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Abstract: Given the threats to international energy security and the restructuring of energy sources in
various countries, China faces the dual challenge of achieving the goals of carbon peaking and carbon
neutrality. To promote a reduction in carbon emissions and enhance carbon productivity, it is crucial
to innovate renewable energy technology for long-term, low-carbon transformational development.
This paper identifies the key factors that affect carbon productivity through pathway analysis and
quantitatively examines the direct and spatial spillover impacts of technological advancements in
renewable energy using the spatial Durbin model. Finally, this study verifies the pathways through
which innovations affect carbon productivity by combining them with the spatial mediation model.
The results indicate that innovations in renewable energy technologies significantly enhance carbon
productivity. The indirect effects of regional spillover are even more pronounced.

Keywords: carbon productivity; renewable energy technology innovation; spatial Durbin model;
spatial spillover

1. Introduction

Climate change and environmental sustainability are critical issues that human society
must address in its development [1]. In September 2020, China pledged to the international
community to peak carbon dioxide emissions before 2030 and achieve carbon neutrality
before 2060 [2]. This commitment is not only a response to global climate change but also a
crucial goal of socialist modernization in China’s new era. The report of the 20th National
Congress of the Communist Party of China proposed ‘to actively and prudently advance
carbon peaking and carbon neutrality, based on China’s energy resource endowment,
adhering to the principle of establishing before breaking’ regarding how to achieve this
goal [3].

In order to adhere to the principle of ‘establishing before breaking’ in energy transition,
it is crucial to vigorously develop renewable energy (RE) and implement renewable energy
substitution actions [4]. Technological innovation, as the fundamental driving force, can pro-
mote the large-scale and leapfrog development of renewable energy in our country. China
has successively supported and guided the development of renewable energy technologies
through financial and fiscal policies, standard setting, and international cooperation [5].
As an emerging branch within the field of technological innovation research, Renewable
Energy Technology Innovation (REIT) has not yet reached a consensus among scholars
regarding its categorization. Currently, the terms widely used include green technology
(environmental technology and clean technology) and low-carbon technology [6,7]. This
paper focuses on technologies that reduce carbon emissions (CEs) within the realm of green
technology innovation, primarily referring to technological advancements and innovative
activities in the development and utilization of RE, including improvements in existing

Sustainability 2024, 16, 2100. https://doi.org/10.3390/su16052100 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16052100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0007-1887-4354
https://doi.org/10.3390/su16052100
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16052100?type=check_update&version=1


Sustainability 2024, 16, 2100 2 of 18

technologies such as solar, wind, hydropower, geothermal energy, and biomass energy.
This is important for attaining economic development while fostering environmental sus-
tainability, lowering greenhouse gas emissions, and decreasing reliance on fossil fuels [8,9].
Technological innovations can reduce the cost and increase the efficiency of RE, promoting
its global use and positively impacting the fight against climate change [10,11].

Due to its zero-carbon and low-carbon attributes and established foundation for
mature applications, REIT is considered to have immense potential for addressing climate
change and promoting green productivity. It is a crucial pathway for industries, such as
energy production, manufacturing, transportation, and construction, to achieve reductions
in CEs and enhancements in carbon productivity (CP) [12,13]. CP typically refers to the
CEs that accompany a unit of output in a given process or system. This concept can be
applied to various areas, including industrial production, agricultural production, and
energy production. CP is a macroeconomic indicator used to measure the carbon efficiency
of an entire economy [14,15]. Increasing CP allows for the creation of more economic value
while generating less CE. This is typically achieved through the adoption of cleaner and
more efficient energy and production technologies [16].

However, the mechanism by which REIT impacts CP has not garnered sufficient
attention within the academic community. While previous studies have recognized the
significant impact of technological progress on regional environmental performance in
the context of REIT, this impact is particularly pronounced in promoting the reduction
in CEs and the transition to a low-carbon economy. Only a few studies on REIT have
focused on the spatial heterogeneity of CP across different economic regions. Based on
the analysis above, this study adopts a spatial spillover perspective and utilizes national
and provincial panel data from 2001 to 2020, integrating REIT and CP into a cohesive
analytical framework. It investigates the spatial heterogeneity in the impact of REIT on
CP across different economic regions and explores potential reasons for such variations.
The objective is to provide theoretical support for regionally differentiated low-carbon
development policies.

This paper is organized as follows: Section 2 introduces studies related to REIT and CP.
Section 3 presents the research theories, models, and hypotheses. Section 4 examines the
model analysis methods, influencing factors, and indicator selection. Section 5 presents the
empirical analysis results, while Section 6 summarizes this study’s findings and proposes
policy recommendations for change.

2. Literature Review

Under significant development issues such as climate change and technological in-
novation, the relationship between technological innovation, CE, and CP has attracted
considerable attention in the academic community, with various studies conducted on this
topic [17,18]. Some scholars affirm the environmental benefits of technological innovation,
finding through their research on its impact and mechanisms that the enhancement of
technological innovation levels can lead to a reduction in carbon emissions and an increase
in CP by improving energy use efficiency, adjusting energy consumption structures, and
promoting local industrial upgrading [19]. Conversely, some studies have found that
technological innovation not only fails to enhance CP but may even lead to an increase
in total CEs [20]. This is explained by the Environmental Kuznets Curve (EKC) and the
energy rebound effect, which suggest that the emission reduction effect brought about by
advances in energy efficiency through technological progress cannot fully offset the CEs
associated with economic growth, ultimately leading to an increase rather than a decrease
in CP [21].

Regarding the relationship between REIT and CP, existing studies have confirmed that
REIT can achieve carbon CEs and improve CP. Wang et al. and Lin et al. found that REIT
can significantly reduce CEs and improve CP based on provincial-level data from China.
This effect is gradually strengthened as the proportion of RE use increases [22,23].
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REIT exhibits significant regional heterogeneity in promoting CE reduction, enhancing
CP, and transitioning to a low-carbon economy [24,25]. For instance, L. Xin et al. devel-
oped an evaluation system to measure China’s inclusive low-carbon development from
2006 to 2020. They also explored the spatial effects of REIT on inclusive low-carbon de-
velopment and its regional boundaries. The research findings suggest that REITs have a
significant impact on promoting inclusive low-carbon development in the region and its
surrounding areas, exhibiting a regional pattern of ‘high in the east, low in the west’ [26].
This heterogeneity is influenced by factors such as the market, environmental regulation,
technological R&D, industrial structure, energy consumption structure, and government
competition. However, environmental regulation is the most critical factor. Only when
environmental regulations reach a certain intensity can REIT reduce CEs and enhance
CP [19]. The structures of energy consumption, energy intensity, and the energy rebound
effect are significant factors contributing to a circular economy. High energy intensity,
a coal-dominated energy structure, and a high energy rebound effect are not conducive
to enhancing CEs [27]. Additionally, the effect of CEs is closely related to technological
research and development and its stage of development. The process of researching, de-
veloping, and promoting technology is influenced by various external factors, including
the economy, policies, and the market environment [26]. REIT relies heavily on the guid-
ance of local governments, particularly due to its high costs, long development cycles,
and high investment risks. For instance, Y. Xu et al. (2019) examined the relationship
between REIT and low-carbon transition in 30 Chinese provinces from 2006 to 2019. They
used the System Generalized Method of Moments and panel threshold models and found
that competition among local governments hindered the positive impact of REIT on the
low-carbon transition. Additionally, the impact on low-carbon transition varied across
regions with different levels of competition intensity [28]. Financial markets with high
liquidity, a standardized environment for technology sharing and transfer, and relatively
strict environmental regulations, along with accompanying industrial support policies, can
better support REITs, thereby enhancing CP.

In summary, existing literature explores the relationship between REIT and CE, CP,
and the transition to a low-carbon economy from a regional perspective. It analyzes the
causes of heterogeneity from aspects such as the market, environmental regulations, tech-
nological research and development, industrial structure, energy consumption structure,
and government competition. Although previous studies have recognized the significant
impact of technological progress on regional environmental performance in the context
of REIT, this impact is particularly pronounced in promoting the reduction in CEs and
the transition to a low-carbon economy. It is challenging to provide a more relevant and
comprehensive factual basis for a holistic analysis of the impact of REIT on CP across
different regions and the formulation of related policies. The research conclusions do not
fully depict the mechanism by which REIT impacts CP. Addressing these shortcomings,
the novelty and contribution of this paper lie in integrating REIT and CP into a unified
analytical framework from the perspective of spatial spillover, investigating the spatial
heterogeneity of REIT’s impact on CP across different economic regions, and exploring
potential reasons for such variations. The aim is to deepen the understanding of REIT’s
role in enhancing CP in different regions, providing scientific support to policymakers for
designing and implementing more effective regionally differentiated low-carbon policies
and incentives for technological innovation.

3. Theoretical Analysis and Research Hypothesis

The introduction emphasizes that there is no consensus among scholars regarding the
categorization of REIT, an emerging branch of technological innovation research. This paper
focuses on carbon emission reduction technologies within the realm of green technology
innovation, specifically referring to technological advancements and innovative activities
in the development and utilization of RE, including improvements in existing technologies
such as solar, wind, hydropower, geothermal energy, and biomass energy. Compared to
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traditional energy technologies that rely on fossil fuels, these RE technologies share common
features: they utilize continuously renewable and almost inexhaustible energy sources and
produce significantly lower CEs during use, resulting in relatively lower environmental
impacts [10,11]. RE is becoming an increasingly important energy option as technology
advances and costs decrease. The term “REIT” describes the creation of new technologies
within RE as well as the enhancement of current technologies; these innovations are aimed
at lowering prices, increasing energy availability, and improving energy efficiency, all while
minimizing their negative effects on the environment. REIT is a key driver of the energy
mix transition and has a significant impact on increasing CP. CP, a measure of the carbon
efficiency of economic activity, reflects the economic value generated per unit of CE energy.
REIT contributes to the enhancement of CP by promoting the improvement in energy
efficiency and the reduction in CEs [12,13]. Technological advancements in one region may
have an impact on CP in nearby regions, as the spatial Durbin model (SDM) can capture
the spatial spillover effects (SE) of REIT across many regions [29]. More precise analysis of
the direct and indirect impacts of REIT on CP is possible with SDM. The following theories
are put forth by this study in light of the theoretical analysis above:

Hypothesis 1. REIT positively affects CP.

It is assumed that the REIT can directly increase the CP of the region in which it is
located. This is because new and cleaner energy sources are applied, and energy efficiency
is typically improved along with technological developments, which lowers the CEs and
raises economic efficiency.

Hypothesis 2. REITs have spatial spillovers.

Based on the SDM, this study further hypothesizes that REIT in a region not only
affects CP in the region but also has an impact on neighboring regions. This spatial SE
may originate from the dissemination of technological knowledge, interregional energy
cooperation, and so on.

Hypothesis 3. There are three possible channels of REIT’s impact on CP, namely, industrial
distribution (ID), degree of openness to the outside world (DOOW), and intensity of environmental
regulation (IER).

This study hypothesizes that regional characteristics, such as ID, DOOW, and IER,
may moderate the impact of REIT on CP. These characteristics in different regions may
affect the efficiency and scope of the application of technological innovations.

4. The Mechanism of the Influence of Renewable Energy Technological Innovation on
CP under Spatial Econometric Modeling
4.1. Methods of Pathway Analysis

Pathway analysis is a statistical analysis method used to study complex causal rela-
tionships between variables. This method was first proposed by geneticist Sewall Wright
and is mainly used in the fields of social sciences, biology, and economics [30,31]. The
fundamental concept of pathway analysis is to visually represent the links between various
factors by categorizing them into direct and indirect effects. Generally, the through path
analysis will divide the variable relationships into causal and parallel relationships, and its
linear equation is shown in Equation (1).

λ1y + r12λ2y + r13λ3y + · · ·+ r1kλky = r1y
r21λ1y + λ2y + r23λ3y + · · ·+ r2kλky = r2y

· · ·
rk1λ1y + rk2λ2y + rk3λ3y + · · ·+ λky = rky

(1)
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In Equation (1), both k and y denote constants, which take values starting from 1. rky
denotes the correlation coefficient between the dependent variable and the outcome. λky de-
notes the pathway relationship, which is categorized into direct and indirect pathways [32].
Assuming that the independent variable is Xi, and the dependent variable is Y, the detailed
expressions for direct and indirect pathways are obtained as shown in Equation (2).{

X1 → Y X1 ∈ Xi
X1 → X2 → Y X1, X2 ∈ Xi

(2)

In Equation (2), X1 → Y and X1 → X2 → Y denote direct and indirect pathways,
respectively. X1, X2 are independent variables. The structure of the pathway is shown
in Figure 1.
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Figure 1. Diagram of the through-hole structure. Figure 1. Diagram of the through-hole structure.

The independent variables in Figure 1 are the ones in the boxes, and the dependent
variables are the ones in the circles. The one-way arrow represents a causal relationship
between the variables, pointing from the independent variable to the dependent variable.
Bidirectional arrows, on the other hand, indicate a correlation between two variables.
Assuming that Y is determined by Xi and error, the expression for the dependent variable
model is obtained as shown in Equation (3).

Y = X1 + X2 + · · ·+ Xi + e (3)

In Equation (3), e denotes the error. Normalization of Equation (3) yields Equation (4).

Y−Y
σY

= P1y

(
X1 − X1

σ1

)
+ P2y

(
X2 − X2

σ2

)
+ · · ·+ Piy

(
Xi − Xi

σi

)
+ Pey

(
e
σe

)
(4)

In Equation (4), σ denotes the standard deviation, which varies as σe when the mean
is 0. P1y, P2y, Piy, Pey all represent the standardized regression coefficients for each of the
items, also called the pass-through coefficients. Due to the variety and complexity of the
causes of economic change, it is difficult to do an analysis of all the influencing variables.
In order to better express the pass-through effect of omitted variables and economic error
terms on Y, the concept of residual effect is introduced to explain it, and its expression is
shown in Equation (5).

Pa =

√√√√1−
k

∑
i=1

piri (5)

In Equation (5), Pa denotes the residual effect coefficient, and when the value of this
coefficient is less than 0.05, it means that this study included the main variables for analysis.
pi and ri denote omitted variables and economic error terms, respectively.
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4.2. Identification of CP-Influencing Factors

It was discovered after a thorough examination of related research conducted by
others that REIT influences CP in a number of ways in addition to its direct impact [33].
After a detailed analysis of related literature, this study identified several factors that
affect CP, including REIT, GDP per capita (GDPPC), energy composition (EC), urbanization
level (UL), DOOW, ID, level of foreign investment (LFI), IER, and government support
(GS) [34,35]. In order to further analyze how REIT indirectly affects CP through these
factors, thus providing theoretical guidance to improve CP and achieve high-quality and
sustainable development in the future, this study will utilize the pass-through analysis
method in 3.1 to identify the factors influencing REIT’s influence on CP.

CP is usually calculated by comparing economic output with CE, which can be used
to measure how much CEs occur in the process of generating a certain amount of eco-
nomic value, thus reflecting the carbon efficiency of economic activities. The formula for
calculating CP is shown in Equation (6).

CP = E1/CE (6)

In Equation (6), E1 denotes economic output, respectively. Economic output can be
measured by GDP. According to the geographic distribution, this study chose to analyze
the CP of cities in 30 provinces in China and divided the 30 provinces into eight economic
zones, as shown in Figure 2 [36].
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In Figure 2, a total of 30 provinces are divided into eight comprehensive economic
zones. According to the China Statistical Yearbook, to collect the CEs dioxide information
for each province during the 20-year period from 2001 to 2020, the CP trend of the eight
economic zones in China can be obtained by utilizing Equation (6), as shown in Figure 3.

In Figure 3, the changes in CP in China’s eight economic regions from 2001 to 2020
are shown. According to the statistical results in Figure 3, it can be found that with the
change of time, the current CP of each economic region in China shows a gradual upward
trend as a whole. As a result, the CEs and economic development level of each region
in China generally show coordinated development. Among the eight economic regions,
the southern and eastern coastal economic regions have a greater CP compared to other
economic regions. In 2016, the CP of the southern coastal economic zone exceeded 1.0
for the first time, and in 2018, the CP of the eastern coastal economic zone also exceeded
1.0. It can be seen that these two regions have higher GDPs due to CE, and therefore, the
low-carbon policies in these two regions are relatively more complete and effective.
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In addition to calculating the CP of each province in China during the period from
2001 to 2020, this study also used the database of the State Intellectual Property Office of
China to collect the patent data of RE technology in each province, which was calculated as
shown in Equation (7) [37,38].

REITit =
t

∑
j=0

RPATij exp[−β1(t− j)] · {1− exp[−β2(t− j)]} (7)

In Equation (7), REITit denotes the total patent data. β1 and β2 denote the depreciation
rate and diffusion rate, respectively, taking the values of 0.36 and 0.30. t is the time, i denotes
the province, and j is the patent type. Considering that it takes a period of time for a patent
application to be examined before it is authorized, there will be a long-term difference.
Instead of counting the number of patents awarded, this study focused on the patent
applications to guarantee the temporal accuracy of the data used and to minimize the lag
effect on the model estimation. Figure 4 displays the variations in the quantity of patent
applications for RE innovations among the eight economic areas.
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Figure 4. Changes in the number of patent applications for renewable energy innovations in the eight
economic regions.

Figure 4 shows how the quantity of patent applications for RE innovations has changed
across China’s eight economic zones. In Figure 4, the number of patent applications in
the northern and eastern coastal economic zones has a large increase over time, while
the patent applications in the other six economic zones show a slow growth trend. The
level of RE technology in each location is starting to mature when the number of patent
applications reaches a particular point and then stays there.
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After determining the indicators for the calculation of CP and REIT, this study collects
national panel data for the period of 2001 to 2020 for pass-through analysis. GDPPC, EC,
UL, DOOW, ID, LFI, IER, and GS were selected as the other variables to obtain the output
of the normality test for CP, as shown in Table 1.

Table 1. Results of the normality test for carbon productivity.

Type Indicators CP lnCP

Kolmogorov–Smirnov
Statistical value 0.153 0.137

Degree of freedom 20 20
Significance 0.211 0.211

Shapiro–Wilk
Statistical value 0.926 0.952

Degree of freedom 20 20
Significance 0.092 0.262

In Table 1, the results of both Kolmogorov–Smirnov and Shapiro–Wilk tests in the
normality test show that the significance of CP is greater than 0.05, which shows that the
CP data do not obey the original hypothesis, and therefore the data set is considered to be
normally distributed. The output of CP was obtained by using stepwise regression with
the nine variables mentioned above, as indicated in Table 2.

Table 2. The output of CP was obtained using nine variables.

Model Variable Beta t p Partial Correlation

1

REIT 0.481 11.860 0.001 0.956
DOOW 0.363 2.778 0.014 0.568

LFI −0.261 −2.681 0.017 −0.556
IER 0.302 4.516 0.000 0.749
GS 0.131 1.324 0.207 0.315

GDPPC −0.119 −0.391 0.703 −0.101
UL −0.078 −0.351 0.659 −0.093

2

LFI 0.141 2.797 0.003 0.582
DOOW 0.049 −0.811 0.428 0.198

IER −0.151 −2.522 0.016 −0.543
GS 0.063 1.726 0.112 0.401

GDPPC −0.083 −0.781 0.458 −0.121
UL 0.336 2.556 0.023 0.548

3

LFI −0.013 −0.059 0.965 −0.024
IER −0.157 −3.552 0.002 −0.686
GS 0.042 1.093 0.285 0.271

GDPPC 0.127 1.169 0.276 0.297
UL 0.264 2.392 0.031 0.535

4

LFI 0.015 0.129 0.100 0.043
GS 0.025 0.601 0.561 0.169

GDPPC 0.133 1.683 0.118 0.419
UL 0.024 0.077 0.950 0.027

In Table 2, other variables are introduced into the regression equation separately, and it
can be found that the correlation coefficient and decision coefficient are gradually becoming
larger, which indicates that the progressively added variables are gradually deepening the
influence of CP. Model 4 has a correlation coefficient and decision coefficient that are both
significantly higher than those of the previous three models—0.998 and 0.996, respectively.
This shows that the other variables in Model 4 are more able to reflect the changes in CP,
and the final linear regression equation is obtained, as shown in Equation (8).

ln CP = −3.384 + 0.158 ln REIT + 0.980 ln ID + 0.980 ln DOOW − 0.248 ln IER (8)
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In Equation (8), CP, REIT, ID, DOOW, and IER denote the determination of CP, REIT,
ID, DOOW, and IER, respectively. Based on Equation (8) and Table 2, the specific coefficient
values of each model can be obtained, as shown in Table 3.

Table 3. Each model specific coefficient values results.

Model Correlation Coefficient Decision Coefficient Adjusted Decision Coefficient Standard Error

1 0.944 0.882 0.876 0.114
2 0.985 0.987 0.985 0.046
3 0.995 0.992 0.989 0.030
4 0.998 0.996 0.995 0.033

The specific correlation coefficients and decision coefficients for the four models are
given in Table 3. The values of various coefficients in Model 4 are closer to 1, indicating that
the variables selected in Model 4 are more capable of reflecting the changes in CP. The four
independent variables, X1, X2, X3, and X4, are represented by the letters REIT, ID, DOOW,
and IER respectively. Equations (1)–(5) can be used to incorporate these four independent
variables, and the result is the pass-through relationship between REIT and the other three
influencing factors, as indicated in Table 4.

Table 4. Pathway relationships between impact factors.

Variable Total Impact Direct Passage
Coefficient

Indirect Passage Coefficient
Decision-Making

FactorID(X2) DOOW(X3) IER(X4)
Total Indirect

Flux
Coefficient

REIT(X1) 0.885 0.598 0.368 0.031 −0.112 0.287 0.872

From Table 4, it can be obtained that the indirect pass-through coefficients of REIT(X1)
for ID(X2), DOOW(X3), and IER(X4) are 0.368, 0.031, and −0.112, respectively. This
shows that REIT can directly promote the growth of CP with a direct pass-through coeffi-
cient of 0.598. In addition, the indirect effects of REIT on CP through ID and DOOW are
0.368 and 0.031, respectively, with positive coefficients, which indicate an indirect promo-
tion effect, while REIT has an indirect inhibitory effect on CP enhancement through IER.

4.3. Indicator Selection and Modeling

Considering that different individuals have certain differences in spatial distribution,
which can lead to the phenomena of spatial dependence and spatial overflow, this study
further builds a spatial measurement model to analyze the spatial influence between the
factors. First, the spatial weight matrix is constructed, and its mathematical expression is
shown in Equation (9) [39,40].

W =

w11 · · · w1m
...

. . .
...

wn1 · · · wnm

 (9)

In Equation (9), W denotes the spatial weight matrix. wnm denotes the geographic
location relationship between the two regions n and m. Based on the location information
of the provinces selected for this research, the 01-neighborhood matrix wnm is constructed,
as shown in Equation (10).

wnm =

{
1 adjacent
0 not adjacent

(10)
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In Equation (10), wnm is denoted as 1 when regions n and m are spatially neighboring,
and 0 when they are not. Equation (11) shows the formula for the Morans’ I index, which is
used to measure the spatial correlation of a given variable.

Morans′ I =
∑i

n=1 ∑i
m=1 wnm

(
Xn − X

)(
Xm − X

)
S2∑i

n=1 ∑i
m=1 wnm

(11)

In Equation (11), S2 denotes the variable variance. X denotes the variable mean.
Xn, Xm all denote variables. ∑i

n=1 ∑i
m=1 wnm denotes the sum of all elements in the spatial

weights. Equation (12) illustrates how this study’s final spatial measurement model was
constructed using SDM based on the pass-through results.

CPit = ρ1WCPit + ϕ1REITit + ρ2WREITit + ϕ2Xit + ρ3WXit + C + vit + εit (12)

In Equation (12), CPit denotes the explanatory variable CP. REITit denotes the core
explanatory variable REIT. Xit denotes the control variables. WCPit, WREITit, and WXit
denote the spatial lag terms of each variable, respectively. ρ1, ρ2, and ρ3 denote the spatial
correlation coefficients of each variable, respectively. ϕ1 and ϕ2 denote the regression
coefficients of each variable, respectively. C is the constant term.

5. Empirical Results on the Impact of Renewable Energy Technology Innovation on CP
under SDM
5.1. Spatial Durbin Model Test Results

To further show the spatial autocorrelation of CP, this study was analyzed using Stata
15 software. Additionally, Table 5 displays the spatial association of CP among provinces
for the years 2001 to 2020.

Table 5. Spatial association results of CP among provinces from 2001 to 2020.

Years IMoran p

2001 0.120 0.094
2002 0.129 0.083
2003 0.142 0.045
2004 0.371 0.001
2005 0.394 0.001
2006 0.418 0.000
2007 0.372 0.000
2008 0.392 0.000
2009 0.392 0.000
2010 0.376 0.000
2011 0.394 0.000
2012 0.380 0.000
2013 0.385 0.001
2014 0.357 0.000
2015 0.355 0.000
2016 0.332 0.001
2017 0.320 0.001
2018 0.325 0.000
2019 0.342 0.001
2020 0.351 0.000

In Table 5, the CPM IMoran values of each province are greater than 0 from 2001
to 2020. Additionally, starting in 2003, there was a considerable positive geographical
autocorrelation of CP between each province, as evidenced by the drastically varied Morans’
I values of each province. Table 6 displays the results of each spatial model’s LM test.
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Table 6. LM test results.

Item Test Data p

LM-lag 78.431 0.000
Robust LM-lag 0.142 0.008

LM-error 117.713 0.000
Robust LM-error 39.425 0.000

Hausman 15.96 0.003
LR-SDM-SAR 85.23 0.000
LR-SDM-SEM 106.57 0.000

Wald-SDM-SAR 18.68 0.001
Wald-SDM-SEM 28.77 0.000

In Table 6, the four tests of LM-lag, Robust LM-lag, LM-error, and Robust LM-error
were conducted simultaneously and found to be significant at the 1% level, which shows
that the SDM should be selected for analysis. Furthermore, the results of the Wald, LR, and
Hausman tests are significant at the 1% level, suggesting that the SDM does not degenerate
into a spatial error model and a spatial lag model.

5.2. Results of Descriptive Statistics

The estimation of each variable in the model further yields the double-fixed space
Durbin estimation of the model, as shown in Table 7.

Table 7. Double-fixed space Durbin estimation results.

Variable Core Explanatory Variables Spatial Lag Terms

CP
0.791 *** 0.324 ***

0.000 0.000

REIT
0.141 *** 0.161 **

0.000 0.002

UL
−1.752 *** 0.546

0.000 0.241

GDPPC
0.830 *** −0.675 *

0.000 0.041

GS
−0.186 *** 0.275 ***

0.000 0.000

EC
0.025 0.126
0.351 0.381

LFI
0.101 *** 0.136 ***

0.000 0.001
Variance-σ 0.117 *** /

0.000 /
Observations 600 600

R-squared 0.248 0.248
Number of mun 30 30

Note: At the 10%, 5%, and 1% statistical levels, respectively, the variables in the table are indicated by the symbols
*, **, and ***.

In Table 7, the coefficients of the core explanatory variables and the spatial lag term
of CP are both significant at the 1% level and take positive values, which shows that
CP has spatial auto-correlation and there will be an effect between CPs between places.
REIT has a favorable promotion of CP and spatial SEs, as evidenced by the significant
results of its spatial lag term and core explanatory variables at the 1% and 5% levels,
respectively. Since the spatial lag term of REIT is 0.161, the CP of this province will be
boosted by 0.161% with each 1% increase in REIT in other provinces. Possible reasons
are that CP is driven by technological progress, enhances economic output, achieves a
sustainable economy, and exhibits regional differences. Within the research interval, there
is a large-scale international capacity transfer and technological upgrading, coupled with
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the advantage of renewable energy technology utilization in economically developed areas,
which allows REIT to generate SE through economic relations and geographical linkages,
causing spatial spillover effects on CP in neighboring provinces.

The direct decomposition effect and indirect decomposition effect of REIT on CP are
demonstrated in Table 8. Table 8 displays significant results for the direct, indirect, and
total decomposition effects of REIT at the 1%, 5%, and 1% levels, respectively. The direct
decomposition coefficient of REIT is 0.146, which thus indicates that a 1% increase in REIT
in a specific province increases local CP by 0.146%. The indirect decomposition coefficient
of REIT is 0.189, which thus indicates that a 1% increase in REIT in a specific province
increases local CP by 0.189%, which includes 0.161% of the surrounding provinces, i.e.,
there is a feedback effect of 0.028. In summary, REIT not only directly promotes the growth
of CP in specific provinces but also indirectly promotes further growth of CP through
the increase in REIT in neighboring provinces. The possible reason is that, within the
research interval, technological innovation in one area can spread to other areas through
mechanisms such as ID, DOOW, and IER. The interrelated economic activities among
provinces and the competitive attractiveness among regions can lead to the spatial flow of
technology and capital, accelerating the promotion and application of RE technology. This,
in turn, raises the level of RE in neighboring provinces and further promotes the increase
in CP within the region through spatial SEs.

Table 8. Effect decomposition results.

Variable Direct Decomposition Results Indirect Decomposition Results Total Results

REIT
0.146 *** 0.189 ** 0.325 ***

0.000 0.041 0.000

UL
−1.757 *** 0.388 −1.375 ***

0.000 0.431 0.000

GDPPC
0.848 *** −0.613 *** 0.246

0.000 0.001 0.590

GS
−0.182 *** 0.283 *** 0.112

0.000 0.000 0.312

EC
−0.021 −0.156 −0.173
0.789 0.353 0.395

LFI
0.116 *** 0.169 *** 0.275 ***

0.000 0.000 0.000

Note: At the 5% and 1% statistical levels, respectively, the variables in the table are indicated by the symbols **
and ***.

5.3. Endogeneity Test Results

The robustness and endogeneity test results of the REIT were measured in terms of
patents in order to further demonstrate the stability of the empirical analysis’s findings.
The regression test was conducted using a double-fixed Durbin model, and the robustness
test results were obtained as shown in Table 9.

In Table 9, the regression results of the double-fixed Durbin model show that the
regression coefficient of REIT for CP is positive, and the REIT with spatial lag term added
is also significant at the 5% level, which can further illustrate that REIT has a robust and
positive facilitating effect and spatial SE on CP.

The final endogeneity test findings are obtained, and the variables to be examined are
the lagged one and two periods of REIT in Table 10. In Table 10, the estimation of lagged
one-period REIT and lagged two-period REIT can effectively alleviate the endogeneity
problem of the model, which shows that the effect of lagged REIT on CP is still significant.
In summary, changes in REIT (whether increases or decreases) have a sustained impact
on CP. The possible reason is that, considering the lag in the diffusion, application, and
economic benefit realization of technological innovations, the innovation and application of
renewable energy technologies, policy support, and market acceptance of renewable energy
technologies all change over time. Lagged one-period and lagged two-periods within the
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research interval can capture the long-term impact and persistence of the cumulative effects
of REIT on CP.

Table 9. Robustness test results.

Variable Core Explanatory Variables Spatial Lag Terms

REIT
0.069 * 0.143 **
0.061 0.045

UL
−1.648 *** 0.986 **

0.000 0.033

GDPPC
0.781 *** −0.889 **

0.000 0.001

GS
−0.162 *** 0.315 ***

0.010 0.000

EC
−0.019 −0.147
0.925 0.341

LFI
0.098 *** 0.095*

0.000 0.062

Sigma2-e 0.118 *** /
0.000 /

Observations 600 600
R-squared 0.242 0.242

Number of mun 30 30
Note: At the 10%, 5%, and 1% statistical levels, respectively, the variables in the table are indicated by the symbols
*, **, and ***.

Table 10. Endogeneity test results.

Variable First-Stage Core Explanatory Variables Second Stage Explanatory Variables

Lagged one-period REIT 0.998 *** /
0.000 /

Lagged two-period REIT / 0.195 ***
/ 0.000

Control variable constant
−0.113 −1.691 ***
0.215 0.000

F-value 295.68 /
Adj R-squared 0.916 0.154

Sample size 570 570

Note: At the 1% statistical levels, the variables in the table are indicated by the symbol ***.

5.4. Heterogeneity Analysis Results

This study uses double-fixed SDM to estimate the mechanism of the impact of REIT on
CP for each of the eight economic areas in order to analyze the mechanism of the influence
of various economic regions on CP. The results of the heterogeneity analysis obtained are
displayed in Table 11.

In Table 11, REIT in the eight regions can have different impacts on CP, of which REIT
in the five regions of Northeast, Southwest, North Coast, East Coast, and Middle Reaches of
the Yangtze River can show different levels of significance on CP, while in the three regions
of Northwest, South Coast, and Middle Reaches of the Yellow River, it is not significant.
This shows that REIT in the five regions of the Northeast, Southwest, North Coast, East
Coast, and Middle Reaches of the Yangtze River can promote CP. Among them, the REIT
in the North Coast and East Coast regions has a stronger spatial SE on CP. In contrast, the
three regions of the Northwest, South Coast, and Middle Yellow River have a weak level of
REIT; thus, the spatial SE of REIT on CP is not obvious enough.

Possible reasons include that the five regions of the Northeast, Southwest, North
Coast, East Coast, and Middle Reaches of the Yangtze River have higher levels of economic
development, more advanced infrastructure, a stronger industrial base, more robust policy
support, and more financial investment. These factors collectively promote the implemen-
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tation of renewable energy projects and the application of new technologies. They boost
the development and application of REIT, effectively enhancing CP. The North Coast and
East Coast regions, with higher levels of high-tech industry development, have greater
openness and connections to international markets, making it easier to attract domestic and
foreign investments, technology, and high-end talent. Enterprises and research institutions
in these areas have more R&D investments and achievements in renewable energy tech-
nology, energy efficiency improvement, and low-carbon technologies. This accelerates the
innovation and application of renewable energy technology, resulting in a stronger spatial
spillover effect of REIT on CP.

Table 11. Results of heterogeneity analysis.

Variables Northeast Northwest Southwest North Coastal East Coastal South Coastal Middle
Yellow River

Middle
Reaches of the
Yangtze River

REIT 0.077 * 0.098 0.134 *** 0.041 * 0.088 *** 0.195 0.089 0.041 *
WREIT 0.119 ** 0.081 0.195 *** 0.113 ** 0.163 *** 0.247 0.074 0.128 *

UL 3.276 *** −12.101 *** −3.601 *** 2.230 *** 0.113 *** 3.238 −2.514 *** −2.285 *
GDPPC 2.752 *** 9.950 ** 1.341 *** 2.259 −0.829 *** 7.066 *** 2.080 *** −1.298

GS −0.235 *** −0.275 −0.601 *** 0.042 0.101 *** −0.458 ** −0.062 −0.126
EC −0.148 1.691 *** −0.940 *** 0.196 *** 0.212 *** 0.713 *** 0.113 −0.352 ***
LFI −0.034 0.161 * 0.153 *** −0.051 −0.071 *** 0.475 0.294 *** 0.284 ***

Variance—σ 0.001 *** 0.075 *** 0.015 *** 0.001 *** 0.001 *** 0.035 *** 0.009 *** 0.003 ***
N 60 80 100 80 60 60 80 80
R2 0.821 0.023 0.017 0.433 0.551 0.013 0.010 0.651

Note: *, **, and *** in the table indicate that the variable is significant at the 10%, 5%, and 1% statistical levels,
respectively.

In addition, there are differences in the impact of UL, GDPPC, GS, EC, LFI, and other
factors on CP across regions, which is due to the inconsistency of the actual situation in
each region. UL has a positive impact on CP in the Northeast, North Coast, East Coast,
and South Coast regions; GDPPC has a positive impact on CP in six regions: Northeast,
Northwest, Southwest, North Coast, South Coast, and the Middle Yellow River; GS has a
positive impact on CP in the North Coast and East Coast regions; EC has a positive impact
on CP in five regions: Northwest, North Coast, East Coast, South Coast, and the Middle
Yellow River; and LFI has a positive impact on CP in five regions: Northwest, Southwest,
South Coast, Middle Yellow River, and the Middle Reaches of the Yangtze River. These
differences are due to the unique conditions of each region.

The possible reasons are as follows: (1) The higher level of UL in the Northeast,
North Coast, East Coast, and South Coast regions includes improved infrastructure, public
services, energy efficiency, and waste management systems. This often leads to a shift in
the industrial structure towards higher value-added and lower carbon emissions, creating
a favorable environment for industrial upgrading. This agglomeration effect can enhance
production efficiency and innovation capacity in these four regions, thereby increasing CP.
(2) The Northeast, Northwest, Southwest, North Coast, South Coast, and Middle Yellow
River regions have higher GDPPC, indicating a higher level of economic development and
living standards. This means that additional resources can be allocated for research and
development and the adoption of clean energy technologies in these six regions, leading
to an improvement in CP. (3) The North Coast and East Coast regions have strong GS,
with financial subsidies, tax incentives, policy guidance, and increased investment in
renewable energy, all aimed at promoting the use of low-carbon technologies and practices
and enhancing CP. (4) The Northwest, North Coast, East Coast, South Coast, and Middle
Yellow River regions are shifting their EC towards cleaner sources, such as solar and wind
energy. This transition helps to reduce dependence on fossil fuels, lower CE, and increase
CP. (5) The regions of the Northwest, Southwest, South Coast, Middle Yellow River, and the
Middle Reaches of the Yangtze River have higher LFI. This attracts advanced technology
and management experience, promoting technology transfer and knowledge spillover. As
a result, the energy efficiency and innovation capacity of local enterprises are enhanced,
thereby improving CP.



Sustainability 2024, 16, 2100 15 of 18

6. Conclusions and Policy Implications
6.1. Conclusions

This study incorporates renewable energy technology innovation and carbon produc-
tivity into a unified analytical framework from the perspective of spatial spillover, using
national and provincial panel data from 2001 to 2020. Through theoretical and empir-
ical analysis, it explores the relationship between technological innovation and carbon
productivity in the context of renewable energy, as well as the role of innovation across dif-
ferent economic regions, aiming to provide a basis for formulating regionally differentiated
low-carbon policies. Many valuable conclusions are drawn, as follows:

(1) The analytical validation of the spatial Durbin model clarified that renewable
energy innovation technologies have a significant positive promotion effect on carbon
productivity. This study of indirect and direct effects found that the indirect effect of
renewable energy innovation technologies on carbon productivity is larger than its direct
effect, revealing a significant spatial spillover effect.

(2) Significant differences in the impact of renewable energy innovation technologies
on carbon productivity were found among different economic regions. Renewable energy
innovation technologies in the eight regions can have different impacts on carbon produc-
tivity, of which renewable energy innovation technologies in the five regions of Northeast,
Southwest, North Coast, East Coast, and Middle Reaches of the Yangtze River can show
different levels of significance on carbon productivity, while those in the three regions of
Northwest, South Coast, and Middle Reaches of the Yellow River are not significant.

(3) The main channels through which renewable energy innovation technologies affect
carbon productivity include the three main factors of industrial distribution, degree of
openness to the outside world, and intensity of environmental regulation.

(4) Innovation in renewable energy technologies significantly increased carbon produc-
tivity. The coefficients of lnREIT-Direct, lnREIT-Indirect, and lnREIT-Total were 0.146, 0.189,
and 0.325, respectively, and the local carbon productivity increased by 0.146%, 0.189%, and
0.325% when renewable energy technology innovation increased by 1% under the three
coefficients, respectively.

(5) The optimization of industrial structure also positively affects carbon productivity
through technological innovation, showing a positive channel effect.

On average, the results obtained are consistent with the existing literature. Addition-
ally, this study provides novel and convincing evidence, which is crucial for emerging
countries like China to achieve carbon neutrality. It will facilitate the Chinese government
departments in formulating targeted regionally differentiated low-carbon policies, pro-
moting and implementing action plans for dual carbon goals in a targeted manner, and
helping provide theoretical and empirical references for developing countries to promote
environmentally friendly and coordinated development.

6.2. Policy Implications

We propose the following policy recommendations, mainly from the perspective of
developing countries choosing governments as facilitators.

First, the government should formulate and implement renewable energy policies
based on local conditions to enhance the spatial spillover effects of renewable energy
technology innovation on carbon productivity. Specific measures can include the following:
(1) Implement policies and provide benefits to enhance mechanisms for talent attraction
and development, with the goal of creating a dynamic and innovative human resource pool
to drive technological innovation and industrial advancement. (2) Speed up urbanization
by improving urban planning and infrastructure development to enhance the quality of life
and economic vitality of urban residents while ensuring environmentally sustainable city
growth. Optimize the investment environment and strengthen international cooperation
to attract more foreign investment and promote diversified economic development, with
the goal of further enhancing the per capita gross domestic product and levels of foreign
direct investment. (3) Improve policy support by providing fiscal subsidies, tax incentives,
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research and development inputs, and facilitating market access. This will provide a solid
foundation of support for businesses and innovative activities.

Second, the government should optimize the current industrial structure and promote
innovation in renewable energy technologies. Relevant departments ought to establish laws
and regulations to limit carbon emissions. Specific measures that can be taken include: (1)
the government should optimize the current industrial structure and strongly support key
industries that bring long-term sustainable benefits to economic development, such as high
technology, green energy, and environmental industries. It should also increase investment
in research and development and promote breakthroughs in renewable energy technologies,
including but not limited to solar, wind, biomass, and other new energy technologies, to
improve energy utilization efficiency and the overall competitiveness of the economy.
(2) The government aims to coordinate development and resource protection by actively
promoting the use of new and renewable energy sources. This will be achieved through
optimizing factors and energy structures. Government departments will gradually phase
out high-pollution, high-energy-consuming traditional industries through policy guidance
and financial support. Sufficient incentives will be provided to encourage businesses and
individuals to reduce reliance on fossil fuels and shift towards cleaner, more sustainable
energy usage methods. (3) In order to effectively implement these policies and measures,
it is necessary to establish a multi-stakeholder monitoring and evaluation mechanism.
This mechanism should include government agencies, industry associations, research
institutions, and public representatives, who will jointly oversee progress in reducing
carbon emissions and promoting and applying renewable energy technologies. This will
ensure the achievement of policy objectives.
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