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Abstract: Mining for rare earth elements is rapidly increasing, driven by current and projected
demands for information and energy technologies. Following China’s Central Government’s 2012
strategy to shift away from mining in favor of value-added processing, primary extraction has in-
creased outside of China. Accordingly, changes in mineral exploitation in China and Myanmar have
garnered considerable attention in the past decade. The prevailing assumption is that mining in
China has decreased while mining in Myanmar has increased, but the dynamic in border regions
is more complex. Our empirical study used Google Earth Engine (GEE) to characterize changes in
mining surface footprints between 2005 and 2020 in two rare earth mines located on either side of the
Myanmar–China border, within Kachin State in northern Myanmar and Nujiang Prefecture in Yunnan
Province in China. Our results show that the extent of the mining activities increased by 130% on
China’s side and 327% on Myanmar’s side during the study period. We extracted surface reflectance
images from 2005 and 2010 from Landsat 5 TM and 2015 and 2020 images from Landsat 8 OLI. The
Normalized Vegetation Index (NDVI) was applied to dense time-series imagery to enhance landcover
categories. Random Forest was used to categorize landcover into mine and non-mine classes with an
overall accuracy of 98% and a Kappa Coefficient of 0.98, revealing an increase in mining extent of
2.56 km2, covering the spatial mining footprint from 1.22 km2 to 3.78 km2 in 2005 and 2020, re-
spectively, within the study area. We found a continuous decrease in non-mine cover, including
vegetation. Both mines are located in areas important to ethnic minority groups, agrarian livelihoods,
biodiversity conservation, and regional watersheds. The finding that mining surface areas increased
on both sides of the border is significant because it shows that national-level generalizations do not
align with local realities, particularly in socially and environmentally sensitive border regions. The
quantification of such changes over time can help researchers and policymakers to better understand
the shifting geographies and geopolitics of rare earth mining, the environmental dynamics in mining
areas, and the particularities of mineral extraction in border regions.

Keywords: mining extent; rare earth elements; Google Earth Engine; Landsat; change detection;
NDVI; geopolitics; remote sensing; Kachin State; Nujiang; Nujiang Prefecture; Yunnan Province

1. Introduction

Rare earth elements (REEs) refer to the fifteen elements that comprise the lanthanide
series, ranging in atomic number from 57 (lanthanum) to 71 (lutetium), as well as scandium
(Sc) and yttrium (Y) [1]. REEs have garnered heightened attention since 2010 because of
China’s historic dominance in the sector, the international impacts of China’s industrial
policy changes, and, more recently, the increased global demand for REEs in the renewable
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energy transition [2]. Although rare earth elements are essential inputs to many types
of technologies, their usage in renewable energy technologies such as batteries, catalysts,
electric vehicles (EVs), and wind turbines [3] has stimulated increased REE exploration
programs by various countries [4]. Since the 1990s, China has dominated global REE
mining and production, followed by a few other countries, including the United States and
Myanmar [5]. Sanctions against Myanmar’s military regime [6] and grassroots accounts
of mining-driven violence and expropriation in northern Myanmar [7] have intensified
concerns around REE supply chain ethics, security, and traceability. In particular, Western
firms are under pressure to ensure the REEs used in their technologies are not sourced from
Myanmar [7]. This has proven challenging because of the general assumption that REE
mining in China has decreased or stopped while production in Myanmar has increased,
driven by demand from China. Proving or disproving this is challenging because of the
global importance of value-added processing that takes place within China [8]. Mineral
processing facilities combine material from many parts of the world, meaning that while
it is possible to trace REEs from the mine to the processor and to trace refined materials
from the processor to downstream users, the processors, refiners, and smelters are often a
kind of ‘black box’ in mineral commodity flows because they combine raw materials from
diverse sources into a single refined product. Therefore, examining the changing footprint
of mining activities over time can provide important insights into the actual origins of raw
materials, particularly in cross-border regions.

The observations that the decrease in REE mine production in China is related to
the expansion of REE mining in Myanmar are broadly accurate, with notable landscape
recovery in former rare earth mining areas in Jiangxi Province, China, for example [9].
But this generalization cannot be extrapolated into a causal relationship based on remote
sensing analysis alone. Such analyses must be enriched with qualitative research in situ
to avoid obscuring important local realities, particularly in sensitive border regions. This
study offers empirically substantiated evidence that mining activities are increasing in the
region, but increases or decreases in activity are not neatly determined by the location of a
deposit relative to national borders. This finding is significant for three major reasons.

First, we have chosen REE mines on either side of the Myanmar–China border, in
Kachin State in northern Myanmar and Nujiang Prefecture in Yunnan Province in China,
in order to investigate whether policy changes have translated into changing mining
footprints on the ground. If the broader narratives are correct and China’s strategies
to shift from being a net importer of rare earth elements to being a net exporter have
had their intended impacts, then we should expect to see increased rare earth mining in
Myanmar and a decrease in rare earth mining activity in China in the context of this border
region. Our findings show a more complex situation. This raises important questions
about the relationship between policy change, geopolitical shifts, and landcover change in
extractive border regions and should enrich ongoing debates about the shifting geographies
of rare-earth element supply chains.

Second, the emphasis on the importance of rare earth elements for renewable energy
infrastructure has intensified concerns around the social and environmental conditions at
mining sites. Reports of land theft, threats of violence, and little to no pollution controls in
Myanmar illustrate the practical sustainability concerns surrounding the material needs for
the renewable energy transition. However, it is important to note that rare earth elements
are used in every major form of energy generation, so these concerns should not be treated
as unique to renewable energy technology or solely driven by projected demand increases
for electric vehicles. Over the past decade, the demand for consumer electronics and
military equipment, both major sectors of REE applications, has also increased [10].

Third, mining operations can produce severe environmental degradation, including
air pollution, water contamination, and deforestation, as the mine extent expands over
time [11–13]. This impairs ecosystem function and landcover dynamics [14,15]. Therefore,
it is critical to monitor the development of mining activities on the landscape as a measure
of effective environmental protection and mine management. By using open-source data
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and demonstrating a novel application of established methods to this particular issue, our
study shows one reproducible and adaptable method to investigate this dynamic in other
contexts where extractive activities are taking place on both sides of a national border
dividing two very different regulatory contexts, such as south Texas, US, and Tamaulipas,
Mexico [16], or between Copper Belt, Zambia, and Katanga Province, Democratic Republic
of the Congo [17], to name just two examples.

The development of remote sensing technology and sensors has advanced the manner
in which mining land surfaces in most areas of the earth’s surface can be monitored in a
multi-temporal, multi-resolution, and multi-scale manner [12]. Accordingly, many studies
have been conducted using satellite remote sensing data to monitor the surface landscape
of mining areas in general [18–20] and rare earth mines and impacts in particular [9,21].
Mining and restoration assessment indicators (MRAIs) and land surface temperature (LST)
of multi-temporal Landsat TM, ETM+, and OLI images were used by Xie et al. [9] to moni-
tor the impacts of REE mining and restoration on the environment. Vorovencii [22] used
a Support Vector Machine (SVM) classifier to detect changes and land restoration in the
mining areas using multi-temporal Landsat data in Jiu Valley, Romania. The Normalized
Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Modified
Soil Adjusted Vegetation Index-2 (MSAVI-2) were used to identify and quantify active
mines and reclaimed areas within the study area [22]. The Sentinel-2 satellite imagery
dataset was used by Juanda et al. [23] to pinpoint surface areas of land degradation on
mining sites using a comparative analysis of vegetation indices. Laari et al. [24] applied
a maximum likelihood classifier to determine landcover changes in the mining areas of
Wa East District, Ghana, using Landsat ETM imagery. Change detection was utilized by
Li et al. [25] to monitor the ground-surface environment in the Lingbei rare earth mining
area. The landcover change dynamics in mining areas are an essential indicator for deter-
mining the impacts of mining operations [26,27]. Landcover mapping algorithms include
Artificial Neural Network (ANN) [28], Support Vector Machine (SVM) [29], Random For-
est (RF) [30], and Deep Learning (DL) [31,32]. However, among these classifiers, RF has
gained great popularity in landcover mapping due to its higher accuracy and relatively low
computational cost [30,33,34]. Currently, the Google Earth Engine (GEE) platform provides
access to remotely sensed datasets such as Landsat mission data, Sentinel-2, and MODIS
for earth observation analysis [35,36]. It allows fast and powerful tools for landuse and
landcover mapping in the cloud, which is efficient in processing big geo-data, including
dense time-series images, as applied in this study [37,38]. Therefore, based on the GEE
platform, this study analyzes the development of REEs’ mining extents from the 2005–2020
period using Landsat missions’ satellite data through landcover change detection. Remote
sensing imagery for 2005 and 2010 from Landsat 5 TM and 2015 and 2020 images from
Landsat 8 Operational Land Imager (OLI) were processed to determine changes in mining
and non-mining areas, and a change detection analysis was performed to quantify the
landcover change dynamics of mine and non-mine areas. This is part of a larger global
study that aims to map, measure, and characterize the shifting geographies of licit and
illicit supply networks of several energy-critical materials, including rare earth elements.

2. Materials and Methods
2.1. Study Area

The study area is located in the mining region in the Myanmar–China border in the
Myitkyina area in the eastern Kachin State in northern Myanmar and the Nujiang Prefecture
area in the western Yunnan Province in southwest China (Figure 1). The study area consists
of multiple open-pit mining operations within a long rectangular area located near 98.53◦E
and 25.89◦N, with a total area coverage of about 57.76 km2. The area is characterized by
rough mountainous terrain, extensive plateaus, and very heavy and dense vegetation, with
no major urban settlements. It is home to several diverse ethnolinguistic groups and has
historically hosted largely autonomous agrarian and agropastoral livelihoods [39,40]. The
climate of the study area is subtropical, humid, and highland oceanic [41,42]. Rainfall
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occurs mainly in the monsoon season (between June and October) and is between 1900
and 2540 mm on average [43]. This climate context is important to bear in mind when
considering the potential impacts of mining activities, particularly on water quality, soil
erosion, and landslides that may result from excavation activities in mountainous regions
with heavy rainfall.
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Figure 1. Study area (Myanmar–China border)—Myitkyina (Kachin State) and Nujiang Prefecture
(Yunnan Province) and Planet satellite data imagery (RGB = 642, Natural Color Composite).

2.2. Geological and Tectonic Setting

Tectonically, the study area forms part of the Alpine–Himalayan Orogenic Belt and
the Indonesian Island Arc System [44]. In the northern part of the area, in Myanmar, the
orogenic belt is bent around the Eastern Himalayan Syntaxis into a north–south direction
and passes southwards through the resource-rich Indo-Myanmar Ranges, while in the
south and eastern parts, in China, the area forms a great part of the Shan Plateau known as
the Sibumasu block of rocks [45,46]. The local geology comprises a complex succession of
metamorphic rocks (the Mogok–Mandalay–Mergui Belt, Figure 2) that forms the boundary
of the Burma Terrane [47]. The area is endowed with mineral resources such as rare earth
elements and precious metals, including jadeite and “Burmese Amber” (burmite) [48].
These precious stones were formed due to the metasomatic alteration of peridotites in a
subduction zone [49,50].
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Detailed geological and mineralogical survey data are not freely available in China
and Myanmar; therefore, it is necessary to verify the type of mining activity in the study
area to confirm that the mining is indeed for rare earth elements. We utilized satellite
remote sensing and the United States Geological Survey (USGS) Spectroscopy Laboratory
Library for the hyperspectral signature of rare earth elements and host minerals of monazite
to verify the presence of rare earth elements in these mines as described by Karimzadeh
and Tangestani [51]. Monazite (Nd, Ce, La, Y, Th) PO4 is a phosphate of the group of
rare earth metals usually found as a comparatively rare accessory mineral in granitic
rocks and pegmatites. It is a reddish-brown phosphate mineral that contains rare earth
elements, primarily neodymium (Nd) [52]. Neodymium expresses spectral diagnostic
absorption features around 0.53 µm, 0.74 µm, 0.80 µm, and 0.87 µm [51]. As such, any
spectral absorption features around these frequencies are related to rare earth elements’
occurrences. Obtaining a monazite spectrum from a sample or image confirms the presence
of rare earth metals. Among the available elements in monazite, neodymium has a unique
absorption feature around 0.74 µm. This feature is indicative of monazite presence with
multiple rare earth combinations (Nd, Ce, La, Y, Th) [53]. The USGS monazite reflectance
sample was obtained from Miguel County, New Mexico, USA, as a pure monazite sample
and was analyzed spectroscopically in the USGS Spectroscopy Laboratory to obtain its
unique spectral reflectance [54]. We used Sentinel-2 MSI spectral reflectance collected from
Sentinel-2 MSI images on an open-pit mine in the study site (Figure 3c, red box) to detect a
neodymium diagnostic absorption feature at 0.74 µm. We compared the monazite HS255.3B
spectrum (Figure 3a) exhibiting a neodymium absorption feature at 0.74 µm wavelength
with various rare earth-bearing minerals, including fluorapatite WS416, goethite WS222,
and hematite GDS27 [54]. Following Karimzadeh and Tangestani [51], we compared
the USGS spectrum of Monazite HS55.3B [54] resampled to Sentinel-2 MSI bandpasses
(Figure 3b) with the Sentinel-2 MSI image spectrum at an open pit with ENVI 5.3 coordinates
(X:5455 Y:4081). The retained absorption feature of neodymium at 0.74 µm in Band 6 of
Sentinel-2 MSI from the image (Figure 3d) provided a high level of certainty that indeed
the mines in the study area are for rare earth elements.
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Figure 3. (a) Reflectance spectra of fluorapatite, monazite, goethite, and hematite selected from the
USGS spectral library [54]; (b) Monazite HS255.3B from the USGS Library resampled to Sentinel-2
MSI bandpass for comparison (a vertical line indicates the REE neodymium absorption feature);
(c) Sentinel-2 MSI imagery with a Natural Color Composite (RGB = 4/3/2) showing study area site
in yellow box and the open pit for REE minerals mining in a red box where the image spectrum
was extracted at the middle of the open pit (X:5455 Y:4081); (d) Sentinel-2 image spectrum from the
study site’s open-pit mine (X:5455 Y:4081), showing a vertical line indicating the REE neodymium
absorption feature, confirming the presence of REEs. In this study, Sentinel-2 MSI has only been used
for rare earth mineral confirmation because it has a band configuration that enables the detection
of neodymium absorption features, but Sentinel-2’s launch dates do not align well with the study
period to allow multi-temporal analysis.

2.3. Satellite Data and Image Preprocessing

Landsat 5 Thematic Mapper™ and Landsat 8 OLI time-series imagery from the USGS
database (which provides level 1 and level 2 Landsat data (https://espa.cr.usgs.gov/,
accessed on 15 October 2022) were extracted in GEE, obtaining geometrically and atmo-
spherically corrected cloud-free time-series reflectance images for the years 2005 to 2020
(Table 1). Landsat missions’ datasets are freely available on the GEE platform. This study
uses open-source platforms for data access and analysis to increase accessibility, adaptabil-
ity, and reproducibility. Figure 4 shows the location of the study area.

https://espa.cr.usgs.gov/


Remote Sens. 2023, 15, 4597 7 of 23

Table 1. Data description summary.

Sensor Band Number Description Bandwidth (µm) Resolution (m)

Landsat 5 TM

1 Visible Blue 0.45–0.52 30

2 Visible Green 0.52–0.60 30

3 Visible Red 0.63–0.69 30

4 Near-Infrared 1 0.76–0.90 30

5 Near-Infrared 2 1.55–1.75 30

6 Thermal-Infrared 10.40–12.50 120

7 Mid-Infrared 2.08–2.35 30

Landsat 8 OLI

1 Coastal/Aerosol 0.43–0.45 30

2 Visible Blue 0.45–0.51 30

3 Visible Green 0.53–0.59 30

4 Visible Red 0.64–0.67 30

5 Near-Infrared 0.85–0.88 30

6 Shortwave-Infrared 1 1.57–1.65 30

7 Shortwave-Infrared 2 0.43–0.45 30

8 Panchromatic 0.50–0.68 15

9 Cirrus 1.36–1.38 30

10 Longwave-Infrared 1 10.6–11.19 100

11 Longwave-Infrared 2 11.5–12.51 100
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Multi-spectral vegetation indices such as the NDVI measure the ratio of reflectance at
different wavelengths as measured in remotely sensed data as a proxy for vegetation health.
In particular, the NDVI measures relative reflected energy in the near-infrared wavelengths,
which are reflected by healthy chlorophyll, and at red wavelengths [55–57]. We measured
the NDVI as an indicator of changes in vegetation in mining areas that may be associated
with mining operations [22]. The NDVI, proposed by Rouse et al. [58], is defined as follows
(Equation (1)):

NDVI =
NIR − Red
NIR + Red

(1)

The possible values of the NDVI range between 1 and−1, where 1 indicates a likely high
density of green vegetation and 0 or negative values indicate no vegetation [59,60]. Table 2
reports the data specifications of four spectral images that were utilized for landcover
mapping and change detection analysis. A detailed methodological flow is illustrated
in Figure 5.

Table 2. Specifications of satellite data that were used in the Random Forest image classification.

Sensor Acquisition Date Path/Row Resolution

L5 TM 13 January 2005 167/71 30

L5 TM 13 December 2010 161/71 30

L8 OLI 9 November 2015 161/71 30

L8 OLI 6 December 2020 161/71 30
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Classification Scheme and Sampling for Ground Truthing

Fieldwork in the study area on this topic is not possible for non-local researchers
due to the political sensitivity of claims to mineral resources, including armed violence
in northern Myanmar [61]. Therefore, reference data for model training and validation
were collected remotely. Territorial conflicts surrounding mining activities in international
border regions are not unique to the China–Myanmar context, so in theory, the method
presented here can be applied to other contexts where field-based ground truthing is not
possible. We applied a remote sensing-based integrated approach to identify pixel areas of
interest in the images. This includes simultaneous visual inspection and interpretation of
maps generated from Landsat 5TM/8OLI images: NDVI maps, Near Infrared False Color
Composite (with band combinations of 4, 3, 2 for Landsat 5 TM and 5, 4, 3 for Landsat
8 OLI), RGB Orthophoto Composite Maps (Natural Color Composite with band combina-
tions of 3, 2, 1 for Landsat 5 TM and 4, 3, 2 for Landsat 8 OLI), and high-resolution Google
Earth imagery (Figure 5). This approach allows flexibility in the inclusion of different satel-
lite data types depending on data availability and the research question of interest. While
we acknowledge the importance of fieldwork-based ground truthing, we are confident
that we were able to obtain a reliable set of reference labels that were used as ground-truth
datasets for model training and accuracy assessment. We applied a random design when
collecting these reference pixels. Training and validation data were randomly selected
across each of the images over the areas of interest (AOIs). Random sampling is extensively
used for landuse/landcover mapping, as reported in the literature [12,62–67]. We obtained
282 labels for randomized pixels in the AOIs. Out of these samples, 100 labels were for
mine class and 182 labels were for non-mine class (Tables 3 and 4).

Table 3. Landcover classification categories and their corresponding descriptions.

Category Description

Mine area
Areas with surface mine operations, mine excavated areas, open-pit mine areas, mine wet

and dry tailings, mine stockpiles, and mine operation buildings, including mine
processing facilities.

Non-mine area Areas with dense vegetation cover, sparse vegetation cover, mixed vegetation cover, and
bare land.

Table 4. Confusion matrix for the accuracy assessment of classified maps (2005, 2010, 2015, and 2020).

Landcover Class Mine Area Non-Mine Area Total User’s Accuracy (%)

2005

Mine area 98 1 99 98.99

Non-mine area 2 181 183 98.90

Total 100 182 282

Producer’s Accuracy (%) 98 99.45

Overall Accuracy (%) 98.94

Kappa Coefficient 0.9877

2010

Mine area 98 0 98 100

Non-mine area 2 182 184 98.91

Total 100 182 282

Producer’s Accuracy (%) 98 100

Overall Accuracy (%) 99.29

Kappa Coefficient 0.9918
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Table 4. Cont.

Landcover Class Mine Area Non-Mine Area Total User’s Accuracy (%)

2015

Mine area 100 1 101 99

Non-mine area 0 181 181 100

Total 100 182 282

Producer’s Accuracy (%) 100 99.45

Overall Accuracy (%) 99.64

Kappa Coefficient 0.9962

2020

Mine area 99 0 99 100

Non-mine area 1 182 183 99.45

Total 100 182 282

Producer’s Accuracy (%) 99 100

Overall Accuracy (%) 99.64

Kappa Coefficient 0.9958

2.4. Random Forest Classification

Random Forest (RF) classification was performed in the GEE platform, categorizing the
study site landscape into mine and non-mine areas by labeling pixels within the images [68–71].
RF is a non-parametric machine learning classifier that deploys an ensemble of decision
trees, each of which divides input pixels into mutually exclusive groups [30]. An RF
classifier is essentially a set of flow charts, or “tree models”, where observations (here
pixels) are associated into groups based on consecutive binary cuts on subsets of the
input features and observations. The cuts are made in the so-called “nodes”. The final
groups of observations are referred to as “leaves”. Each node can be subdivided until
it is representative of one of the final classes, but the number of allowed splits can also
be limited [72]. RF was chosen in this research due to its higher accuracy and relatively
low computational cost [30,65,73]. Tamiminia et al. [74] reviewed 349 GEE peer-reviewed
papers in a span of 10 years and showed that RF is the most frequently used classification
model for landcover in the remote sensing community. RF models, in particular, are less
susceptible to overfitting than single decision trees [30]. The large number of trees, each
using a randomized subset of the input features, reduces the correlation between trees. This
and the strength of the individual trees control the generalization error of forests. The GEE
implementation of the RF classifier algorithm allows control of six model hyperparameters:
(1) the number of decision trees to create, (2) the number of variables that are used by
each node, (3) the bagged fraction of the input variables for each decision tree, (4) the
minimum leaf population, (5) the maximum number of node splits, and (6) a random seed
to enable reproducibility [65,75]. Panuju et al. [76] suggest that controlling the number
of decision trees to create and the number of variables that are used by each node is a
sufficient precaution to limit the risk of overfitting (and we see that our performance on
the validation test is extremely high, with minimal to no degradation compared to the
training set performance). Our model takes the input of the reflectance at each of the
eight wavelengths of bands 1 to 8 for each pixel in each image from each year. In this
study, we leave the number of variables that are used by each node set to the default GEE
value of the square root of the number of variables (variablesPerSplit = int

√
8). This is

consistent with the recommendation of keeping variablesPerSplit << N_variables to prevent
overfitting [30,77], while we optimize the number of decision trees, ultimately setting it
to 50 based on validation accuracy and visual inspection of the classification results. We
separated the reference data into a training and a testing set using a 70:30 ratio, where 70%
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of the points were used for model training and the rest for testing. To assert the validity
of the classification results [78], we used the Overall Accuracy (OA) and Cohen’s Kappa
Coefficient (k) in a confusion matrix analysis [79,80], as follows:

k =
N ∑2

i=1 mi,i −∑2
i=1 CiGi

N2 −∑2
i=1 CiGi

(2)

where i stands for the class number, N denotes the total number of classified pixels, mi,i
represents the number of pixels of class i that have been assigned to class i, Ci is the total
number of classified pixels in class i, and Gi denotes the total number of field data pixels in
class i.

2.5. Change Detection

A change matrix depicting changes in mine areas and non-mine areas from the initial
analysis year (2005) to the final year of analysis (2020) was computed from the classified
maps. To quantify spatiotemporal changes [64,81,82], we generated maps of gains and
losses of mine and non-mine cover. Further, change detection statistics were used to
compile a detailed tabulation of changes between images acquired during the study period.
The open-pit mine area extents and their corresponding quantities from the two identified
mines (Mine A in Myanmar and Mine B in China) were extracted from the classified
maps. Classified and change analysis area estimate calculations were based on pixel-level
calculations of the landcover class, that is, the number of pixels in a particular class. The
area changes of the classes, which are mine and non-mine areas in our study case, are a
result of the post-classification, which corresponds to the area unit covered by the class
pixels [83]. We show the post-classification area change analysis that generates pixel classes
of the “from–to” information of binary change maps through change vector analysis [84].

3. Results
3.1. Analysis of Landcover Distribution and Dynamics

The analysis of landcover distribution and expansion over the study area was based
on the classified images of the 2005, 2010, 2015, and 2020 RF model classification outputs.

We revealed continued increases in mine areas over the years from 2005 to 2020. The
mine area increased from 1.22 km2 in 2005 to 3.78 km2 in 2020. The RF model classifier
in GEE detected the development of REEs excavations in the open pits and excavated
areas shown in red in Figure 6. For instance, the mine area depicted in red patches on
the peripherals of the two mine boundaries, mine A and mine B, could be related to
possible small-scale mining excavations. The mine areas in the study area show no trace
of environmental reclamation or remediation activities. Figure 7 shows that the non-mine
area, which is predominantly composed of bare land and dense, thick vegetation, decreased
from 56.54 km2 to 53.98 km2 over the study period.

Accuracy assessments for the 2005, 2010, 2015, and 2020 images indicated an average
overall accuracy of 98% and a Kappa Coefficient of 0.98. This is a good accuracy result
based on [85], since the overall accuracies for all classifications were above 85%. The pixel-
based landcover classification is appropriate in mining landscapes where the morphology
of many mine-related structures is complex and varied, which is a challenge for object
detection models. In mining sites, the texture and emissivity of the surfaces are sufficiently
distinct, and with a simple classification scheme, as in our case (binary or few-class), there
are more risks to the accuracy of object-based analysis than pixel-level analysis.
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3.2. Change Detection Trajectories

The post-classification and categorization comparison change detection analysis results
show that both the mine areas and non-mine areas have rapidly changed over the study
area. The change analysis between 2005 and 2010 shows that the non-mine area has changed
to mine area by 1.4 km2, and, from 2010 to 2015, a non-mine area cover of about 2.2 km2 was
converted to mine area. Further, a total of 1.0 km2 of non-mine area cover was converted
to mine area between 2015 and 2020. This is indicative of active mining operations taking
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place in the area (Figure 8). However, the changes from mine area to non-mine area are
minimal in comparison to the changes from non-mine area to mine area as depicted in
Figure 9. Throughout the period between 2005 and 2020 (Table 5), only 0.64 km2 of mine
area was converted to non-mine area. This could be attributed to abandoned small-scale
excavations and is not related to mine area reclamation. Meanwhile, a non-mine area
amounting to 3.2 km2 was converted to mine area within the same period.
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Table 5. Overall change detection statistics (2005–2020).

Landcover Change Area Change (km2)

Mine area–Mine area 0.57

Mine area–Non-mine area 0.64

Non-mine area–Mine area 3.20

Non-mine area–Non-mine area 53.33

3.3. Surface Mining Extent Changes

Rapid growth in the use of energy-critical minerals, including rare earth elements, is
raising concerns about supply chain security, the quality of life of the impacted communities,
and the need to prevent irreversible damage to the environment [86,87]. Increased mining
extents, which usually infer an increase in mining operations, are an indication of the
presence of potential environmental and social impacts at the mining sites. Surface mining
extent is considered to cover all areas of the mining site operations, including the stock piles,
mining dam tailings, mining paths, open-pit rocks, and mining operation buildings [88].
In this study, the concept of mine area has been defined in this holistic manner. Figure 10
shows the expansion of the REEs mining footprint from 2005 to 2020.
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natural color imagery.

Comparison of the Results from Mining Sites with High-Resolution Google Earth Images

In order to validate the automated mapping extent of this study in mining areas, we
compared the mining extent changes using high-resolution Google Earth images for the
specific years (2005 and 2020) with the results from this study. Mine site A was compared in
terms of the development of its mining extent from 2005 (Figure 11a, Google Earth image),
which is consistent with the yellow patches in Figure 11c (which indicate the mining extent
mapped from this study). The same was performed for 2020 on Google Earth images
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(Figure 11b), and it also matched with the results mapped from this study (red patches on
Figure 11c). This analysis shows a multi-temporal increase in mining extents.
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Figure 11. (a) Google Earth image for Mine site A in 2005; (b) Google Earth image for Mine site A in
2020 illustrating mine area expansion; (c) surface mine area expansion analysis result for Mine site A
from this study, depicting surface mining extent in 2005 (visualized in yellow) and surface mining
extent in 2020 (visualized in red).

Mine site B expansion extents have been illustrated in Figures 12 and 13. These images
show the expansion of the mining site from Google Earth images for 2005 (Figures 12a and 13a)
and 2020 (Figures 12b and 13b). The results from this study showing the spatial expansion
of the mining extent are depicted in Figures 12c and 13c.
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northern part of Mine site B in 2020 illustrating mine area expansion; (c) surface mine area expansion
analysis result for northern part of Mine site B from this study, depicting surface mining extent in
2005 (visualized in yellow) and surface mining extent in 2020 (visualized in red).
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4. Discussion
Characterization of Rare Earth Mining Extents and Related Social and Environmental Impacts

Mining covers less than 1% of the Earth’s surface [89]. Though this may seem small,
open-pit mine operations can cause significant environmental and human health impacts
through physical disturbance of the landscape, sedimentation of water bodies, and con-
tamination [90]. The World Bank [91] has listed several sources related to environmental
impacts and pollution pathways due to mining activities, including for rare earth elements
(Table 6).

Table 6. World Bank list of mining activity related to environmental impacts and pollution pathways [91].

Sources, Environmental Impacts, and Pollution Pathways

• Drainage from mining sites, including processing water discharge and the breaching of mining tailings impoundments;
• Direct dumping of mine/domestic waste;
• Sediment runoff from mining activities;
• Anthropogenic heavy metal pollution of terrestrial and aquatic ecosystems;
• Leaching of pollutants from tailings residues, disposal areas, and contaminated soils;
• Air emissions from mineral-processing diesel equipment;
• Dust emissions.

Decades of REE mining in China have caused considerable environmental degra-
dation [92]. More recent social and environmental harms associated with the expansion
of rare earth mining have been reported for Kachin State in northern Myanmar [93,94].
Monitoring the development of surface mining expansion over time and in relation to
broader political and economic changes can help better understand and potentially manage
these effects. This study shows that surface mine extents throughout the REE mining areas
in both China and Myanmar (the area of this study) have increased by 211% from 2005 to
2020. This increase is revealed at a time when there is high global demand for REEs for
energy and other technologies, including electric vehicle production [88,89]. A reduction
in dense forest inferred from the non-mine cover and the high-resolution Google Earth
images of the study site indicate increased land degradation, with no evidence of land
or forest reclamation in the area. Our analysis also suggests small-scale mining in the
area; through time-series analysis and visual inspection of Google Earth satellite images,
we identify several patches that we hypothesize to be small-scale REE excavation areas.
Their inconsistency on multiple time-series images indicates that these excavated areas
were abandoned at a later stage, allowing the regeneration of trees and suggesting the
presence of small-scale excavations around the study area. This can compound social
and environmental impacts but requires verification. Figure 14 shows potential negative
impacts on surface water from the creek where it is no longer usable for drinking or crop
irrigation due to rare earth mining activities in Myanmar’s Kachin State [61].

Our findings are contrary to the prevailing narrative that rare earth mining has de-
creased in China and increased in Myanmar. While overall domestic mining has decreased
in China, our study shows that mining has continued to increase in border regions. On
the Chinese side of the study area, the REE surface mining extent has increased from
0.63 km2 to 1.45 km2, representing a 130% increase in extractive mining area, and on Myan-
mar’s side of the border, the surface mining area extraction has increased by 327% within
the same study period, during which the mine area increased from 0.58 km2 in 2005 to
2.49 km2 in 2020 (Figure 15). This increase in REE surface mining extents in Myanmar is in-
fluenced by its proximity to China, as reported in the literature by Nakano [95], Sophia [96],
and Klinger [97].
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Figure 14. Environmental impacts from rare earth mines in Myanmar’s Kachin State. Local villagers
have indicated that water from the creek is no longer usable for drinking or growing crops and that
their skin itches after being exposed to water near rare earth mining sites [61].
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With projected demand increases, including those driven by the necessary transition
to renewable energy to reach net zero by 2050 [98], there is increasing pressure on areas
with rare earth elements and other critical raw material reserves. Mining in sensitive border
regions (especially when it is occurring against stated government goals) requires improved
transparency, as there are many opportunities for those extracted minerals to enter supply
chains undetected. Understanding these dynamics more broadly can offer insights into
the ways in which REEs are sourced and how their extraction may be better tracked
and monitored.
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5. Conclusions

In this present study, Landsat 5 TM and Landsat OLI time-series data from 2005 to 2020,
in combination with landcover reference data from high-resolution Google Earth images,
were used in a machine learning-powered, multi-temporal change detection analysis to
map and monitor the development of mining extent activities in the rare earth mining
fields of the Myanmar–China geopolitical border within Kachin State in northern Myanmar
and the Nujiang Prefecture area in China using the GEE cloud computing platform. We
performed a machine learning-supervised Random Forest classification [30] to determine
the landcover dynamics in the study area with two main classes: mine area and non-mine
area. From the analysis, we noted that the non-mine landcover decreased from 56.54 km2

to 53.98 km2, representing a decrease of 4.7%, and the mining area extent increased from
1.22 km2 to 3.78 km2. The mine area and non-mine area maps generated in this study
showed changes in the landscape over the study period. Such information is crucial to
understanding the transformation processes and human–environment interactions within
mine sites as mining footprints expand over time. Leveraging the properties of the terrain
in the area of interest, with heavy forest cover, this study focused on two main landcover
classes: mine and non-mine. The typical size of mine-related landmarks is supported
by the low spatial resolution of the Landsat data, which provided temporal coverage
over our entire study period of 2005–2020. Access to new innovative commercial satellite
data providers with low-cost and high-spatial-resolution datasets could be used to track
seasonal or annual changes in mining patterns, including landuse/landcover changes, and
the wider landscape related to future REE mining operations on a case-by-case scenario.
For instance, the 30 m resolution of Landsat data supports our study because of the typical
size of mining areas; using a resolution higher than 30 m is unlikely to make any significant
difference in a binary classification, as was the case in this study. It is also critical to consider
that spatial resolutions higher than 30 m would increase computational burdens without
making significant improvements to the actual results. Our approach has successfully been
used in mapping and monitoring the development of surface mine footprint expansion
while mapping landcover changes using open-source tools. For similar operations and
future research work, we recommend the integrated use of multiple methods as applied in
this study for landcover categorization, visual inspection, and interpretation as a standard
operating protocol to remotely collect ground-truthing data where fieldwork is not possible.
This includes a selection of satellite imagery based on image resolution, the purpose of the
landcover analysis, and the temporal scale of the study. Further, simultaneous use of visual
inspection and interpretation of maps generated from satellite imagery (NDVI maps, Near
Infrared False Color Composite (with band combinations of 4, 3, 2 for Landsat 5 TM and
5, 4, 3 for Landsat 8 OLI), RGB Orthophoto Composite Maps (Natural Color Composite
with band combinations of 3, 2, 1 for Landsat 5 TM and 4, 3, 2 for Landsat 8 OLI), and high-
resolution Google Earth images) are vital. Our approach allows flexibility in the inclusion
of different satellite data types, depending on data availability and the research question of
interest. This will contribute to the progress of remote sensing technologies in monitoring
surface mining footprints, enhance the development of sustainable resource management
initiatives, and potentially contribute to more sustainable mining development between
the two neighboring countries.
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