.506917 29.827465 20
6 121.509551 29.819628 25
7 121.505184 29.827279 30
8 121.508296 29.827214 40
9 121.495453 29.813754 25
10 121.503977 29.825348 60
11 121.508153 29.808676 30
12 121.503210 29.820466 30
13 121.499562 29.821797 20
14 121.512147 29.822076 50
15 121.503907 29.816296 40
16 121.497846 29.820745 30
17 121.496226 29.818506 30
18 121.496322 29.818046 40
19 121.498929 29.833031 30
20 121.496826 29.822625 30
21 121.491886 29.815891 30

2. Bicycle Dispatch Quantity at Stations

During the weekday morning peak hours, stations in the 26th scheduling region
were subjected to dispatching. The morning peak period was determined based on the
historical borrowing and returning data of each station in the area, with the peak hours
set from 7:00 to 8:30. For research purposes, we focused on the hour from 7:00 to 8:00.
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Following the methodology outlined in Section 3.3, the borrowing and returning demands
during the corresponding research period were predicted. It was assumed that the initial
state of the stations was known (in practical applications, real-time station monitoring
can be employed). Station status thresholds [Emin, Emax] were set to [0.2, 0.8], thereby
determining the status of each station, dispatch time window, and deployment volume
range. The specific determination of deployment volume prioritized satisfying stations
with incoming demand. Then, based on the total incoming demand, the deployment
volume for stations with outgoing demand was determined. The resulting morning peak
station dispatch demands are shown in Table 9. The acceptable time-window values in the
table are hypothetical and can be obtained through actual surveys based on station land
use types during application.

Table 9. Bicycle dispatch demand at stations.

Station No. Capacity Demand Expected Time
Window

Acceptable
Time Window

0 20 15 7:10–7:25 7:05–7:30
1 30 24 7:05–7:20 7:00–7:25
2 30 −15 7:00–7:15 7:00–7:20
3 20 −11 7:15–7:25 7:10–7:30
4 20 16 7:15–7:40 7:10–7:45
5 25 18 7:15–7:30 7:10–7:35
6 30 −12 7:20–7:45 7:15–7:50
7 40 −14 7:00–7:20 7:00–7:25
8 25 −15 7:30–7:50 7:25–7:55
9 60 −28 7:00–7:10 7:00–7:15
10 30 23 7:25–7:40 7:20–7:40
11 30 −11 7:25–7:40 7:20–7:40
12 20 15 7:15–7:30 7:10–7:30
13 50 −19 7:10–7:40 7:05–7:45
14 40 −15 7:20–7:50 7:15–7:50
15 30 22 7:10–7:30 7:05–7:35
16 30 −14 7:30–7:50 7:25–7:50
17 40 −16 7:10–7:25 7:05–7:30
18 30 18 7:15–7:30 7:10–7:30
19 30 20 7:30–7:50 7:25–7:55
20 30 −16 7:25–7:55 7:20–7:55
21 25 15 7:25–7:55 7:20–8:00

4.3.2. Algorithm Parameter Setting

The parameter settings for the scheduling optimization model solving algorithm are
shown in Table 10.

Table 10. Algorithm parameter setting.

Parameter Value

Distance between stations—dij Actual distance (m)
Activation cost of single dispatching vehicle—c1 500

Driving cost per unit distance—c2 10
Time penalty cost—M 1000

Penalty cost of maximum capacity—M1 1000
Penalty coefficients—γl and γr 10, 10

Average speed of dispatching vehicle—v 40
Maximum carrying capacity of dispatching vehicle—Q 50

Chromosome length 22
Population size 100

Crossover probability 0.8
Mutation probability 0.1

Termination evolution algebra GenNum 1000
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4.3.3. Results

Then, the optimal rebalancing scheme based on the GA algorithm is shown Figure 7.
The optimal rebalancing order is 0-12-1-4-8-5-7-19-3-22-14-6-15-11-18-21-9-17-20-2-10-13-16-
0. The value of the purpose function is 1012.25. The working time of the dispatch vehicle
is 1.36 h. Moreover, this study also solves the bike-sharing rebalancing problem with the
Taboo search algorithm (TSA). The results of GA and TSA are shown in Table 11.
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Table 11. Results of GA and TSA.

Algorithm Number of
Rebalancing Vehicles Time of Rebalancing Trip cost of

Rebalancing Vehicles

GA 1 1.36 1012.25
TSA 1 1.53 1697.83

Based on the solution results, it can be observed that based on the scheduling region
division proposed in this paper, when conducting scheduling optimization design, both
algorithms indicate that only one dispatch vehicle needs to depart from the dispatch center
and sequentially connect stations with dispatch demands along the designed route to
complete the balancing deployment task. By comparing the results of the two algorithms,
it can be seen that the optimal solution obtained by the genetic algorithm proposed in this
paper corresponds to a lower objective function value, and the duration required for the
dispatch vehicle to complete the same deployment task is shorter.

5. Conclusions

This paper presents a public bicycle dispatch framework based on the spatiotemporal
characteristics of borrowing and returning demands. Firstly, the spatiotemporal distribution
characteristics of public bicycle-borrowing and -returning demands are explored, and the
OD connectivity numbers are defined to analyze the strength of inter-area connections
between stations. Secondly, based on the time-varying demand characteristics of stations, a
random forest prediction model is constructed, with meteorological factors, time features,
and station locations as feature variables, and station borrowing and returning demands
as target variables. Finally, bicycle dispatch areas are divided based on the actual path
distances between stations and OD connectivity numbers, and a public bicycle dispatch
optimization method for partitioning areas is established. Taking the PBS in Ningbo City
as an example, the proposed dispatch balance optimization framework is validated. The
main achievements of the paper are summarized below.

1. Results on station borrowing and returning demand prediction
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Addressing the issue of predicting public bicycle-borrowing and -returning demands, a
random forest prediction method considering station land use types is proposed. A random
forest prediction model is constructed with meteorological and air quality factors, time
features, and station locations as feature variables, and station borrowing and returning
demands at half-hour granularity as target variables. The model is validated by using actual
operational data of public bicycles in Ningbo City, and the results show that the constructed
model has high prediction accuracy and can be used as a basis for station dispatch.

2. Results on dispatch area division

Dispatch area division is essentially a spatial clustering problem. Addressing the
shortcomings of existing research, this paper proposes a dispatch area division method that
integrates actual path distances between stations and OD connectivity numbers. Taking the
PBS in Ningbo City as an example, a similarity matrix that integrates station geographical
locations and connectivity strengths is constructed, and the AP algorithm is used to divide
the stations into 33 sub-dispatch areas. Compared with the results of management area
division based on Euclidean distance, the imbalance rate of borrowing and returning in
management area division based on the actual distance of the road network is reduced
by 44.8%. The comparison shows that the proposed dispatch area division method can
effectively improve the imbalance rate of borrowing and returning in dispatch areas.

3. Results on optimization of dispatch vehicle routes during peak periods

By analyzing the dispatch demand characteristics of PBS stations during peak periods,
a dispatch vehicle route optimization model is constructed with dispatch vehicle cost and
time penalty cost as objectives. A genetic algorithm is designed to solve the model based
on objective values and constraints. Taking 22 stations in a certain dispatch area in Ningbo
City as an example, the dispatch model is verified based on the genetic algorithm. The
results show that only one dispatch vehicle is needed to complete the deployment task in a
single dispatch area, and compared with the results obtained by the taboo search algorithm,
the results obtained by the genetic algorithm designed in this paper are more optimal,
achieving the optimization of public bicycle dispatch in the area. Additionally, compared
with the TSA, the GA exhibits a 11.1% reduction in rebalancing time and a 40.4% reduction
in trip cost. The TSA is an optimization technique based on local search which explores
possible solutions in the search space to find the optimal solution. Moreover, the GA is an
optimization technique based on the natural biological evolution process, simulating the
processes of natural selection and genetic propagation to locate the optimal solution. The
logical framework of the GA determines its faster solution speed and better optimization
performance when addressing discrete problems such as public bicycle rebalancing.

This paper can provide technical support to urban transportation management depart-
ments and public bicycle operators, enhancing the effectiveness of public bicycle rebalanc-
ing strategies. For instance, operators and managers of PBSs can utilize the methodology
proposed in this paper to select an appropriate number of trucks for rebalancing based on
varying scheduling demands at different times, significantly reducing the operational costs
of PBSs. Furthermore, the application of the research findings can contribute to promoting
urban sustainability and mitigating traffic congestion. However, it must be acknowledged
that this paper still has some limitations. The model proposed in this paper is relatively
idealistic, overlooking practical scenarios such as traffic congestion. Future research will
refine the model construction and align it with real-world scenarios to more precisely
address practical engineering problems.
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