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Abstract: This research aimed to investigate the relationship between climate policy uncertainty
(CPU), clean energy (ENERGY), carbon emission allowance prices (CARBON), and Bitcoin returns
(BTC) for the period from August 2012 to August 2022. The empirical analysis strategies utilized in
this study included the Fourier Bootstrap ARDL long-term coefficient estimator, the Fourier Granger
Causality, and the Fourier Toda–Yamamoto Causality methods. Following the confirmation of
cointegration among the variables, we observed a positive relationship between BTC and CARBON, a
positive relationship between BTC and CPU, and a negative relationship between BTC and ENERGY.
In terms of causal associations, we identified one-way causality running from CARBON to BTC,
BTC to CPU, and BTC to the ENERGY variable. The study underscores the potential benefits and
revenue opportunities for investors seeking diversified investment strategies in light of climate change
concerns. Furthermore, it suggests actionable strategies for policymakers, such as implementing
carbon taxes and educational campaigns, to foster a transition towards clean energy sources within
the cryptocurrency mining sector and thereby mitigate environmental impacts.

Keywords: carbon emission allowance; climate policy uncertainty; clean energy index; bitcoin

1. Introduction

Climate change is an urgent and escalating phenomenon that presents a shared chal-
lenge for humanity. The detrimental consequences of climate change can lead to more
frequent extreme weather events and pose significant risks to public health. According to
the Intergovernmental Panel on Climate Change [1], a rise of 1.5 ◦C in global temperatures
from pre-industrial levels could trigger irreversible environmental impacts, such as the loss of
Arctic ice and rising sea levels. The substantial surge in global carbon dioxide (CO2) emissions
serves as a primary catalyst for global warming, further intensifying the threats posed
by climate change to the well-being of our planet. It is imperative that we take swift and
unified action to achieve a carbon-neutral transition, focusing on mitigating the adverse
effects of climate change and addressing sustainability challenges [2]. Climate change not
only traps people in poverty but also decelerates economic growth [3]. Much like economic
growth, climate change also has repercussions for finance and investments [4–6].

The escalating ecological deterioration resulting from the use of fossil fuels has sparked
widespread environmental concerns, largely due to global climate change. Simultaneously,
the alternative energy industries have experienced substantial growth in response to
the surging global desire for clean energy, aligning with the shift towards low-carbon
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power sources over the last twenty years [7,8]. Nations committed to attaining sustainable
development have demonstrated a resolute determination to mitigate carbon emissions and
actively engage in global climate governance. These countries have implemented climate
policies aimed at limiting carbon emissions. Nonetheless, the uncertainty surrounding
climate change poses challenges and uncertainty to the corresponding climate policy
implementation within this process [9].

Climate policy reveals uncertainty with different consequences. Climate policies have
been implemented to encourage investments in measures that can encourage increased
investment in renewable energy and reduce carbon emissions [10]. Due to the compelling
empirical evidence highlighting the considerable effect of climate policy uncertainty (CPU)
on economic and financial systems, scholars have displayed a notable inclination towards
examining the ramifications of climate change on financial markets [9,11,12]. In this respect,
Hsu et al. [13] found evidence that uncertainty in environmental policies and regulations
significantly impacts the returns of emissions’ portfolios. In addition, there are empirical
findings that climate risk also affects companies’ investment decisions [14]. The findings
suggest that the uncertainty surrounding climate policy regulation positively influences a
business’s inclination to mitigate its carbon footprint [10]. In other words, when concerns
about climate change increase, investors switch from brown firms to green firms, causing
green stocks to outperform brown stocks [15].

It is important to emphasize that in the absence of clean energy policies, the energy
market often gravitates towards established fossil fuels due to existing infrastructure
and lower immediate costs. This situation can lead to prolonged dependence on fossil
fuels. For instance, in scenarios where punitive carbon taxes are absent, site regulation
policies might prove more effective in curbing the carbon emissions from Bitcoin blockchain
operations [16]. Consequently, governments worldwide are encouraged to take measures
to limit carbon emissions from Bitcoin mining and to adopt environmentally friendly
technologies that reduce Bitcoin’s energy dependence [17].

It is worth mentioning that cryptocurrencies, including Bitcoin, come with their own
climate risks as they utilize ample amounts of energy, which ultimately have environmental
consequences. Owing to climate change concerns, investors opt for alternative investment
strategies, especially eco-friendly investments, which could decline the market outlook
for Bitcoin. In recent years, academic discourse has extensively addressed the efficacy of
climate policy within the renewable energy market, considering the growing influence of
climate factors. Kettner and Kletzan-Slamanig [18] assert a profound interconnectedness
between energy and climate policies, given the inherent connection between greenhouse
gas emissions and energy production and consumption. Extensive research has elucidated
the impact of climate policy changes on the operational performance of carbon-intensive
industries, thereby extending their influence to the financial market [14,19,20]. Over the past
few years, scholars have displayed a keen interest in valuing climate risks and evaluating
the impact of climate policies.

Besides energy consumption, technological innovations can also impact climate uncer-
tainty. The advent of technological advancements has introduced fresh opportunities with
accompanying environmental implications. As a result, the market capitalization of the
cryptocurrency industry has experienced a substantial surge over the past decade [21]. The
increasing energy consumption of Bitcoin, the leading cryptocurrency, has reached signifi-
cant amounts [22]. Based on the calculations provided by Cambridge University’s Bitcoin
Electricity Consumption Index, Bitcoin’s energy consumption is estimated to be 0.38%
of the total global electricity usage, surpassing the energy consumption of countries like
Belgium and Finland. The primary cause of Bitcoin’s significant energy consumption is the
computationally intensive consensus mechanisms employed by the cryptocurrency ecosys-
tem, which verify transactions and safeguard the network’s security. Nevertheless, rapid
advances in blockchain technology and the cryptocurrency market could potentially hinder
worldwide endeavors to mitigate climate change [16,23–25]. Hence, gaining a comprehen-
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sive understanding of the environmental consequences associated with cryptocurrency
mining is imperative in the context of climate change.

In 2021, Gavriilidis [26] devised the US climate policy uncertainty index, which mea-
sures the level of uncertainty in climate policies based on significant climate-related oc-
currences and articles from eight prominent US newspapers. Climate policy uncertainty
encompasses the ambiguity arising from climate events and the uncertainty surrounding
the US government’s decisions concerning reducing climate risks. The notion that Bitcoin
and climate policy uncertainty go hand in hand is significant as they are closely linked.
Bitcoin necessitates a substantial amount of energy, the main source of which is fossil
fuels. The already heightened CPU would definitely push Bitcoin to utilize non-renewable
sources of energy. The CPU index was created using the text-based approach of Baker
et al. [27].

The primary objective of this research is to examine the interplay among climate
policy uncertainty, the green energy index, carbon emission allowance prices, and Bitcoin
returns. Specifically, this study endeavors to fill the existing void by investigating the
relationships between cryptocurrency and policy reforms in the realm of clean energy,
considering the escalating concerns regarding the environmental implications associated
with bitcoin mining. Moreover, we intend to utilize the novel Fourier Bootstrap ARDL long-
term coefficient estimator, the Fourier Granger Causality, and the Fourier Toda–Yamamoto
Causality methods for empirical estimations.

This study is poised to contribute to the literature in three distinct ways. First, to
the best of our knowledge, the relationship between CPU, the clean energy index, carbon
emission allowance prices, and Bitcoin variables has yet to be explored in existing research.
There is a need for further investigation to unravel the complex relationships among these
variables. Second, utilizing a newly developed index offers an opportunity to uncover
fresh insights into the impact of climate policy uncertainty across various dimensions.
Additionally, these insights are expected to be of significant value to investors for portfolio
diversification and risk management purposes. Third, it is also important to highlight
that climate policy uncertainty may promote increased carbon awareness among investors,
encouraging a shift towards investments in clean energy sources. The findings from this
research are anticipated to offer valuable perspectives for a wide array of stakeholders,
including policymakers, regulators, and investors.

This paper is organized into five sections. Following the introduction, the Section 2
summarizes a literature review that provides an overview of empirical research related
to climate policy uncertainty. The Section 3 presents a detailed description of this study’s
variables, model, and methodology. Subsequently, the Section 4 delivers an in-depth
analysis of the results obtained and discusses their implications comprehensively. The final
section summarizes the study’s findings and suggests relevant policy recommendations.

2. Literature Review

Numerous studies in the existing literature have attempted to explain the fluctuations
in Bitcoin prices. Initially, these investigations might have seemed like mere flights of
fancy, focusing on what Wenker [28] described as historical curiosities. They evolved from
associating Bitcoin with markets for crime and illegal transactions [29] to recognizing it
as a viable financial investment tool, a perspective solidified by the work of Ciaian and
Rajcaniova [30]. Currently, a substantial portion of research delves into the correlation
between Bitcoin prices and a wide range of macroeconomic indicators [31] as well as
financial investment instruments.

While some studies explore the relationship between Bitcoin and subsequent cryp-
tocurrencies, others assess the market perceptions influenced by the cryptocurrency markets
at large. For instance, Sehgal, Pandey, and Deisting [32] examine the relationship between
Bitcoin prices and traditional currencies. Corbet, Lucey, and Yarovaya [33] investigated var-
ious aspects of cryptocurrencies, focusing on market efficiency, price dynamics, and market
risk, with data collected daily from multiple cryptocurrencies. Elsayed et al. [34] examine
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the causality dynamic between Bitcoin and other cryptocurrencies and nine major foreign
currency markets. Bitcoin shows a strong interconnectedness with other cryptocurrencies,
particularly Litecoin, and plays a significant role as a net transmitter of volatility within the
cryptocurrency market. Its relationship with traditional currencies is more limited, with
a notable exception being its unique relationship with the Chinese Yuan. Additionally,
studies argue that Bitcoin is viewed as an alternative investment tool [35,36].

Efforts have been undertaken to explore the relationship between Bitcoin prices and
global political risk and uncertainty indicators. Studies have suggested that Bitcoin prices
are influenced by economic and policy uncertainties [37–39]. Notably, recent research
by Hung et al. [40] delves into the impact of economic policy uncertainty on the Bitcoin
market, employing six major uncertainty indices: Global Economic Policy Uncertainty,
Equity Market Volatility, Twitter-based Economic Uncertainty, Geopolitical Risk Index, the
Cryptocurrency Policy Uncertainty Index, and the Cryptocurrency Price Uncertainty Index.
Importantly, this study incorporates two innovative cryptocurrency uncertainty indices
introduced by Lucey et al. [41]. Their findings reveal a negative association between Bitcoin
prices and the selected uncertainty indices, indicating that higher levels of uncertainty lead
to reduced Bitcoin price fluctuations over time and across different frequencies. However,
Wang et al. [42] found evidence suggesting that Bitcoin returns are not influenced by
economic uncertainty and volatility indices. This conclusion is attributed to the significant
energy consumption of the Bitcoin network, which exceeds that of many countries. As a
result, transactions within the Bitcoin network contribute to what industry observers have
termed a “growing energy problem” [43].

Recently, the exploration of the relationship between Bitcoin mining’s energy con-
sumption and environmental factors has attracted considerable attention. This interest has
spurred research into how Bitcoin prices affect the renewable energy market and the stock
performance of companies in this sector. Such studies seek to deepen the understanding of
the complex relationship between Bitcoin prices, climate policy uncertainty, and renewable
energy indices. The environmental repercussions of the “growing energy problem” are
deemed inescapable, a concern underscored by the work of Browne [44], Mora et al. [45],
Li et al. [46], Jiang et al. [16], and Corbet et al. [22]. In an effort to address these issues,
Wang et al. (2022) [47] attempted to measure the scope of media discourse regarding the
environmental impact of cryptocurrencies by creating the Cryptocurrency Environmental
Attention Index (CEAI).

Environmental concerns linked to significant events that impact digital asset prices
have revealed a notable correlation between Bitcoin and the UCRY indices. In this vein,
Baur et al. [48] and Egiyi and Ofoegbu [49] promote the use of renewable energy sources,
such as hydrogen and solar energy, to lessen the adverse environmental effects of Bitcoin
mining. In a similar exploration, Zhang et al. [21] found a direct relationship between
the energy usage of Bitcoin mining (measured by hash rate) and CO2 emissions. These
authors emphasize the critical need for technological advancements in energy-efficient
decentralized finance consensus algorithms, aiming to evolve the cryptocurrency market
into an arena more attuned to climate concerns, thereby offering a sustainable solution
to existing environmental issues. On the other hand, research by Masanet et al. [50] and
Huynh et al. [51] presents a different viewpoint, suggesting that the energy consumption
associated with Bitcoin mining does not have a direct correlation with the carbon footprint,
highlighting the varied perspectives within the academic community on this matter.

The academic literature clearly highlights that the environmental impacts of the com-
modity prices (such as coal, oil, and gas) utilized in Bitcoin mining are significant factors
pertinent to this study’s focus. China is a critical case in point, with its substantial de-
pendence on coal for electricity generation. Research examining the effect of coal prices
on Bitcoin prices in China [52] has uncovered a link between the two [53], underscoring
the negative implications for health and climate in both the USA and China [54]. Further
investigations into dynamic interconnectedness reveal that coal prices serve as the primary
disruptor, whereas climate policy uncertainty and carbon pricing often emerge as the
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primary receivers of these shocks. Moreover, findings by Stoll et al. [55] corroborate the
significant contribution of Bitcoin mining’s electricity consumption to overall carbon emis-
sions. Nevertheless, the research pointing to Bitcoin’s impact on prices [56] also suggests a
positive role for Bitcoin in promoting clean energy and carbon management initiatives.

Additionally, we aim to highlight studies that investigate the relationship between
climate policy uncertainty and renewable energy prices [9,57]. In a thorough examination of
the impact of the CPU index on global renewable energy market returns, significant insights
have been uncovered. This research indicates that a higher CPU index possesses enhanced
predictive power for renewable energy market returns compared to a lower CPU index.
Notably, the influence of the CPU index on forecasting renewable energy market returns
becomes more pronounced following the Paris Agreement’s implementation, highlighting
the market’s sensitivity to climate policy changes [11]. The study also found that climate
policy uncertainty, in conjunction with geopolitical risk, the Global Political Risk Index, and
the Global Risk Perception Index, adversely affects the renewable energy market’s volatility.

Sailor et al. [58] argued that climate change significantly impacts wind energy produc-
tion, predicting a substantial 40% reduction in electricity generation during the summer.
Furthermore, research by Venturini [59] and Bartram et al. [60] indicates that climate un-
certainties influence the stock returns of companies. Hsu et al. [13] concluded that major
climate policy changes trigger volatility in the share returns of energy companies, a finding
supported by Diaz-Rainey et al. [61].

Nam [62] discovered that climate uncertainty exerts inflationary pressures on agricul-
tural food, non-energy, and energy products. Tian et al. [63] analyzed the Infectious Disease
Capital Market Volatility (IDEMV), CPU, the CBOE Crude Oil Volatility Index (OVX), and
Geopolitical Risks (GPR) variables within samples from the USA, China, and Europe. The
study concluded that uncertainties exhibit an asymmetrical relationship, impacting the USA
and Europe in the long term and China in the short term. Hoque et al. [64] investigated the
interconnectedness and spillover effects of climate policy uncertainty in the United States
on energy stocks, alternative energy stocks, and carbon emissions futures. Interestingly,
the analysis revealed a noticeable increase in the impact of climate measures following the
Paris Agreement, highlighting a strengthened global commitment to addressing climate
change. In research by Bouri et al. [4], the relationship between climate uncertainty and
the performance of green versus brown energy stocks was explored. The study’s outcomes
indicate a market trend where heightened climate policy uncertainty led investors to re-
allocate their investments from brown to green energy stocks, resulting in green stocks
outperforming their brown counterparts.

In conclusion, the complex relationship between Bitcoin, economic fluctuations, envi-
ronmental issues, and climate policy underscores an urgent need for a nuanced approach
to cryptocurrency within our global economy. This research spotlights the pivotal balance
between leveraging the financial potential of Bitcoin and mitigating its ecological footprint
amidst an uncertain economic and policy milieu. By dissecting the nexus among climate
policy uncertainty, green energy initiatives, carbon pricing, and Bitcoin’s market perfor-
mance, this study aims to contribute significantly to a more sustainable and economically
viable future.

3. Materials and Methods
3.1. Materials

In this subsection, we describe variables that underpin our investigation into the inter-
play among climate policy uncertainty, clean energy initiatives, carbon emission allowance
prices, and Bitcoin returns. The primary objective of this research is to methodically explore
and analyze the relationship between these variables, aiming to shed light on their dynamic
interactions. To facilitate this endeavor, we have compiled Table 1, which succinctly outlines
the variables under consideration, their definitions, and the data sources from which they
were derived. Monthly data for the period August 2012–August 2022 were used.



Sustainability 2024, 16, 3822 6 of 14

Table 1. Variables and data sources.

Var. Abbr. Srcs. Samps.

Climate policy uncertainty CPU www.policyuncertainty.com
(accessed on 3 February 2024) [4,61–63]

S&P 500 Enegy Index ENERGY www.spglobal.com
(accessed on 3 February 2024) [9,13,57,59,60]

Carbon Emission Allowance CARBON www.spglobal.com
(accessed on 3 February 2024) [56,65,66]

Bitcoin BITCOIN www.investing.com
(accessed on 1 February 2024) [55,56]

3.2. Methods

In our research’s methodological framework, we adopt a systematic and sequential
approach to explore the dynamic relationships among the variables of interest. Our first step
involves using the Fourier-Augmented Dickey–Fuller test [67] to analyze the stationarity
of the time series data, a critical prerequisite for ensuring the validity of further analyses.
After confirming stationarity, we proceed with the fractional frequency flexible Fourier
Bootstrap Autoregressive Distributed Lag test to investigate the cointegration relationships
among the variables. This test helps us to ascertain the existence of a long-term equilibrium
relationship between them. Finally, to uncover causal links, we utilize two causality tests:
the Fourier-Granger causality test [68] and the Toda–Yamamoto causality test [69]. These
tests are crucial for determining the direction and nature of causal relationships among the
variables, offering a detailed insight into their interactions.

Regime changes over time can significantly impact the outcomes of a time series
analysis. To guarantee the accuracy of the analysis results, it is crucial to account for regime
shifts within the series during model estimation. In this research, Fourier models are uti-
lized because of their ability to accommodate both abrupt (hard) and gradual (soft) regime
changes, thus ensuring a comprehensive consideration of fluctuations within the series.

Enders and Lee [67] introduced an enhancement to the Augmented Dickey–Fuller
(ADF) type unit root test, incorporating the Fourier function to acknowledge a specific
frequency dimension. This adaptation facilitates the detection of both nonlinear regime
shifts and unknown smooth transition changes in the deterministic component of the
model, achieved through the integration of the Fourier function.

In the Fourier ADF [67] unit root test, the basic hypothesis was formed as ‘There is a
unit root in the series’ (H0 : y1 = y2 = 0). The equations for this test are as follows:

α∆yt = α+ y1sin
(

2πkt
T

)
+ y2cos

(
2πkt

T

)
+ δyt−1 + εt (1)

∆yt = α+ βt + y1sin
(

2πkt
T

)
+ y2cos

(
2πkt

T

)
+ δyt−1 + εt (2)

The Fourier estimation function y, as detailed in the equations, uses ‘t’ to denote the
time trend, ‘k’ for the appropriate frequency value (where 1 ≤ k ≤ 5), and ‘T’ to signify
the observation size. If the calculated statistical value τDF-τ from estimating the model
exceeds the absolute value of the critical values established by Enders and Lee [68], it
indicates the absence of a unit root in the series.

Pesaran et al. [70] developed the Autoregressive Distributed Lag (ARDL) approach
to estimate the cointegration relationship between variables possessing differing levels of
stationarity. This method emphasizes the significance of the error correction term and the
statistical relevance of the coefficients for lagged independent variables, employing both
lower and upper bound testing, particularly focusing on the first condition. To address
the limitation regarding assumptions on the order of integration of variables, McNown
et al. [71] proposed the Bootstrap ARDL test. Pesaran et al. [70] introduced the F-overall
(H0 : δ1 = δ2 = δ3 = δ4 = 0) and t-dependent (H 0 : δ1 = 0) statistics. Expanding upon

www.policyuncertainty.com
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www.investing.com
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this, McNown et al. [71] proposed the F-independent ( H0 : δ2 = δ3 = δ4 = 0) statistic.
Solarin [72] enhanced the Bootstrap ARDL model of 2018 by incorporating Fourier terms,
addressing the oversight of regime changes in prior models and aiming for more robust
analysis outcomes. Following this, Yılancı et al. [73] introduced a fractional frequency
flexible Fourier equation into the Fourier Bootstrap ARDL framework, culminating in
the fractional frequency flexible Fourier Bootstrap ARDL test. This test, leveraging the
single-frequency approach, builds on the methodologies of Becker et al. [74] and Ludlow
and Enders [75]. The equation of the test is presented as follows:

∆Ut = δ0 + ψ1sin
(

2πkt
T

)
+ ψ2cos

(
2πkt

T

)
+ δ1Ut−1 + δ2Gt−1 + ∑p−1

i=1 ϑ′
i∆Ut−1 + ∑p−1

i=1 ϱ′i∆Gt−1 + εt (3)

In the equation, the first difference ∆, along with the specified lag number ‘p‘, incor-
porates εt to represent the error term, characterized by a zero mean and finite variance. If
the statistical value derived from the test exceeds the critical values determined through
bootstrap simulation, it signifies the establishment of a cointegration relationship among
the series.

Enders and Jones [68] developed the Fourier Granger causality test in response to
the limitations of the traditional Granger [76] causality test, which is conducted using
the vector autoregressive (VAR) model introduced by Sims [77]. The traditional method
often falls short as it overlooks regime changes and frequently fails to accurately identify
relationships through linear specifications. The Fourier Granger causality test addresses
these shortcomings by incorporating Gallant’s [78] Fourier functions into the VAR model,
thereby detecting regime changes that were previously indiscernible.

The basic hypothesis of the Fourier Granger [68] causality test is articulated as ‘There
is no causal relationship between the series’ (H0 : ϑ = 0). The test’s equation is presented
as follows:

Yt = β0+Y1k sin
(

2πkt
T

)
+ Y2kcos

(
2πkt

T

)
+ ϑ1Yt−1 + . . . + ϑuYt−u (4)

In the Toda and Yamamoto [69] causality test, the series are analyzed using the
VAR(p+dmax) model, which increases the lag without accounting for the series’ stationarity
or cointegration relationships. Recognizing that this approach neglects regime changes,
Nazlıoğlu et al. [79] introduced the Fourier Toda–Yamamoto causality test. This adaptation
incorporates Fourier functions to define regime changes within the series, adding Fourier
terms to the VAR model in place of the constant term.

The main hypothesis of the Fourier Toda–Yamamoto [68] causality test is that there is
no causal relationship between the series’ (H0: β = 0). The equation of the test is as follows:

Yt = α0+Y1 sin
(

2πkt
T

)
+ Y2cos

(
2πkt

T

)
+ β1Yt−1 + . . . + βp+dYt−(p+d) + εt (5)

In the equation, d indicates the maximum degree of cointegration, and p indicates the
optimal lag length. If the calculated Wald or F test statistic is greater than the asymptotic and
bootstrap p values, it is concluded that there is no causal relationship between the series.

4. Results and Discussion

This section of our study presents a detailed analysis of the findings derived from
applying the Fourier ADF unit root test, the fractional frequency flexible Fourier Bootstrap
ARDL test, and the Fourier Granger and Toda–Yamamoto causality tests. This section
articulately encapsulates the essence of our findings, providing a clear and comprehensive
exposition of the empirical evidence gathered through our research.

Table 2 presents the descriptive statistics of the variables analyzed in this study. The
skewness and kurtosis values of the variables suggest that they are approximately normally
distributed. Figure 1 illustrates a significant increase in both Bitcoin prices and carbon
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emission allowance prices since 2021. Meanwhile, the climate policy uncertainty variable
has exhibited substantial volatility since 2016. The S&P 500 energy index was notably
impacted during the COVID-19 pandemic.

Table 2. Descriptive statistics.

BTC CARBON CPU ENERGY

Mean 10,061.50 92.94 150.361 499.58
Median 3501.10 36.60 131.14 505.45
Maximum 61,330.00 403.40 411.29 727.63
Minimum 10.20 13.96 38.09 216.82
Std. Dev. 15,420.92 102.53 74.55 108.88
Skewness 1.86 1.73 0.87 −0.54
Kurtosis 5.36 4.96 3.38 3.16
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The results of the Fourier ADF unit root test, designed to analyze soft-transition
structural breaks, are detailed in Table 3. It was observed that all variables exhibit a
unit root at their respective levels and achieve stationarity when differenced, with the
exception of CPU. CPU demonstrates a stationary structure at its level. Given this scenario,
the application of the Fourier Bootstrap ARDL bounds test was deemed suitable. This
test accommodates different levels of integration and accounts for smooth transitional
structural breaks.

Table 3. Fourier ADF Unit Root Test Results.

Level First Diff.

BTC −2.89 (3) −8.61 (3) ***
CPU −5.77 (4) *** -
CARBON −0.42 (3) −13.07 (3) ***
ENERGY −1.68 (2) −12.56 (2) ***

Notes: The values in parentheses indicate the Fourier number, and the critical values are obtained from Enders
and Lee [68]. “The flexible Fourier form and Dickey–Fuller type unit root tests”, Economics Letters, 117, 196-1999.
The asterisks *** denote significance at the 1% level.

Based on the results from the Fourier Bootstrap ARDL bounds test, the Fa and Fb
statistics were found to be significant at the 1% level, and the T statistics at the 10% level.
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Our analysis, detailed in Table 4, reveals that the variables included in the model demon-
strate a long-term cointegration relationship. Essentially, despite short-term fluctuations,
they share a stable, long-term equilibrium relationship, indicating that any changes in
one variable are likely to be mirrored by the others in the long run. After confirming the
cointegration relationship between the variables, as showcased in Table 5, we proceed
to discuss the positive and negative associations of the variables included in the model.
According to the findings, a positive relationship was identified between BTC (Bitcoin) and
carbon allowance prices, as well as between BTC and CPU, and a negative relationship was
found between BTC and the S&P 500 energy index. In quantitative terms, an increase of
1.00 in carbon prices leads to a 1.30 unit increase in BTC prices. A 1.00 unit increase in CPU
results in a 1.23 unit increase in BTC prices. Lastly, a 1.00 unit increase in the Global Clean
Energy Index is associated with a 0.61 unit decrease in BTC prices.

Table 4. Fourier Bootstrap ARDL Bounds Test Results.

Selected Model: FARDL (2, 1, 2, 2) k:3

Test Statistic
Bootstrap Critical Values

%10 %5 %1

Fa 6.509 *** 3.375 3.843 5.581
T −2.819 * −2.786 −3.021 −3.961
Fb 7.635 *** 3.663 4.201 4.908

Note: The asterisks * and *** denote significance at the 10% and 1% levels, respectively.

Table 5. Fourier Bootstrap ARDL Long-Run Coefficient Estimation.

Variable Coefficient Standard Error p-Value

lnCARBON 1.30 0.245 0.00
lnCPU 1.23 0.41 0.00
lnENERGY −0.61 0.23 0.01

The observed increase in energy consumption with rising carbon prices, leading
to greater Bitcoin production and interest, which subsequently drives up BTC prices,
reflects a complex interplay between environmental policies and cryptocurrency market
dynamics [43]. The literature highlights the significant energy consumption of the Bitcoin
network, a factor contributing to what has been termed a “growing energy problem” [47].
This energy-intensive nature of Bitcoin mining, despite the environmental concerns it raises,
appears to foster a scenario where increased carbon pricing paradoxically encourages more
Bitcoin production, driven by the financial incentives of higher BTC prices.

Further complexity is introduced with the finding that an increase in climate policy
uncertainty exacerbates pollution levels, contributing to the rise in BTC prices. This relation-
ship underscores the impact of environmental and policy uncertainty on the cryptocurrency
market, where economic and policy uncertainties influence Bitcoin prices [37–39]. The
literature suggests that Bitcoin is an alternative investment tool in times of uncertainty,
including climate policy uncertainty, highlighting its role in a broader economic and envi-
ronmental context.

The negative correlation between BTC and the S&P 500 Global Clean Energy Index,
alongside the observed one-way causality from carbon emission pricing to BTC, from
BTC to CPU, and from BTC to the S&P 500 Energy Index (Table 6), indicates the potential
for these variables to be grouped together in investment portfolios as alternative assets.
This suggests that investors may view Bitcoin and clean energy stocks as complementary
investments, diversifying portfolios to hedge against various risks associated with tradi-
tional financial markets and environmental policies. Such findings highlight the intricate
relationships between the cryptocurrency market, environmental policies, and the global
energy market, suggesting a nuanced approach to integrating Bitcoin into broader financial
and environmental strategies [4,11].
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Table 6. Fourier Granger Causality and Fourier Toda–Yamamoto Causality Results.

Method Test
Statistics

Asymptotic
p-Value

Bootstrap
p-Value

lnBTC → lnCARBON FGC 8.287 0.406 0.411
lnCarbon → lnBTC FGC 14.491 0.07 * 0.087 *
lnBTC → lnCPU FTY 4.582 0.032 ** 0.036 **
lnCPU → lnBTC FTY 0.004 0.951 0.957
lnBTC → lnENERGY FGC 3.319 0.068 * 0.065 *
lnENERGY → lnBTC FGC 0.760 0.383 0.392

Notes: FGC represents Fourier Granger causality, and FTY denotes the Fourier Toda–Yamamoto causality test.
The asterisks * and ** denote significance at the 10% and 5% levels, respectively.

5. Conclusions and Policy Implications

Climate change has emerged as a significant concern for the financial sector, prompting
researchers to investigate its implications for financial stability and sector performance.
Similarly, the impact of climate change on cryptocurrencies, which serve as both alternative
payment methods and popular financial assets, is under scrutiny in global markets. A broad
spectrum of investors favors cryptocurrencies due to their ease of transaction, liquidity,
and transferability. However, operating within the cryptocurrency system, particularly in
mining and distribution processes, entails substantial electricity consumption.

This study has highlighted the intricate relationships between climate policy uncer-
tainty, global clean energy initiatives, carbon emission allowance prices, and Bitcoin returns,
particularly from August 2012 to August 2022. Significant insights have been uncovered
by applying econometric methods, such as the Fourier Bootstrap ARDL, Fourier Granger
Causality, and Fourier Toda–Yamamoto Causality. These insights reveal that climate pol-
icy uncertainty and the global clean energy index positively and significantly influence
Bitcoin returns. Moreover, a negative and significant relationship was observed between
Bitcoin and the energy index. A notable discovery was the one-way causality from carbon
emission allowance prices to Bitcoin returns, highlighting the complex interplay between
environmental policy and cryptocurrency valuations.

These results have significant implications for both investors and policymakers. It was
observed that the European Union Allowance has become increasingly important as an
investment instrument, displaying characteristics of a financial asset and demonstrating
a high level of liquidity. The global markets for clean energy, Bitcoin, and EUA offer
opportunities for investors to enhance portfolio diversification in terms of financial assets.
These findings highlight the potential benefits and revenue opportunities for investors
pursuing diversified investment strategies. Furthermore, climate policy regulators have
the option to impose sanctions to increase carbon awareness among businesses and direct
them towards clean energy sources. Climate policy uncertainty introduces ambiguities
in opting for clean energy sources for Bitcoin mining due to potentially vague policy
directions for the industry. Governments and regulatory bodies should strive to facilitate
the transition to clean energy in Bitcoin mining, including offering tax breaks to Bitcoin
miners. Implementing carbon taxing can also serve as a tool to discourage using carbon-
intensive elements, such as fossil fuels, in Bitcoin mining operations.

Additionally, governments can initiate educational campaigns to inform various stake-
holders about the environmental consequences of Bitcoin mining. International agreements
on using clean energy in the Bitcoin industry are indispensable for reducing carbon emis-
sions. It is important to note that many jurisdictions are pushing for Bitcoin miners to
use renewable energy. Additionally, the idea of funding renewable energy development
through Bitcoin mining has been proposed in various regions. Our study’s empirical
findings also inform investors to make educated decisions based on the underlying rela-
tionships between variables included in the study. An interesting solution is the recent
establishment of several Bitcoin spot ETFs in the United States, which is already changing
investment patterns.
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However, the study’s scope and findings suggest avenues for further research, par-
ticularly in evaluating the impact of climate policy uncertainty across different periods
and employing varied estimation methodologies. Future studies could also explore the
relationship between CPU and environmental, social, and governance indices, as well as
the effects of CPU on a broader spectrum of cryptocurrency assets, including non-fungible
tokens, decentralized finance, and the Metaverse. Such explorations could enrich the
existing literature and offer deeper insights into developing a sustainable cryptocurrency
ecosystem. Addressing these gaps remains a priority for our future research endeavors,
with the aim of contributing further to the understanding of the nexus between climate
policy, sustainable finance, and the expanding field of cryptocurrencies.
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