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Abstract: Accurate estimation of aboveground carbon stock for individual trees is important for
evaluating forest carbon sequestration potential and maintaining ecosystem carbon balance. Airborne
light detection and ranging (LiDAR) data has been widely used to estimate tree-level carbon stock.
However, few studies have explored the potential of combining LiDAR and hyperspectral data to
estimate tree-level carbon stock. The objective of this study is to explore the potential of integrating
unmanned aerial vehicle (UAV) LiDAR with hyperspectral data for tree-level aboveground carbon
stock estimation. To achieve this goal, we first delineated individual trees by a CHM-based watershed
segmentation algorithm. We then extracted structural and spectral features from UAV LiDAR and
hyperspectral data respectively. Then, Pearson correlation analysis was conducted to assess the
correlation between LiDAR features, hyperspectral features, and tree-level carbon stock, based on
which, features were selected for model development. Finally, we developed tree-level carbon
stock estimation models based on the Schumacher–Hall formula and stepwise multiple regression.
Results showed that both LiDAR and hyperspectral features were strongly correlated to tree-level
carbon stock. Both tree height (H, r = 0.75) and Green index (GI, r = 0.83) had the highest correlation
coefficients with tree-level carbon stock in LiDAR and hyperspectral features, respectively. The best
model using LiDAR features alone includes the metrics of H, the 10th height percentile of points
(PH10), and mean height of points (Hmean), and can explain 74% of the variations in tree-level carbon
stock. Similarly, the best model using hyperspectral data includes GI and modified normalized
differential vegetation index (mNDVI), and has similar explanatory power (r2 = 0.75). The model that
integrates predictors, namely, GI and the 95th height percentile of points (PH95) from hyperspectral
and LiDAR data, substantially improves the explanatory power (r2 = 0.89). These results indicated
that while either LiDAR data or hyperspectral data alone can estimate tree-level carbon stock with
reasonable accuracy, combining LiDAR and hyperspectral features can substantially improve the
explanatory power of the model. Such results suggested that tree-level carbon stock estimation can
greatly benefit from the complementary nature of LiDAR-detected structural characteristics and
hyperspectral-captured spectral information of vegetation.

Keywords: LiDAR; hyperspectral; data fusion; urban forest; urban ecology

1. Introduction

With the increase in global warming and Greenhouse Effect, carbon cycle has become
a hot topic in global climate change research [1–7]. Forests have the ability to absorb
and fix CO2 from the atmosphere and are the largest carbon pool in terrestrial ecosys-
tems [8,9]. The United Nations Intergovernmental Panel on Climate Change (IPCC) has
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repeatedly pointed out that forests play an irreplaceable role in regulating the global
carbon cycle and mitigating climate change, and have great potential to reduce carbon
emissions and increase carbon sinks [10,11]. Proper estimation of forest carbon stocks
can accurately evaluate the carbon sequestration potential of forest ecosystems, which is
of great significance for in-depth studies of regional ecological environments and global
climate change [12,13]. However, it is still a challenging task to estimate tree-level carbon
stocks accurately and rapidly.

Traditional plot-based sampling methods can acquire accurate forest carbon stocks.
However, these methods are time-consuming, labor-intensive, and costly, and thereby it is
hard to apply over large areas [14–16]. Remote sensing can provide vegetation information
over large areas accurately and quickly, and has been widely used to estimate forest carbon
stocks [17,18]. Vegetation indices that are calculated from passive remote sensing data
have been used to estimate forest carbon stocks over large areas [19–21]. However, these
methods are often limited by the saturation of vegetation indices in dense forests [22,23].

Light detection and ranging (LiDAR) is an active remote sensing technology, which
has strong penetration in vegetation [24,25]. Airborne LiDAR can acquire accurate three-
dimensional structural information of forest environments, and has been increasingly used
to estimate forest carbon stocks [26,27]. Lin et al. [28] delineated individual trees and
extracted tree height, crown radius, competition index, and stem diameter from airborne
LiDAR-derived canopy height model (CHM), then they accurately modelled aboveground
carbon stocks. Gulcin et al. [29] segmented individual trees and estimated diameter at breast
height (DBH) using LiDAR height and canopy area, and then they estimated carbon stocks
using LiDAR heights, estimated DBH, and an existing empirical model for estimating
tree-level above-ground carbon stocks [30]. Coomes et al. [31] delineated trees within
the CHM derived from airborne-LiDAR data by a itcSegment algorithm, which works by
finding local maxima in the raster CHM and then growing crowns around them by local
searching of the raster CHM [32–35]. Then, they measured tree heights and crown widths,
and used them to calculate tree-centric carbon stocks by regression analysis, with an RMSE
of 26% and a bias of −20%. These methods can estimate tree-level carbon stocks accurately.
However, LiDAR features-based carbon stock estimation methods are often limited by a
lack of available spectral information.

Airborne LiDAR data can provide accurate forest structural information, while hyper-
spectral imagery can offer detailed reflectance information. Therefore, combining airborne
LiDAR and hyperspectral data can allow for the acquisition of forest biophysical and
biochemical characteristics, which could offer a valuable addition to better estimate forest
aboveground biomass or carbon stocks. Previous studies have demonstrated that com-
bining airborne LiDAR and hyperspectral data can improve the accuracy of plot-level
forest aboveground biomass or carbon stock estimation [36]. Laurin et al. [37] estimated
plot-level aboveground biomass in African tropical forests using LiDAR and hyperspectral
features, and results showed that the combination improved the estimation accuracy from
64% to 70%. Several studies have also explored the estimation of tree-level carbon stocks
by combining LiDAR and hyperspectral data. Kandare et al. [38] delineated individual
trees and extracted a series of LiDAR and hyperspectral variables. They classified tree
species using these hyperspectral variables, and finally developed a species-specific vol-
ume estimation model by LiDAR metrics, with a RMSE of 25.31%. Dalponte et al. [34]
segmented individual trees based on airborne LiDAR data and classified tree species using
hyperspectral imagery. They then estimated individual tree biomass from LiDAR metrics.
These studies only used hyperspectral information to classify tree species, but not in the
development of a tree-level carbon stock estimation model. Therefore, this study suggests
a different approach to estimate tree-level carbon stocks by combining unmanned aerial
vehicle (UAV) light detection and ranging (LiDAR) and hyperspectral data.

The overall objective of this study is to investigate whether the combination of UAV
LiDAR and hyperspectral data can improve the estimation of aboveground carbon stocks
at the scale of individual trees. Specifically, we first evaluate the ability of LiDAR structural
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features and hyperspectral features in estimating aboveground carbon stocks of individual
trees separately. We then examine whether combining UAV LiDAR and hyperspectral data
can improve the accuracy of tree-level aboveground carbon stock estimation.

2. Study Area and Data
2.1. Study Area

The study area is located on Julongshan Park, a subtropical broadleaf forest situated
in Shenzhen in southern China (Figure 1). The center coordinates of the study region are
114◦23′28′′E and 22◦43′50′′N. The topography of the study region is plain, with a mean
altitude of 64 m. The climate is subtropical maritime, with an annual average temperature of
22.4 ◦C and an annual rainfall of 1933.3 mm. There are several tree species in the study area,
such as Terminalia mantaly, Elaeocarpus grandifloras, Litchi chinensis, Lagerstroemia speciosa,
Acacia mangium, and Cinnamomum camphora. Due to the limitations of field accessibility and
sample number, this research was only conducted on Terminalia mantaly which accounted
for about 50% of total individuals.
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2.2. Remote Sensing Data
2.2.1. LiDAR Data

The LiDAR data were acquired on August 2019, by a Velodyne LiDAR PUCK-16
laser mounted on the DJI Matrice 600 Pro six-rotor aircraft (DJI, Shenzhen, China). The
laser emitted pulse at a frequency of 5 kHz with a wavelength of 903 nm. The flight
altitude was about 70 m above ground and the average flying speed was 3.6 m/s. Two
returns were recorded for each pulse, and the average point cloud density was larger than
100 points/m2. The point clouds were first filtered into ground points and nonground
points by the TerraSolid software (Terrasolid, Helsinki, Finland). The density of the final
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point cloud containing only ground-level observations was 8 points/m2. TerraSolid soft-
ware uses an adaptive TIN algorithm for filtering, which was first proposed by Axelsson
et al. [39] Next, digital terrain model (DTM) and digital surface model (DSM) were pro-
duced based on ground points and all points, respectively. Then, a canopy height model
(CHM), representing the height of the vegetation above ground surface, was calculated by
subtracting DTM values from DSM values. Finally, z-values of points were normalized by
subtracting DTM values from the initial, absolute, z-values [40].

2.2.2. Hyperspectral Data

UAV hyperspectral imagery were acquired on August 2019 by the DJI Matrice 600
Pro UAV with a Resonon Pika-L sensor, which is a push-broom hyperspectral sensor. The
hyperspectral images had 150 spectral bands between 400 nm and 1000 nm, with a spectral
resolution of 2.2 nm. The flight altitude was about 200 m above ground, obtaining the
hyperspectral images with a spatial resolution of 0.3 m. The hyperspectral images were
first radiometrically corrected according to reference data, then geometrical corrections
were carried out based on LiDAR-derived DTM and ground-based GPS data. Finally,
atmospheric corrections were applied using the FLAASH module of ENVI software.

2.3. Field Data

A fieldwork campaign was carried out in August 2019. A total number of 60 Terminalia
mantaly trees were measured. The tree height (H) and DBH were measured using a
laser hypsometer and a tape measure respectively, and the position of each tree was
acquired using a real-time kinematic GPS (RTK-GPS). Based on the carbon coefficient (CC)
and aboveground biomass (AGB), tree-level carbon stock (CS) was calculated to serve
as control data (Equation (1)) [15]. After an in-depth literature analysis, no available
carbon coefficient and allometric growth equation for Terminalia mantaly have yet been
discovered. Thus, since this species is a subtropical deciduous broad-leaved tree species
in China, we decided instead to use the general carbon coefficient and allometric growth
equation of subtropical deciduous broad-leaved forest from China. The allometric growth
equation and carbon coefficient were obtained by cutting down trees, then drying, burning,
and weighing them, and finally, we performed a regression analysis. In this study, the
carbon coefficient of Terminalia mantaly was set to 0.4956 according to Li et al. [41] The
aboveground biomass of each individual tree was calculated as the sum of different forest
components, including stem biomass (stemAGB), branch biomass (branchAGB), and leaf
biomass (leafAGB) (Equation (2)) [42]. The biomass of stem, branch, and leaf were calculated
based on their DBH and height according to the allometric growth equation as shown in
Equations (3)–(5), whose reported r2 values are 0.98, 0.97, and 0.96, respectively [42].

CS = AGB× CC (1)

AGB = stemAGB + branchAGB + lea f AGB (2)

stemAGB = 0.0263× (DBH2H)
0.9695

(3)

branchAGB = 0.0232× (DBH2H)
0.8055

(4)

lea f AGB = 0.0075× (DBH2H)
0.8015

(5)

3. Methods

Tree-level carbon stocks were estimated by UAV LiDAR and hyperspectral data.
The procedure consisted of three main steps: (1) individual tree segmentation; (2) tree-
level structure and spectral features extraction; and (3) tree-level carbon stocks estimation
(Figure 2).
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3.1. Individual Tree Segmentation

In this study, a CHM-based watershed segmentation algorithm was used to delineate
tree crowns, which had been successfully used for individual tree segmentation in many
studies [43–48]. The procedure of CHM-based watershed segmentation (Figure 3) is
presented in detail by Chen et al. [44]. Initially, we subtracted CHM from its maximum
value to obtain the inverted CHM. Next, a local minimum filter algorithm was used to
find local minimum points from the inverted CHM. Then, these local minimum points
were used as markers to simulate the immersion process. The influence area of each local
minimum point expanded outward gradually, and “dams” were built at the confluence
of multiple “basins”, which formed a “watershed”. Finally, the CHM was segmented to
obtain individual trees.
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3.2. LiDAR Features Extraction

To estimate tree-level carbon stocks, we extracted 10 structural features from UAV
LiDAR data, including tree height, crown width, and the distribution characteristics of
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point clouds, which have been commonly used in forest aboveground biomass and carbon
stocks estimation [26,49–51]. LiDAR features and their formulas are shown in Table 1.
LiDAR features extraction was implemented by programming with Matlab software.

Table 1. List of LiDAR features.

Features Formula/Description

Tree height H = max(hi)

Crown diameter CD = CDS_N+CDE_W
2

Hmean Hmean = ∑n
1 hi
n

PH10 The 10th height percentile of point clouds
PH25 The 25th height percentile of point clouds
PH50 The 50th height percentile of point clouds
PH75 The 75th height percentile of point clouds
PH90 The 90th height percentile of point clouds
PH95 The 95th height percentile of point clouds
Hstd Hstd =

√
∑(Hi−Hmean)

n

Where CDS_N and CDE_W are the crown diameters in south–north direction and east–
west direction, respectively. hi is the height of the ith point, and n is the number of LiDAR
points.

3.3. Hyperspectral Features Extraction

Nineteen tree-level narrowband spectral features, which are commonly used in forest
carbon stocks or biomass estimation, were extracted from hyperspectral imagery, including
principal components, band reflectance, and vegetation indices, to estimate carbon stock.
The first three principal components were extracted by principal component analysis (PCA)
algorithm. The mean vegetation indices and band reflectance of each tree were calculated
based on hyperspectral data. Hyperspectral features and their formulas are shown in Table
2. Hyperspectral features extraction was implemented using ENVI software.

Table 2. List of hyperspectral features.

Features Formula Reference

Enhanced vegetation index EVI = 2.5× ρ798−ρ679
1+ρ798+6×ρ679−7.5×ρ482

Huete et al., 2002 [52]

Mean red edge Mean690−740 = ∑740
690 ρi
n

Coops et al., 2001 [53]
Adjusted vegetation index SAVI = 1.5× ρ798−ρ679

ρ798−ρ679+0.5 Jiang et al., 2007 [54]

Red edge ratio vegetation index MRESRI = ρ750−ρ445
ρ750+ρ445

Ballester et al., 2019 [55]

Datt Chlorophyll content index Datt = ρ850−ρ710
ρ850−ρ680

Datt et al., 1999 [56]

Plant pigment ratio PPR =
ρ550−ρ450
ρ550+ρ450

Wang et al., 2004 [57]
Plant senescence reflectance index PSRI = ρ695

ρ760
Carter et al., 1994 [58]

Structurally insensitive pigment index SIPI = ρ800−ρ450
ρ800+ρ680

Zarco-Tejada et al., 2005 [59]

Photochemical reflectance index PRI = ρ570−ρ530
ρ570+ρ530

Gamon et al., 1995 [60]

Modified normalized differential vegetation index MNDVI = ρ750−ρ705
ρ750+ρ705−ρ445×2 − 1 Rouse et al., 1974 [61]

Vogelmann red edge index VOG =
ρ740
ρ720

Vogelmann et al., 1993 [62]
Green index GI = ρ798

ρ553
− 1 Zarco-Tejada et al., 2005 [59]

Anthocyanin content index ACI = ρ650
ρ550

Sims et al., 2002 [63]
Slope of red edge SL =

ρ740−ρ690
50 Coops et al., 2001 [53]

Band value of 550nm ρ550 Haboudane et al., 2004 [64]
Band value of 750nm ρ750 Haboudane et al., 2004 [64]

1st principal component PCA1
2nd principal component PCA2
3rd principal component PCA3
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Where ρwavelength means the reflectance in the wavelength. For example, ρ798 means
the reflectance in the wavelength of 798 nm. n means the number of bands.

3.4. Tree-Level Carbon Stock Estimation

Pearson correlation analysis was carried out to explore the relationship between
LiDAR features, hyperspectral features, and control data. Pearson correlation analysis was
implemented using IBM SPSS Statistics 22 software. The LiDAR and hyperspectral features
having a significant correlation with control data (with an absolute value of correlation
coefficient (r) greater than 0.5) were selected for subsequent carbon stocks estimation
of individual trees. The tree-level carbon stock estimation model has the form of the
Schumacher–Hall formula as expressed in Equation (6), where LIi refers to the ith LiDAR-
derived structural feature, SIj refers to the jth narrowband hyperspectral feature, c, ai, and
bj are the regression coefficients. In order to facilitate modeling, the natural logarithm
transformation of model (6) was carried out to obtain the model form (Equation (7)).

CS = c×
n

∏
i=1

LIai
i ×

m

∏
j=1

SI
bj
j (6)

ln CS = ln c +
n

∑
i=1

ai ln LIi +
m

∑
j=1

bj ln SIj (7)

To investigate which combination of LiDAR and hyperspectral features can best
explain the variance of tree-level carbon stocks, a stepwise multiple regression analysis
was carried out. Stepwise multiple regression was implemented using IBM SPSS Statistics
22 software. Stepwise multiple regression is a commonly-used and effective method to
eliminate the multicollinearity issue and select the optimal regression equation, which has
been widely used to estimate forest carbon stocks or biomass [65,66]. To estimate carbon
stocks of individual trees accurately, stepwise multiple regression models, which included
LiDAR metrics and hyperspectral metrics as predictors, were developed independently
and in combination.

3.5. Accuracy Assessment

To assess the predictive performance of tree-level carbon stock estimation models, five
accuracy assessment measures were applied. The coefficient of determination (r2) (Equa-
tion (8)), root mean square error (RMSE) (Equation (9)), and mean absolute error (MAE)
(Equation (10)) have been widely used to evaluate the prediction accuracy [26]. Percentage
RMSE (PRMSE) is RMSE expressed as a percentage of the mean value (Equation (11)).
Root mean square percentage error (RMSPE) is an average deviation from a true value
(Equation (12)). PRMSE and RMSPE are all scale-independent metrics to assess the predic-
tive performance of a model. In Equations (8)—(12), n is the number of samples, yi and
ŷi are the true and predicted values of the ith sample, and y is the average true value of
all samples. In this study, MAE, RMSE, PRMSE, and RMSPE were used to evaluate the
prediction accuracy of tree-level carbon stock estimation models, and the model with a
smaller metric value was considered to have a higher tree-level carbon stock accuracy. The
overall prediction performance (OPP) of tree-level carbon stock estimation model can be
calculated according to Equation (13). The model’s uncertainty can be calculated according
to Equation (14). Lower values for Uncertainty increase the reliability of predictions. These
accuracy metrics were calculated by programming with Matlab software.

r2 =

n
∑

i=1
(ŷ− y)2

n
∑

i=1
(y− y)2

(8)
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RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

MAE =
1
n

[
n

∑
i=1

abs(ŷi − yi)

]
(10)

PRMSE = (
RMSE

y
)× 100% (11)

RMSPE = (

√
1
n

n

∑
i=1

(
ŷi − yi

yi
)

2
)× 100% (12)

OPP = 100− PRMSE + RMSPE
2

(13)

Uncertainty = r2 −OPP (14)

4. Results

Pearson correlation analysis was carried out to explore the relationship between each
remote sensing feature and control data. The correlation coefficients between LiDAR
features, hyperspectral features, and control data are plotted in Figure 4. Nine of the
ten LiDAR features, including crown width, tree height, Hmean, the height percentiles of
point clouds, had positive correlations with control data. All of the above had correlation
coefficients larger than 0.48. Only one LiDAR feature, i.e., Hstd, had no correlation with
control data. For all the LiDAR features, tree height had the highest correlation with
control data (r = 0.75), followed by PH95 (r = 0.70) and PH90 (r = 0.68). Among the 19
hyperspectral features, six features (PCA3, Datt, GI, mNDVI, VOG, and MRESRI) had
positive correlations greater than 0.5 with control data, and four features (PCA2, ACI, PSRI,
and SIPI) had negative correlations lower than -0.3 with control data. For all hyperspectral
features, GI had the highest correlation with control data (r = 0.83), followed by VOG
(r = 0.75) and MRESRI (r = 0.75).

As shown in Table 3, the tree-level carbon stock models derived from LiDAR metrics
alone, hyperspectral metrics alone, and the combination of them were coded with “L”,
“H”, and “LH”, respectively. These models were derived by multiple stepwise regression.
Among the ten LiDAR metrics, tree height, 10th height percentile of point clouds, and
mean point height were selected by stepwise regression to develop the tree-level carbon
stock estimation model. From all hyperspectral metrics, GI and mNDVI were selected
to establish the tree-level carbon stock estimation model. When combining LiDAR and
hyperspectral metrics, the tree-level carbon stock estimation model was established based
on GI and 10th height percentile of point clouds.

Table 3. Tree-level carbon stock estimation models using LiDAR and hyperspectral features.

Data Sources Model ID Formula (kg Per Tree) r2

LiDAR
L1 CS = 0.37× H1.90 0.66
L2 CS = 0.48× H1.70 × PH100.13 0.70
L3 CS = 0.32× H2.68 × PH100.22 × Hmean

−0.99 0.74

Hyperspectral H1 CS = 0.35× GI2.99 0.72
H2 CS = 0.94× GI2.59 ×mNDVI1.01 0.75

LiDAR + Hyperspectral LH1 CS = 0.35× GI2.99 0.72
LH2 CS = 0.12× GI2.29 × PH950.96 0.89
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The coefficient of determination (r2) of those tree-level carbon stock estimation models
ranged from 0.66 to 0.89. Among the three kinds of tree-level carbon stock models, the
LiDAR-derived model had the smallest r2, where the r2 values of model L1, L2, and L3
were 0.66, 0.70, and 0.74, respectively. The hyperspectral-derived model had a higher r2

than the LiDAR-derived model, in which the r2 values of model H1 and H2 were 0.72 and
0.75, respectively. The combined model (GI and PH95 are the predictors) had the highest
r2 (0.89).

Beyond the coefficient of determination, four accuracy statistical indices, MAE, RMSE,
PRMSE, and RMSPE, were calculated to evaluate the bias of tree-level carbon stock esti-
mation models. As shown in Figure 5, the MAE of the four models ranged from 2.36 kg
to 5.86 kg with an average value of 4.55 kg. The RMSE ranged from 3.98 kg to 8.21 kg
with an average of 6.56 kg. The PRMSE ranged from 14% to 30% with an average of 23%.
The RMSPE ranged from 15% to 30% with an average of 24%. Among the three kinds of
tree-level optimal carbon stock estimation models, the combined model (LH2) had the
lowest bias, with a MAE of 2.36 kg, RMSE of 3.98 kg, PRMSE of 14%, and RMSPE of 22%.
The bias of hyperspectral-derived optimal model (H2) was in the middle, with MAE of
4.08 kg, RMSE of 5.76 kg, PRMSE of 21%, and RMSPE of 22%. The LiDAR-derived optimal
model (L3) had the highest bias, with MAE of 5.24 kg, RMSE of 7.42 kg, PRMSE of 27%,
and RMSPE of 23%.
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Figure 5. Prediction error and error percentage of tree-level carbon stock estimation models.

As shown in Figure 6, the control data ranged from 5.98 kg to 56.28 kg with an average
of 27.71 ± 11.30 kg. LiDAR-derived models had slightly smaller mean and standard
deviation than control data, and the maximum value and the minimum value were all
higher than control data. Hyperspectral-derived models also had slightly smaller mean and
standard deviation, and their ranges of maximum and minimum values were significantly
smaller than control data. The minimum value, maximum value, range, and average value
of the combined model were all closest to control data. Therefore, the combined model had
the optimal tree-level carbon stock estimation results.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 5. Prediction error and error percentage of tree-level carbon stock estimation models. 

As shown in Figure 6, the control data ranged from 5.98 kg to 56.28 kg with an aver-

age of 27.71 ± 11.30 kg. LiDAR-derived models had slightly smaller mean and standard 

deviation than control data, and the maximum value and the minimum value were all 

higher than control data. Hyperspectral-derived models also had slightly smaller mean 

and standard deviation, and their ranges of maximum and minimum values were signif-

icantly smaller than control data. The minimum value, maximum value, range, and aver-

age value of the combined model were all closest to control data. Therefore, the combined 

model had the optimal tree-level carbon stock estimation results.  

 

Figure 6. The descriptive statistics of tree-level carbon stock of the observations and model esti-

mates. 

The overall prediction performance and uncertainty of all models are shown in Table 

4. The values of OPP of all models ranged from 70 to 85. The uncertainties of all models 

ranged from −5 to −1. The OPP and uncertainty of these models are similar, so these mod-

els can account for variations in tree-level carbon stocks.  
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The overall prediction performance and uncertainty of all models are shown in Table 4.
The values of OPP of all models ranged from 70 to 85. The uncertainties of all models
ranged from −5 to −1. The OPP and uncertainty of these models are similar, so these
models can account for variations in tree-level carbon stocks.
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Table 4. A comparison of models’ overall prediction performance and uncertainty.

Model ID L1 L2 L3 H1 H2 LH1 LH2

r2 66 70 74 72 75 72 89
OPP 70 73 75 77 79 77 85

Uncertainty −4 −3 −1 −5 −4 −5 −4

5. Discussion

Among all LiDAR-derived structural features, tree height showed the highest corre-
lation with tree-level carbon stocks. This is an indication that tree height is the dominant
factor of carbon stock estimation, which is consistent with previous studies [67,68]. The
point height distribution features, including PH95, PH90, Hmean, PH75, PH50, PH25, and
PH10, are also correlated well with carbon stock. This is because these features can describe
the vertical structure of forest, which have an influence on carbon stock [68]. Crown diame-
ter had weak correlation with carbon stock (r = 0.48), and no correlation was found between
Hstd and carbon stock. Additionally, stepwise multiple regression results indicated that
the combination of tree height, PH10, and Hmean could provide accurate carbon stock
estimation of individual trees. This may be owing to the fact that carbon stock is mainly
determined by tree height and vertical structure [68,69].

Previous studies have found that hyperspectral metrics can be used to estimate forest
aboveground biomass at plot level [36,70,71]. Luo et al. estimated plot-level forest biomass
using hyperspectral-derived narrow-band vegetation indices, and the estimated biomass
showed a good correlation with field biomass [72]. Gong et al. used airborne hyperspectral
imagery to estimate forest biomass, and they found vegetation indices and red edge
positions were effective for forest biomass retrieval [73]. This can be explained by the
fact that hyperspectral data could describe the forest growth status, which is related to
biomass [36,70]. However, our approach, in contrast to previously cited research, was
to explore the ability of hyperspectral features in estimating tree-level carbon stock. For
hyperspectral metrics, GI was most relevant to tree-level carbon stock as it explained 72%
of the variance of carbon stocks. The absolute correlation coefficient between calculated
carbon stock and PCA2, PCA3, Datt, PSRI, VOG, and MRESRI were all greater than 0.5.
These results indicated that hyperspectral features had potential in estimating tree-level
carbon stock.

Stepwise multiple regression showed that the combined model provided the highest
tree-level carbon stock estimation accuracy. In addition, the predictions of the combined
model were closest to control data. Therefore, combining UAV LiDAR and hyperspectral
features could improve the accuracy of tree-level carbon stock estimation than using LiDAR
and hyperspectral data alone. The improvement might be due to the complementarity
between LiDAR-detected structural characteristics and hyperspectral-captured vegetation
spectral information, and the combined model took full advantage of the predictive ability
of structural features and hyperspectral features, which is consistent with previous stud-
ies [72,74,75]. Several studies have combined hyperspectral and LiDAR data to estimate
carbon stocks at individual tree level [34,76,77]. They used hyperspectral information to
classify tree species, and then developed carbon stock estimation model based on LiDAR-
derived structural features. Kandare et al. [38] classified tree species using hyperspectral
data and estimated broadleaf tree-level volume using LiDAR-derived tree height and DBH,
resulting in an estimation accuracy of 58%. Alonzo et al. [74] estimated tree-level carbon
stocks of a broadleaf tree species (e.g., Quercus agrifolia) by 28 LiDAR-derived structural
metrics, with an accuracy of 83%. In this study, hyperspectral features and LiDAR struc-
tural features were combined to develop tree-level carbon stock estimation model, and they
explained 89% of the variance in tree-level carbon stock. The higher estimation accuracy of
tree-level carbon stocks reported in our study owes to the introduction of hyperspectral
features. This can be explained by the fact that carbon stock is not only related to tree-level
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structural features that can be extracted from LiDAR data, but also to biomass conversion
factor and carbon coefficient which can be reflected in hyperspectral information [37].

6. Conclusions

In this study, we explored the ability of combining UAV LiDAR and hyperspectral
data in estimating tree-level carbon stocks in subtropical forests. We extracted tree-level
structural and spectral features from UAV LiDAR and hyperspectral data, respectively,
and then evaluated the capacities of LiDAR and hyperspectral features alone and in
combination to predict aboveground carbon stock of individual trees. Results indicated
that LiDAR or hyperspectral features alone can yield reasonable carbon stock (r2 = 0.74
and 0.75, respectively). As expected, the combination of LiDAR and hyperspectral data
could improve the accuracy of tree-level carbon stock estimation to some degree (r2 = 0.89),
and LiDAR-derived PH95 and hyperspectral-derived GI were included in the combination
model. The improvement can be attributed to the fact that carbon stock is not only related
to tree-level structural features that can be extracted from LiDAR data, but also to biomass
conversion factor and carbon coefficient which can be reflected in hyperspectral information.
Therefore, if both LiDAR and hyperspectral data are available, the fusion of LiDAR and
hyperspectral data is the best method to accurately estimate tree-level aboveground carbon
stock. This study could be a valuable resource for researchers and forest managers to obtain
more accurate tree-level carbon stocks. Further efforts should focus on improving this
approach or applying it to more forest types that have specific allometric equations, as well
as in larger areas. In addition, based on the method of tree-level carbon stock estimation,
multi-temporal remote sensing data should be obtained and then used to estimate forest
carbon sequestration to ameliorate the unavoidable impacts of climate change.
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