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Abstract: We assessed the impact of increasing olive mill waste (OMW) concentrations (10%, 35%,
70%, and 100% v/v) on soil free-living nematode communities and Lactuca sativa (lettuce) growth, 10
and 45 days after application (DAA). L. sativa plants showed a survival threshold at OMW10%, with
higher concentrations proving fatal. Contrary to expectations, nematode abundance increased with
OMW concentration. OMW10% induced a rapid surge in nematode abundance, stabilizing at 45 DAA,
resembling control values. OMW35%, OMW70%, and OMW100% plots exhibited persistent, gradual
increases, surpassing control values at 45 DAA. All treatments favored fungal feeders, resulting in the
overdominance of the genus Aphelenchus both at 10 and 45 DAA. Even though OMW did not exert a
toxic effect on nematode populations, this shift in the community structure towards the dominance
of a single genus could suggest an imbalance in the soil community, which could have negative
implications for soil health and ecosystem functioning. Overall, our study provides insights into the
complex interactions between OMW, soil nematode communities, and plant growth, emphasizing
the importance of understanding soil ecology for sustainable agricultural management.

Keywords: feeding groups; free-living nematodes; metabolic footprint; nematode indices; organic
amendment; soil food web

1. Introduction

Agricultural practices continually evolve as the demand for sustainable solutions
intensifies in the face of environmental challenges. In this context, the utilization of by-
products from various industries as soil amendments has gained attention for its potential
benefits and drawbacks. One such by-product, olive mill wastewater (OMW), presents
a complex mixture of organic compounds, posing both opportunities and challenges
in agricultural ecosystems. The olive oil manufacturing process generates significant
quantities of olive mill waste which presents a notable problem due to its high acidity
and concentrations of chemical oxygen demand (COD) and biological oxygen demand
(BOD) [1,2]. Given the impracticality of various tested physical, chemical, and biological
technologies for olive mill wastewater treatment, it is often discharged untreated into sewer
systems, water streams, or inefficiently stored in evaporation ponds; nevertheless, this
practice leads to the degradation of the soil system and greenhouse gas emissions [3,4].
However, repurposing OMW within the waste-to-resource paradigm and recycling it could
contribute to a successful strategy for implementing the circular economy model. This
approach has the potential to yield significant socioeconomic benefits, particularly for
low-income Mediterranean countries [5].
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OMW’s polyphenols exhibit strong antimicrobial and phytotoxic effects, hindering
its biodegradation [1,6]. Preliminary studies suggest that the application of olive mill
wastewater can alter soil nutrient availability, affect root development, and influence the
overall physiological processes of crops. Even a brief exposure of raw OMW to Mentha
spicata L. cuttings led to irreversible damage to rhizogenesis and shoot development [7].
The diluted OMW demonstrated a negative impact on the seed germination of maize
and tomato. Researchers achieved a significant decrease in monomeric phenols through
anaerobic digestion. However, this reduction did not decrease toxicity towards germination,
implying that other components may also contribute to phytotoxicity [8].

Despite its toxic aspects, OMW contains organic compounds, sugars, minerals, and
growth-promoting substances; the nature of these constituents is influenced by the olive
cultivar, maturation degree, climate conditions, and agricultural practices [9]. The richness
of compounds present in OMW enables an increase in organic matter content and enhances
soil fertility, making it a potential candidate for use as a fertilizer and soil conditioner [10,11].
This conversion into agricultural input stands out as a highly promising valorization
approach. When treated with OMW, the soil’s water retention capacity increased due
to a reduction in bulk density, resulting in increased soil porosity and the formation of
stable aggregates [12]. The land application of olive mill wastewater has been reported to
increase organic matter content and enrich essential inorganic nutrients (P, K, Mg, Fe), vital
for promoting plant growth [13]. Numerous studies reported that OMW contributed to
positive metabolic and physiological responses in plants, enhancing their growth [4,10,14].
However, interest has arisen regarding its impact not only on subsequent effects on crop
productivity but also on soil organisms.

Several studies demonstrated that OMW addition caused significant shifts in the
structure and function of microbial communities, which in turn had an impact on soil
fertility [15,16]. Additionally, other studies highlighted that raw OMW and its polar
fraction were highly toxic not only to microorganisms but also to invertebrates (Daphnia
magna, Thamnocephalus platyurus, Chironomus riparius) and vertebrates (Danio rerio, Cyprinus
carpio), exhibiting toxicity even at low concentrations [17,18]. Furthermore, the use of OMW
has also attracted attention as having the potential to control plant pathogens and post-
harvest diseases [2,19]. Biopesticide properties were assigned to OMW phenolic extract
compounds, which were reported by many as having ecotoxicological effects on soil habitat
function [20,21]. Although many studies were conducted on OMW’s suppressiveness of
plant-parasitic nematodes [2,10], the literature regarding its effect on the soil nematode
community is limited [22]. Further investigation is required to comprehensively understand
their response to the addition of OMW.

Soil nematodes are considered an essential category of soil organisms and serve as
useful indicators of soil health and soil recovery due to their rapid response to changes in
soil conditions [23–25]. Their sensitivity to environmental changes, including variations
in soil structure, nutrient content, and organic matter [26], positions them as a reliable
reflection of soil ecosystem dynamics [27]. Although herbivorous soil nematodes can be
harmful for agricultural production, by closely monitoring the abundance and diversity of
free-living nematode communities, researchers gain an understanding of the subtle shifts
in soil status, offering a real-time assessment of soil health, especially after chemical or
biological applications [28].

The aim of our study was to assess the impact of OMW on soil nematode commu-
nities. We hypothesized that the application of olive mill waste to soil with low organic
matter content would significantly affect the abundance and composition of soil nematode
communities. Specifically, we anticipated that increasing concentrations of OMW would
reduce their abundance and diversity. Additionally, we sought to evaluate the impact of
OMW on plant productivity. Recognizing the intricate relationship between soil ecology
and crop performance, our objective was to provide valuable insights for the development
of environmentally responsible agricultural practices. Furthermore, we aimed to contribute



Sustainability 2024, 16, 3848 3 of 14

to the broader discourse on utilizing industrial by-products in agriculture while ensuring
soil biodiversity and resilience preservation.

2. Materials and Methods
2.1. Experiment Design

The present study utilized olive mill wastewater (OMW) sourced from a three-phase
olive oil mill located in Souroti, proximate to the city of Thessaloniki, Greece. The collected
OMW was extracted from settled reservoirs and subsequently preserved at −20 ◦C, until
its application in the experimental procedures. Soil samples for the study were obtained
from agricultural fields in Thermi, Thessaloniki. Post-collection, the soil underwent ho-
mogenization, the breaking of large aggregates, and sieving through a 6 mm sieve. The
soil type was identified as loam using the Bouyoucos method [23]. Furthermore, pH was
measured in a soil-distilled water paste (1:1), organic carbon (%) was measured using the
titration method [24], and total nitrogen was measured using the Khendjal apparatus [25].
The results are elucidated in Table 1 to provide comprehensive insight into its composition
for this investigation.

Table 1. The mean values (±st. error) of the physicochemical parameters of the soil used in our study
(n = 5).

Soil Parameter Value

Sand (%) 47%
Clay (%) 24%
Silt (%) 32%

pH 7.51± 0.01
Soil Organic C (%) 1.82 ± 0.01

Total N (%) 0.15 ± 0.02

2.2. Pot Experiment

Lettuce (Lactuca sativa) seeds, obtained from a commercial supplier specializing in
plant seeds, were planted in a seed container filled with soil that had been sieved through
a 2 mm mesh. The growth period spanned 45 days under open-air conditions. Upon
attaining the four-leaf stage, individual lettuce plants were transplanted into 0.5 L pots
filled with non-sterilized, sieved soil. Four specific dilutions of olive mill wastewater
(OMW) were formulated to establish distinct levels of application: 10% v/v (OMW10%),
35% v/v (OMW35%), 70% v/v (OMW70%), and 100% v/v (OMW100%). A control group
that received no OMW application was also included. Each dilution, totaling 80 mL, was
carefully administered to its corresponding pot to prevent spillage and ensure containment.
OMW application was conducted as a one-time event. Control soils, without OMW, were
created by substituting OMW with distilled water. Diverse dilutions were created using
water as the diluent substance.

The pots were organized in a completely randomized design, with five replicates
per treatment. The pots were consistently watered throughout the experimental duration
to maintain a moisture content of 10% w/w, a level that does not hinder plant growth.
The daily weighing of pots was conducted to ascertain water loss, following the method
outlined by Troelstra et al. [26]. No fertilizers were applied to the pots. To assess the short-
and long-term effects of the treatments on both plant development and soil nematodes,
two destructive samplings were conducted at 10 and 45 days after the application of
olive mill wastewater (referred to as 10 and 45 DAA), with 25 samples collected for each
sampling event. The soil was maintained at a cool temperature (4 ◦C), until processing.
After oven-drying plant shoots and roots for 48 h at 70 ◦C, the total biomass of the plants
was determined.
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2.3. Nematode Extraction, Identification, and Indices

Nematodes were extracted from 150 mL of each soil sample using the modified
Cobb’s sieving and decanting method, as detailed by S’Jacob and van Bezooijen [27],
culminating in the use of a cotton wool filter in the final step. After quantifying the
overall nematode abundance under a stereoscope, nematodes were heat-killed and then
preserved in 4% formaldehyde. Approximately 100 randomly selected nematodes were
identified at the genus level under a microscope using Bongers’ [28] identification key and
considering morphological characteristics, including the stomodeum, reproductive organs,
and tail. Nematode taxa were then classified into trophic groups following the colonization–
persistence gradient (c-p values) by Bongers [29] and Bongers and Bongers [30] and grouped
into functional guilds according to Ferris et al. [31] and Bongers and Bongers [30], signifying
portions of specific trophic groups exhibiting the same c-p value.

The nematode functional indices employed in our study capture various attributes
of the nematode community. The maturity index (MI) for free-living nematodes and the
plant parasitic index (PPI) for taxa feeding on plants were computed based on Bongers [29].
Lower MI values indicate greater soil disturbance, as measured by Yeates et al. [32] and
Bongers and Ferris [33]. The PPI serves as a maturity index for taxa feeding on plants.
The weighted faunal analysis proposed by Ferris et al. [34] was employed to calculate
the enrichment index (EI), channel index (CI), and structure index (SI), reflecting the
functional structure of the soil food web. The SI provides insights into whether the soil
ecosystem is more trophically linked and organized or less trophically linked and degraded,
following Ferris et al. [34]. The metabolic footprint (MF), representing carbon utilization
by nematodes and encompassing the sum of the lifetime amount of carbon allocated to
growth, egg production, and respiration, was computed in accordance with Ferris [34],
using the nematode indicator joint analysis online platform (NINJA) [35].

2.4. Statistical Analysis

To assess the influence of time, various treatments, and the interplay between these
variables on the soil nematode community and plant characteristics, a two-way analysis
of variance (ANOVA) incorporating treatment and time as independent variables was
conducted. Initial scrutiny involved testing the data for adherence to ANOVA assumptions,
including considerations such as the normality and homogeneity of variance. Subsequently,
to discern significant effects, a least square differences (LSD) test was applied, facilitated
by STATISTICA 9 Software. Renyi and nonmetric multidimensional scaling (NMDS)
graphs, along with a SIMPER test table, were generated using PAST SOFTWARE to visually
represent and interpret the observed patterns in the data.

3. Results

Our results on plant characteristics are presented in Figure 1. The OMW10%-treated
specimens exhibited greater upper length values (10.48 ± 0.25 cm) at 45 days after applica-
tion (45 DAA) (Figure 1a). In contrast, the dry mass was lower (0.33 ± 0.01 g) compared
to the control (0.44 ± 0.02 g) when OMW10% was applied (Figure 1). Notably, the plants
treated with OMW35%, OMW70%, and OMW100% exhibited burn-like symptoms and
eventually died.

Our samples contained nematode genera comprising 16 bacterivores, 5 fungivores,
8 herbivores, and 7 omnivores (Table S1). The abundance of distinct nematode trophic
groups across different treatments, assessed at 10 days after application (DAA) and 45 DAA,
is depicted in Figure 2. Overall, a higher number of nematodes (550 ± 107.85 individ-
uals/100 mL soil) were recorded in the first sampling (10 DAA). Moreover, at 10 DAA,
the total nematode population exhibited a significant increase across all treated samples
compared to the control, except in the OMW100% treatment, where the increase was not
significant. A similar pattern was also evident in bacterivores and fungivores; nevertheless,
the OMW35%-treated samples did not show a significant increase in fungivores compared
to the control. The populations of the herbivores were solely affected by the Time factor
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and were significantly lower (19 ± 7.51 individuals/100 mL soil) in the second sampling
(45 DAA). At 45 DAA, OMW70% and OMW100% showed significantly elevated values in
the total nematode population (735 ± 133.97 and 607 ± 122.47 individuals/100 mL soil,
respectively), bacterial feeders (192.1 ± 21.19 and 98.02 ± 18.74 individuals/100 mL soil,
respectively), and fungal feeders (496 ± 118.67 and 492.73 ± 101.39 individuals/100 mL
soil, respectively). Herbivores exhibited levels similar to the control in treated samples at
45 DAA. Predators and omnivores showed low abundances (10 ± 5.16 and 11 ± 4.72 in-
dividuals/100 mL soil) in both sampling instances, consistent with expectations for culti-
vated soils.
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Figure 1. The mean abundance values (±st. error) of plant (a) length and (b) dry weight under
different concentrations of olive mill wastewater (OMW), and the results of the two-way ANOVA
10 DAA and 45 DAA (DAA: days after application). In the case of a significant effect, different
letters (a, b, c) indicate significant differences among treatments based on Fisher’s LSD post hoc
test (*: p < 0.05; ***: p < 0.001, for all cases n = 5). In concentrations exceeding 10%, the plants died,
exhibiting burn-like symptoms, and were consequently excluded from the two-way ANOVA. The
letter “a” always points out the highest value.

Although an increase in abundance was recorded in some applications, this was not
reflected in the relative abundance (Figure 3), suggesting that the composition remained
unaffected, with changes observed only in abundance. The percentage contribution notice-
ably changed only in the OMW70% and OMW100% treatments at 45 DAA, where fungal
feeders were more enhanced (Figure 3b). Evidently, at 45 DAA (Figure 3b), the OMW35%,
OMW70%, and OMW100% treatments presented a higher relative abundance of fungal
feeders (66.2, 67.6, and 76.3%, respectively).

In Figure 4, the disturbance at 10 DAA is not as evident, as both treated and control
samples are clustered in the middle of the graph, except for OMW-10%, which exhibited a
significant distance from the control. At 45 DAA, on the other hand, the distance between
treated and untreated samples becomes clearer, with treated samples observed to be as
distant from the control as the concentration of OMW application increases.

At 10 DAA, there is a notable enhancement in Aphelenchus abundance across all ap-
plications (Figure 5). Additionally, the abundance of two bacterivores (Acrobeloides and
Chiloplacus) shows a substantial increase in each application, resulting in minimal observ-
able changes in the overall percentage contribution. At 45 DAA, a distinct trend emerges
where the OMW70% and OMW100% treatments were characterized by a greater dominance
of Aphelenchus (419 ± 118.87 and 386 ± 88.76 individuals/100 mL soil, respectively). This
observed dominance suggests a disturbance within the system, indicating that a significant
and pronounced impact has occurred. This enhancement in Aphelenchus abundance was
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also evident through the SIMPER test (Table S2). This enhancement closely correlated with
the corresponding OMW concentration applied. Although the overall structure remained
consistent, the difference between treatments was primarily attributed to the increase in
Aphelenchus population.
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The EI, CI, MI, bacterivore, and fungivore footprint values were estimated at 10
and 45 DAA and are presented in Table 2. OMW application affected only bacterivore
and fungivore footprints. The interaction between OMW and Time affected only the
fungivore footprint; interestingly, the OMW70% and OMW100% treatments had low values
(31.16 ± 13.93 and 23.64 ± 10.57, respectively) at 10 DAA but appeared to be the highest
(52.72 ± 10.97 and 46.94 ± 9.57, respectively) at 45 DAA. Conversely, the Time factor
significantly affected the CI and EI with values higher (94.22 ± 3.71 and 43.30 ± 1.49,
respectively) at 45 DAA. On the contrary, the bacterivore footprint was significantly higher
(10.98 ± 1.73) in the first sampling (10 DAA).

Table 2. The mean values of the channel index (CI), enrichment index (EI), bacterivore footprint (BF),
and fungivore footprint (FF), under the different treatments 10 DAA and 45 DAA (DAA: days after
application). For each sampling occasion, within columns, means followed by the same letter are not
significantly different (two-way ANOVA and Fisher’s LSD post hoc comparisons; p > 0.05; *: p < 0.05;
**: p < 0.01; ***: p < 0.001; ns: non significant; for all cases, n = 5).

Time OMW CI EI MI FF BF

10
D

A
A

Control 89.00 ± 3.41 36.40 ± 1.89 2.08 ± 0.03 12.7 ± 5.68 d 8.60 ± 0.60
OMW10 93.00 ± 3.12 33.50 ± 3.07 2.05 ± 0.03 45.76 ± 20.46 ab 12.20 ± 2.05
OMW35 83.60 ± 6.98 37.00 ± 2.79 2.01 ± 0.01 24.69 ± 11.04 cd 11.70 ± 2.92
OMW70 94.30 ± 2.50 37.60 ± 0.35 2.04 ± 0.01 31.16 ± 13.93 bc 10.90 ± 0.56
OMW100 85.00 ± 6.16 40.20 ± 2.92 2.01 ± 0.03 23.64 ± 10.57 cd 11.50 ± 1.56

45
D

A
A

Control 92.30 ± 3.88 43.10 ± 1.29 2.08 ± 0.04 11.74 ± 2.37 d 7.90 ± 0.38
OMW10 89.80 ± 5.42 42.60 ± 1.32 2.04 ± 0.03 16.59 ± 3.39 cd 8.70 ± 0.31
OMW35 94.60 ± 4.08 43.50 ± 1.50 2.06 ± 0.02 21.68 ± 3.00 cd 7.30 ± 1.20
OMW70 100.00 ± 0.00 40.90 ± 1.71 2.04 ± 0.02 52.72 ± 10.97 a 8.20 ± 0.86
OMW100 94.40 ± 2.70 46.40 ± 1.13 2.03 ± 0.01 46.94 ± 9.57 ab 4.70 ± 1.45

Time * *** ns ns ***
OMW ns ns ns *** **

Time*OMW ns ns ns *** ns

The food web analysis based on the EI/SI ratio of the OMW treatments and the control
for both samplings is presented in Figure 6. All samples from both samplings were aligned
in the lower left quadrant, indicating that all soil samples were experiencing stress due to
low nitrogen concentration.
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4. Discussion
4.1. Impact of OMW on Lactuca sativa

We studied the impact of OMW on Lactuca sativa plants and determined a survival
threshold at OMW10%, with higher dosages proving fatal. Dilution with water, a proposed
mitigation strategy, has been shown to decrease OMW phytotoxicity [36,37], which clarifies
the observed phytotoxic effects (e.g., acidity, salinity) on plants with increasing concentra-
tions of OMW (above 10%). Presumably, the boundary between beneficial and harmful
concentrations is narrow and likely crop-specific, consistent with findings by Rusan and
Malkawi [4] and Elayadi et al. [38].

4.2. Effect on Nematode Abundance, Community Composition, and Genera Diversity

Due to the observed plant demise in all treatments exceeding OMW10%, exploring
the relationship between plant growth and nematode abundance, diversity, and plant
interaction was not feasible. Our initial hypothesis was that nematode abundance and
diversity would decrease with increasing waste concentration; however, our results proved
the opposite. At 10 DAA, OMW10% induced a rapid surge in nematode abundance,
stabilizing at 45 DAA resembling control values, indicating that the organic material was
decomposed by the time of the second sampling. In contrast, OMW35%, OMW70%, and
OMW100% plots showed persistent, gradual increases, significantly surpassing the control
group at 45 DAA. The presence of phenolics in OMW did not exhibit toxicity effects on soil
nematode populations, suggesting a collaborative degradation of lignin-derived aromatic
compounds by fungi and bacteria [39,40]. At 10 DAA, in all treated plots, even though
fungal feeders increased their abundances, this was also accompanied by an increase in
bacterivorous numbers; however, by 45 DAA, fungal feeders dominated in OMW70% and
OMW100% plots, highlighting their interconnection with OMW-rich environments. The
delayed increase in the fungivore population numbers in the plots treated with higher OMW
concentrations (over 35%) was likely due to the higher OMW concentrations containing
larger amounts of less labile organic compounds. This resulted in slower decomposition by
microorganisms and an increased dominance of fungivores in the long term. These findings
differ from those recorded after the incorporation of other types of organic amendments
with high C/N ratios in the soil system, which typically increase bacterial populations,
causing a spike in bacterivorous nematodes [41,42]. Several studies reported increased
fungal populations and fungal/bacterial ratios in OMW-amended soils, suggesting that
OMW serves as a suitable substrate for fungi [36,43–46] and thus explaining the dominance
of fungivores post-OMW addition. Presumably, OMW phenolic compounds stimulate
yeasts, fungi, and consequently enhance the population of their predators, i.e., fungivorous
nematodes [47].

A contrasting pattern was observed for herbivores compared to the increase in non-
herbivorous nematodes. By 45 DAA, there was a visible decline in their abundance across
all plots. Several studies have indicated that plant-derived phenolics have a detrimental
effect on plant-parasitic nematodes but exert minimal or no negative impact on free-living
nematodes [48,49]. Dutta et al. [50] explain this differential response due to variations
in chemosensory gene sequences, which make PPNs more responsive to plant-derived
metabolites. Lastly, the decline in PPNs by 45 DAA can be explained by the subsequent
demise of plants in treatment groups with increased concentrations, leaving herbivorous
nematodes without a viable food source. This scarcity accounts for the absence of a notable
increase in their abundance.

While we observed differences in nematode abundances among all treatments at
10 DAA, the percentage contribution of trophic groups did not differ compared to the
control, indicating an unaltered community composition. The incorporation of OMW
resulted in increased numbers of fungal and bacterial feeders, proportionally. The genus
Aphelenchus, a cp2 fungal feeder belonging to the family Aphelenchidae, was the most
affected and increased in numbers. Bacterivorous genera such as Chiloplacus (cp-2) and
Acrobeloides (cp-2), members of the Cephalobidae family, were also positively affected by
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OMW additions. However, at 45 DAA, the OMW70% and OMW100% treatments exhibited
a completely different community composition, with the overdominance of Aphelenchus.
This overdominance of the Aphelenchus genus in response to increasing organic waste
concentrations can be attributed to the adaptive capabilities of Aphelenchus nematodes to
tolerate a wide range of pH levels (including highly acidic) and maintain osmotic balance
in response to changing environmental conditions, contributing to their resilience in the
presence of high concentrations of OMW [51].

The increased abundance of these cp-2 nematodes indicates stress in the soil sys-
tem [31,52]. The MI values remained near 2 across all treatments and the control, indicating
a stressful environment due to a disturbance unrelated to nutrient enrichment. The low MI
values in the control suggest that the soil from the field site may have been disturbed even
before the application of the treatments. Notably, although an increase in cp-1 nematodes,
indicative of an enriched nutrient status, was expected with the addition of OMW, their
rapid population expansion was not observed. The incorporation of OMW did not signifi-
cantly alter the food web condition. The EI and CI values, observed across all treatments
including the control, remained low (<50), indicating limited nutrient availability and
a predominant fungal decomposition pathway [33,53]. Additionally, the low SI values
suggest that OMW application resulted in the increase in the abundance of soil nematodes
belonging to lower c-p guilds rather than omnivores/predators [54]. The impact of stress
factors (i.e., low nitrogen concentrations resulting in high C/N values) on community
functionality and stability could be significant, potentially leading to a decline in diversity
due to the disappearance of the most sensitive species (cp-4 and cp-5) [30,55]. Thus, no
significant increase in cp-4 nematodes was recorded, indicating a further decline in the soil
food web condition along with the depleted stage (Figure 6).

4.3. Assessing Levels of Disturbance

At 10 DAA, OMW10% caused the highest level of disturbance relative to the con-
trol group, as evident in the NMDS plot. However, this change was reflected in a pro-
portional increase in both fungivores and bacterivores, suggesting a balanced response
within the community. By 45 DAA, the community structure had reverted to its pre-
disturbance state in the OMW10% plot, exhibiting no significant deviations from the
control. This may indicate the resilience of the nematode community and its capacity to re-
store equilibrium following transient perturbations. A contrasting scenario was observed at
45 DAA for plots OMW75% and OMW100%, with a pronounced overdominance of a single
genus—Aphelenchus—marking a substantial deviation from the control. This, in turn,
indicates a persistent disturbance and suggests a long-term alteration of the nematode
community dynamics, as is also evident from the SIMPER test (Table S2). Given the corre-
lation between diversity and ecological stability, defined by the resistance and resilience
of the soil’s ability and speed to recover after disturbances [56], the overdominance of
one specific genus may weaken the diversity of ecosystems, which are better equipped to
withstand environmental perturbations when there is the presence of species with varying
traits [57]. Hence, despite the absence of reductions in abundance or genera numbers, the
community is evidently under increasing pressure due to the disturbance from OMW, and
subsequently, the stability of the community is compromised and could potentially lead to
problematic outcomes if another disturbance were to occur within this system.

5. Conclusions

We conducted a pot experiment using varying concentrations of olive mill waste
diluted with water (10%, 35%, 70%, and 100%). All amendments increased nematode
abundance, particularly favoring fungal feeders, whereas higher concentrations (35%, 70%,
100%) resulted in a permanent shift in the community towards the dominance of the genus
Aphelenchus, decreasing species diversity. OMW did not promote plant growth and had
detrimental effects, leading to plant mortality at concentrations exceeding 10%. Our find-
ings suggest that the application of OMW10% has the potential to be utilized as an organic
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amendment without eliciting negative impacts on the soil nematode community, structure,
or soil stability. Hence, we attempted to investigate the complex interactions between
OMW, plants, and soil nematodes. Despite the challenges posed by OMW’s phytotoxicity,
implementing careful management practices, such as dilution and monitoring application
concentrations, may offer sustainable solutions. Redirecting research efforts toward explor-
ing alternative wastewater treatment techniques, particularly those that would be, most
importantly, techno-economical viable options, is crucial. Additionally, it is required to
assess the long-term consequences of these practices on soil ecosystems. Ultimately, this
45-day experiment provided valuable insights into the immediate effects of these practices
at a small scale, and it is further required to assess the long-term consequences of such
practices on soil ecosystems. Moreover, studying the effects of OMW on other types of
soils is necessary, which potentially could lead to different outcomes. Further research
should prioritize the implementation of proper nematode sampling schemes in large-scale
experiments to define the exact distribution patterns and co-occurrence of soil nematode
communities under real field conditions [58].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/su16093848/s1, Table S1: The genera observed in both samplings
(10 DAA and 45 DAA) with their cp values and respective trophic group (10 DAA: ten days after
application; 45 DAA: forty-five days after application); Table S2: Dissimilarity percentages between
treatments and results of Similarity Percentage analysis (SIMPER) based on Bray-Curtis. Genera
accounting for ∼70% of overall dissimilarity are ranked in order of importance of their contribution.
The upper right half of the table refers to the first sampling (10 DAA) and the lower left half of the
table refers to the second sampling (45 DAA) (DAA: days after application). For every treatment
n = 5.
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