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Abstract: The increasing availability and quality of remote sensing data are changing the methods
used in fluvial geomorphology applications, allowing the observation of hydro-morpho-biodynamics
processes and their spatial and temporal variations at broader and more refined scales. With the
advent of cloud-based computing, it is nowadays possible to reduce data processing time and increase
code sharing, facilitating the development of reproducible analyses at regional and global scales. The
consolidation of Earth Observation mission data into a single repository such as Google Earth Engine
(GEE) offers the opportunity to standardize various methods found in literature, in particular those
related to the identification of key geomorphological parameters. This work investigates different
computational techniques and timeframes (e.g., seasonal, annual) for the automatic detection of the
active river channel and its multi-temporal aggregation, proposing a rational integration of remote
sensing tools into river monitoring and management. In particular, we propose a quantitative analysis
of different approaches to obtain a synthetic representative image of river corridors, where each
pixel is computed as a percentile of the bands (or a combination of bands) of all available images
in a given time span. Synthetic images have the advantage of limiting the variability of individual
images, thus providing more robust results in terms of the classification of the main components of
the riverine ecosystem (sediments, water, and riparian vegetation). We apply the analysis to a set
of rivers with analogous bioclimatic conditions and different levels of anthropic pressure, using a
combination of Landsat and Sentinel-2 data. The results show that synthetic images derived from
multispectral indexes (such as NDVI and MDWI) are more accurate than synthetic images derived
from single bands. In addition, different temporal reduction statistics affect the detection of the active
channel, and we suggest using the 90th percentile instead of the median to improve the detection
of vegetated areas. Individual representative images are then aggregated into multitemporal maps
to define a systematic and easily replicable approach for extracting active river corridors and their
inherent spatial and temporal dynamics. Finally, the proposed procedure has the potential to be
easily implemented and automated as a tool to provide relevant data to river managers.

Keywords: remote sensing; active channel; riverine macro units; synthetic representative images;
Google Earth Engine

1. Introduction

Remote sensing (RS) plays a crucial role in advancing the scientific understanding
and monitoring of riverscapes [1–4]. This is converting river science from a data-poor
to a data-rich discipline [5], transforming the methods employed in fluvial observation,
and boosting integrative approaches. Technical advances in RS have already enabled
the observation of spatial and temporal changes at larger and more precise scales, with
the ability to replicate findings at local, regional, and global scales using a non-intrusive
approach. Moreover, RS has enhanced the interdisciplinarity of river science by building
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bridges among studies of hydrology, ecosystem functionality, restoration, and geomorphic
evolution. In terms of the improved understanding of riverine processes, RS has contributed
to the comprehension of mass and energy transfer through riverscapes [6], the extraction of
water surfaces, the observation of their variation throughout time [7], and the recognition
of the role of sediment and vegetation in channel conveyance [8]. RS has also enabled
the baseline assessment of fluvial morphology in data-fragmented contexts [8,9] and the
outlining of hydrological variations, such as in Arctic regions [10]. As a tool for river
management and conservation, RS is widely recognized for its ability to reconstruct recent
morphological trajectories [11–14] and to assess morphological condition [15,16]. Satellite
data combined with hydrological measurements can also support the monitoring of river
restoration works at the reach scale [17]. The advent of cloud-based computing has further
revolutionized the field by providing access to publicly available global remote sensing
datasets (USGS NASA Landsat and ESA Sentinel products, among others) in a unified
environment, resulting in accelerated data processing and improved code portability [18].
Platforms such as Google Earth Engine have been instrumental in various river-related
studies, including mapping wet river channels [19], assessing the frequency and extent of
water occurrence [7], identifying active channels [8,20], estimating river width [21], and
monitoring the migration of active channels near critical infrastructure [14].

Traditional remote sensing GIS-based analyses are well-established tools to support
river research and management [22], with coherent use of different remote sensing tools
to investigate processes at different spatiotemporal scales [23]. With the advent of cloud
computing, there is a need for appropriate methods to organize and aggregate remote
sensing data. In fact, cloud-based semi-automated or automated analysis is still in its
infancy in its interdisciplinary framework, and basic reference work is needed to define
which data aggregation procedures can and should be used at different spatiotemporal
scales, according to the fluvial morphodynamic or ecological process to be observed.

We focus here on the possibility given by GEE to work with synthetic representative
images, where all images acquired in a defined temporal interval are reduced together to
obtain a more robust synthetic representative image. From the obtained representative
image, we propose an approach to extract a specific element of any riverscape, the active
or erodible corridor [24], which we identify as the multitemporal active channel. In 2013,
Ashmore described active channels as “those transporting bedload or showing measurable
morphological change at a given time or during a given time interval” [25]. This definition
highlights the need to contextualize not only the river system we consider in space and time
but also the lenses we use to observe morphological change. Thus, we consider an active
channel as part of a river landscape that experiences measurable morphological planform
changes through medium-resolution remote sensing imagery. Using this definition, we
aim to explore the capabilities and limitations of the Google Earth Engine (GEE) cloud
computing platform in supporting the detection of total active channel area and how it
changes over different temporal scales.

First, we focus on different ways to define a synthetic image of a river corridor.
Synthetic images reduce the inherent variability of individual images, resulting in more
robust results for classifying key components of river ecosystems, or macro units (see [26],
such as the sediment bar, water, and riparian vegetation). Although this is an accepted
common approach to obtain a representative observation of the environmental system [8,27],
to the best of our knowledge, no consideration has been given to how to obtain such an
image taking into account the spatiotemporal scales of changes in river morphology, where
for certain processes it is key to study the effects of this variability rather than smoothing it.
In GEE, we calculate each pixel of a synthetic image as a percentile of the distribution of
the same pixel values within a specified time interval. We outline how different percentiles
impact synthetic images and, consequently, the automatic detection of active channels
using Landsat and Sentinel-2 products. With the aim of defining a systematic approach, our
work clarifies appropriate statistics and timeframes (e.g., seasonal, annual) for calculating
representative images based on research objectives.
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Thus, this research explicitly frames existing technologies within the nested spatiotem-
poral scale of fluvial biogeomorphic processes and improves a more conscious integration
of remote sensing tools into river monitoring and management. Finally, this work opens
the box of spatiotemporal metrics for river assessment: a multitemporal active channel
is proposed as the envelope of active channels in each year of observation, shifting from
single epoch metrics to inter-epoch ones. Such a procedure supports the extraction of
the fluvial erodible corridor, which represents a piece of reference information for river
managers, with an improved standardized approach that considers and brings to light
the inherent dynamicity of riverscapes in space and time, including the spatially explicit
relative frequency of the river occupying its space of freedom.

2. Materials and Methods

In this work, Google Earth Engine is used to extract information on the riverine
active channel extension from multi-spectral medium-resolution satellite imagery, namely
Landsat and Sentinel-2 surface reflectance products. The selected study areas for the
methodological work are three river reaches in the Mediterranean region with analogous
bioclimatic conditions and different degrees of anthropic pressure, to obtain more robust
and representative results for the considered cases.

2.1. Google Earth Engine Workflow

Landsat Surface Reflectance data (Landsat 5 Thematic Mapper, Landsat 7 Enhanced
Thematic Mapper, Landsat 8 Operational Land Imager) and Harmonized Sentinel-2 MSI:
MultiSpectral Instrument, Level-2A, are selected as the primary sources of satellite imagery
(available through the GEE data catalog https://developers.google.com/earth-engine/
datasets/catalog, accessed on 15 April 2023). Landsat products are widely used to assess
recent spatiotemporal morphological changes [8,14,28], thanks to their almost continuous
coverage of satellite images within the analysis period (1985–2022) and a spatial resolution
of 30 m. Similarly, since 2015, Sentinel-2 images provide higher spatial (10 m) and temporal
resolution multispectral information worldwide (the revisit time is 10 days at the equator
with 1 satellite and 5 days with two satellites under cloud-free conditions). Sentinel-2
Level-2A orthorectified atmospherically corrected surface reflectance products have been
available in GEE since 2017.

Images with cloud cover greater than 20% were excluded from Landsat and Sentinel-
2 collections. A spatial clip was applied to the selected images, limiting the region of
interest on each river reach. Moreover, the CFmask algorithm [29], which is based on
pixel quality assessment, is applied to each Landsat image in the collection to mask cloud
obstructions and cloud shadows. An analogous cloud mask is applied to Sentinel-2 images
by filtering clouds and cirrus directly from the image metadata information. The two
temporal synthetic resolutions compared in this work are the Seasonal—covering the
vegetative season (May to September)—and the annual (January to December), for each
year of the considered temporal extent, set from 1985 to 2022, with Sentinel-2 images
available from 2018 (Figure 1).

Figure 1. Temporal extent and resolution of the analysis.

https://developers.google.com/earth-engine/datasets/catalog
https://developers.google.com/earth-engine/datasets/catalog
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The workflow is subdivided into three parts:

1. Identification of the most appropriate procedure to derive a synthetic representative
image for a given synthetic temporal resolution.

2. Extraction of the representative active channel for a given synthetic temporal resolution.
3. Computation of the multitemporal active channel as the envelope of all extracted

active channels over time for the entire temporal extent of the analysis.

2.1.1. Representative Synthetic Index

In GEE, Landsat and Sentinel-2 images are structured as an ImageCollection, a stack,
or a time series of images. For an ImageCollection, it is possible to apply a Reducer, which
can be used to aggregate data over time, space, and other data structures. Reducers include
summary statistics, histograms, and linear regression, among others. Thus, it is possible to
obtain ImageCollection statistics over time and obtain a representative synthetic image, with
reduction operations occurring on a pixel-by-pixel basis. When working with multispectral
images in riverscapes, several multi-spectral indexes and combinations support highly
differentiated fluvial geomorphology applications [9,11]. In this work, we selected two
established multi-spectral indexes to map vegetated surfaces and water, to derive active
channel extension, namely the Normalized Difference Vegetation Index, NDVI [30], and
the Modified Normalized Water Index, MNDWI [31].

A common approach to mapping riverine macro units is based first on the use of GEE
temporal reduction (Figure 2 Panel 1) on image bands and then on the computation of
multi-spectral indexes from the reduced maps [28,32] (Figure 2 Panel 2, procedure 2A).
Here, we propose a different approach where NDVI and MNDWI multispectral indexes are
firstly computed for each image of the ImageCollection (Landsat and Sentinel-2). Secondly,
the temporal reduction is applied to the collection of indexes (Figure 2 Panel 2, procedure
2B). To evaluate the synthetic indexes derived with the two approaches—(i) reduced bands
and (ii) reduced indexes at the annual temporal resolution—and the macro units that can
be derived consequently, we considered a reference active channel of one of the selected
river reaches, digitized in QGIS from the 2015 Orthophoto with 20 cm resolution, available
as WMS from the Albanian geoportal ASIG services [33]. Moreover, the reference active
channel was extracted with a buffer of 200 m to properly assess the medium-resolution
Landsat accuracy with the semi-automatic extraction at the borders of the river corridor.

2.1.2. Representative Active Channel

The second step of our workflow goes through the delineation of the active channel for
the considered temporal resolutions. GEE offers the possibility to use several spatial and
temporal statistical reducers. So far, the temporal median reducer, which gives each pixel its
median value over the considered time step, has been used to extract fluvial morphological
metrics [28,32]. A comparison between the median (50p) and the 90th percentile (90p)
reducer is proposed here. To do so, we classify potential active channels in every pixel
with a 50p or 90p synthetic representative NDVI lower than 0.15 [32] and an MNDWI
greater than −0.35, similarly to [8]. Thus, the potential active channel area is evaluated by
comparing 50p and 90p, seasonal and annual extracted masks. In this step, areas mapped as
active channels but clearly external to the riverscape are retained to compare how well 50p,
90p, seasonal and annual choices are able to distinguish riverscapes from other external
areas and to compare our approach with other existing ones.

2.1.3. Multitemporal Active Channel

The third and final step in our workflow is the delineation of the envelope of all
previously detected seasonal or annual active channels. The envelope represents the
multitemporal active channel domain or the so-called erodible corridor. It results from the
spatial evolution in time of the riverine active channel. It can be extracted as the envelope
of individual representative active channels, where the value of each pixel is the number of
times it is classified as the active channel divided by the considered temporal extent. This
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produces a final map ranging from 0 to 1. Pixels are included in the multitemporal active
channel when they are active for at least a fixed threshold, excluding low-frequency pixels.

Figure 2. Workflow to obtain synthetic representative images of NDVI and MNDWI composites and
to assess their difference. Panel 1: Temporal reducer over an ImageCollection. Panel 2: Synthetic
images approaches compares: Panel 2A showsthe traditional approach of representative bands and
Panel 2B outlinesthe proposed novel approach that reduces single images multispectral indexes.

In this work we have used a threshold of 27% (10 counted times in the temporal extent
1985–2022), but we suggest to define it according to each study objective. We computed
four different envelopes considering (i) the 50p and 90p of the indexes and (ii) seasonal
or annual synthetic temporal resolution. Envelopes were computed for the period 1985 to
2022 using Landsat images, and for the overlapping period 2018–2022 using both Landsat
and Sentinel-2 images.

2.2. Study Areas

The procedure is applied at the river reach scale to a set of three case studies (Figure 3):
the Shkumbin (AL), Tagliamento (IT), and Vjosa (AL) rivers. The Tagliamento and Vjosa
rivers are recognized as reference fluvial systems and model ecosystems of European
importance [34,35]. Conversely, the Shkumbin River received less attention. It flows
through Albania and has been impacted by the abrupt socio-economical development of
Albania in the last two decades; sediment mining activities within the active channel can
be easily detected from aerial images of recent years [36].

River reaches were selected among river systems where active channel morphological
changes and trajectories have already been investigated [9,37,38]. Selected reaches are much
wider than the minimum size required to achieve sufficient accuracy with Landsat imagery.
The river width should be at least 10 times the pixel spatial resolution to limit the error below
20% [39], setting 300 m and 100 m as width thresholds for Landsat and Sentinel-2 images,
respectively. Moreover, all selected reaches present a braiding morphology (Table 1), which
can be considered an optimal river style for testing active channel extraction procedures.
In fact, in braided rivers at low flow the wet channel extracted by standard water-related
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multispectral indexes covers only a small portion of the active channel spatiotemporal
dynamics, with sediments and in-channel vegetation patches playing a relevant role in the
hydro-morpho-eco dynamics of the riverscape.

Figure 3. Panel (A): Location of the selected rivers; Panel (B): Selected river reaches overview. The
basemap orthophoto for Shkumbin and Vjosa rivers is the 2015 ASIG Orthophoto [33], while the
Tagliamento basemap is 2017–2020 Friuli Venezia Giulia regional Orthophoto [40].

Table 1. Key characteristics of selected river reaches.

Morphological Metric Shkumbin Tagliamento Vjosa

Entire river length [km] 173 172 272
Catchment area [km2] 2057 2580 6704

Contributing catchment area to the study reach [km2] 604 (29%) 2300 (88%) 5242 (78%)

Reach confinement 1 Partially
Confined Confined Partially

Confined
Reach morphology 1 Braiding Braiding Braiding

Reach lenght [km] 6.9 4.8 6.9
Mean river corridor width [m] 500 600 800

Reach Slope [%] 0.45 0.36 0.18
1 Following IDRAIM River Styles classification [41].

2.2.1. Shkumbin River

The Shkumbin River flows east-west in the central part of Albania to the Adriatic Sea.
It is known for its relevant sediment load [42], comparable to the annual sediment load of
the Vjosa river, which has a three times larger catchment area [43]. The selected reach is a
partially confined 7 km-long reach in the Hill physiographic unit, flowing near the city of
Elbasan. The reach has an average width of 450 m.

2.2.2. Tagliamento River

The Tagliamento River is located in the Friuli Venezia Giulia Region, northeastern
Italy. The funnel-shaped catchment has an area of about 2580 km2. Strong changes in flow
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energy, sediment size, and distribution occur along the river’s 170 km course. The climate
is alpine in the headwaters and Mediterranean in the lower reaches, giving the river a
flashy flow regime [44]. The selected reach presents an island-braided channel pattern,
confined between Ragogna and Monte Prat, just upstream of the Pinzano bridge.

2.2.3. Vjosa River

The Vjosa river originates in the Pindos Mountains of Greece and flows for 272 km
through southern Albania to the Adriatic Sea. The climate shifts from alpine in the head-
waters to Mediterranean in the middle and lower reaches, giving the river a pluvio-nival
regime. The selected Vjosa reach is a partially confined braided reach located in the middle
course, in the Hill physiographic unit, near the village of Kuta. It presents a bar-braiding
and island-braiding morphology, with an average width of 800 m. The reach flows in a
medium-energy non-cohesive Holocene alluvial gravel-bed floodplain [45].

3. Results
3.1. Representative Synthetic Index

First, NDVI and MNDWI were investigated in the selected reaches, as well as the
derived macro units (vegetation and water, respectively) in terms of value distributions
and spatial configurations. Secondly, the active channel, defined as the union of water and
sediment pixels, was extracted and compared between the traditional “bands” approach
and the proposed “indexes” approach. Figure 4 shows the comparison between the two
approaches. Panel A shows synthetic MNDWI and NDVI indexes derived from reduced
bands and reduced indexes and compares their frequency histograms. The red line within
the histogram represents the adopted fixed threshold for classifying water and non-water
pixels (MNDWI) and vegetated and unvegetated pixels (NDVI). Within the extracted
water and vegetation masks, Panel B shows the comparison between water and vegetation
masks and the distribution of multispectral indexes values within the extracted masks.
Representative synthetic image definition and the comparison between representative
indexes derived from (i) synthetic bands or (ii) synthetic indexes outline relevant differences
between the two approaches. The representative synthetic MNDWI and NDVI frequency
distributions peak at lower values for the indexes approach (Figure 4, yellow) compared
to the bands approach (Figure 4, light blue), with higher frequencies of high values of
MNDWI (representing water). The NDVI frequency distribution obtained with the indexes
approach (Figure 4, yellow) is wider than that derived with the bands approach (Figure 4,
light blue).

A fixed threshold of MNDWI is set to quantitatively compare the two approaches.
The threshold is set to 0.15, which is conservatively lower than the 0.2 value suggested for
water detection by [46], to investigate the different MNDWI values in correspondence of
water boundaries. The results show that the extent of water and vegetation is higher with
the indexes approach (Figure 4, Panel b, yellow area). Moreover, all water and vegetation
pixels detected with the synthetic bands (Figure 4, Panel b, light blue) are also masked
with those detected by the indexes approach (yellow). As for the NDVI threshold, every
pixel with an NDVI value higher than 0.15 is classified as vegetation [32,47]. Looking at the
NDVI and MNDWI values within the masked water and vegetation pixels, it can be seen
that the masks obtained from the indices have slightly higher values in their distributions.
This difference is more pronounced for the MNDWI index (Figure 4, Panel b).
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Figure 4. Comparison between bands and indexes approaches using representative synthetic index images (a) Synthetic MNDWI and NDVI indexes derived from
reduced bands and reduced indexes and their histogram frequency. The red line within the histogram represents the adopted fixed threshold to classify water
and non-water pixels (MNDWI) and vegetated and unvegetated pixels (NDVI). (b) Spatial water and vegetation masks derived from the two approaches, and
distributions of MNDWI and NDVI values within the extracted masks.
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Moreover, Figure 5 shows that the indexes approach identifies a more accurate ex-
traction of the active channel (water and sediment areas) compared to that obtained with
the bands approach. The difference Panel in Figure 5 highlights that the differences in the
classification are mainly located in the lateral buffer and correspondence of riverine islands.

Figure 5. Active channel extracted with the bands approach (light blue) and with the indexes
approach (yellow) compared to the digitized active channel from 2015 Orthophoto (continuous
black line). The dotted line represents the 200 m buffered domain for the analysis. The difference
map on the right outlines the difference between the two extracted active channels, showing the
overestimation with the bands approach.

3.2. Representative Active Channel

Active channel extraction from the median and 90p NDVI synthetic images outlines the
larger extent of the active channel obtained with the 50p image compared to the 90p image,
for both seasonal and annual temporal extents in all three considered rivers (Figure 6). This
difference appears to be influenced by the floodplain and riparian vegetation type, which
are influenced by climate and land use.

The annual active channel appears to be substantially different from the seasonal
active channel in the case of the 50p reduction choice, while smaller discrepancies can be
seen using the 90p reducer. This is explained by the fact that the 50p NDVI values on the
annual base are generally much lower than the seasonal ones, due to the winter dormancy
of deciduous vegetation, which results in greater detection of active channel areas. This is
less pronounced for the 90th percentile reduction option.

3.3. Multitemporal Active Channel

The third result of the workflow is the aggregation of active channels over time
to obtain the multitemporal active channel. The comparison of different multitemporal
active channels, obtained from different statistics and temporal resolutions, is proposed in
terms of:

• Median and 90th percentile-derived multitemporal envelopes (Landsat, 1985–2022);
• Seasonal vs. annual 90th percentile-derived multitemporal envelopes (Landsat, 1985–2022);
• Coarser and finer spatial resolution–90th percentile-derived multitemporal envelopes

(Landsat and Sentinel-2, 2018–2022).
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Figure 6. Seasonal and annual active channel extent per each year with 50p and 90p NDVI synthetic
image classification.

3.3.1. Median and 90th Percentile-Derived Multitemporal Envelopes (Landsat, 1985–2022)

Comparing the median and 90th percentile-derived frequency envelopes (Figure 7),
it is possible to outline the greater frequency of the median envelope with respect to
the 90p envelope, as the difference between the two envelopes is never negative. This
is particularly visible in the cultivated floodplain of the Vjosa river. Setting the defined
threshold for multitemporal active channel detection to the envelope frequency, the filtered
multitemporal active channel is obtained (Figure 7). It is easy to appreciate the improved
noise removal of the 90p, which is able to exclude floodplain areas erroneously classified as
multitemporal active channels when using the median (Table 2). This is particularly visible
in the Shkumbin and Vjosa reaches, which are characterized by a cultivated floodplain, and
less relevant in the Tagliamento reach, where the river reach is partially confined between
forested slopes and floodplain.

Table 2. Multitemporal active channel area [ha]: Median and 90th percentile comparison, with
frequency threshold t = 27%.

River Median [ha] 90th Percentile [ha] % Difference 1

Shkumbin 471.7 384.0 22.8
Tagliamento 308.8 289.7 6.6

Vjosa 2183.1 871.4 150.5
1 % difference is computed with respect to 90p mask.
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Figure 7. Landsat: Median and 90p active channel frequency envelopes, their difference and derived
multitemporal active channel with a frequency threshold t = 27%.

3.3.2. Seasonal vs. Annual 90th Percentile-Derived Multitemporal Envelopes (Landsat,
1985–2022)

The annual-derived envelope includes all months in the active channel computation,
while the Seasonal-derived envelope is restricted to the vegetative season (May to Septem-
ber in the selected case studies). They are compared in Figure 8 and Table 3 considering
the region obtained by merging the 90th percentile annual envelope with a 300 m buffer
to focus on the riverscape and its nearbies. Setting an appropriate threshold to define the
multitemporal active channel from the frequency envelope (e.g., t = 27%) does not signifi-
cantly change the multitemporal active channel area with respect to the annual envelope
(1.5 to −1.3% difference, Table 3). Limited discrepancies in the active channel delineation
can be detected in the lateral boundaries or in correspondence of vegetated islands and
bars due to the different values between the Seasonal and Annual NDVI representative
images (Figure 8). The difference between the Annual and Seasonal envelopes shows a
higher frequency of the Annual envelope (difference > 0) within the active channel and
higher frequencies of the Seasonal envelope (difference < 0) outside the active channel.
This is especially noticeable for the Shkumbin and Vjosa floodplains, in correspondence
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with cultivated areas, while it is less visible for the Tagliamento River, where the difference
is almost nonexistent. This can be explained by the different land use (more forested
parts along the river and less agricultural areas) and climate (more continental and less
Mediterranean) of the Tagliamento with respect to the two Albanian rivers.

Figure 8. Annual and seasonal active channel envelopes derived from Landsat images.

Table 3. Multitemporal active channel area [ha]: annual and seasonal comparison, with selected
frequency threshold t = 27%.

River Annual [ha] Seasonal [ha] % Difference 1

Shkumbin 384.0 378.6 1.4
Tagliamento 289.7 285.3 1.5

Vjosa 871.4 882.8 −1.3
1 % difference is computed with respect to annual mask.

3.3.3. Comparing the Spatial Resolution of 90th Percentile-Derived Multitemporal
Envelopes (Landsat and Sentinel-2, 2018–2022)

The spatial resolution comparison between 30 m Landsat and 10 m Sentinel images is
coherent with the expected spatial smoothing of NDVI values representing vegetation in
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Landsat images, with a consequent higher active channel frequency. This occurs especially
in the boundary areas, as can be seen in Figure 9.

Figure 9. 2018–2022 annual active channel envelopes derived from Landsat and Sentinel-2 images.

4. Discussion

The availability of archives containing data from a variety of Earth observation mis-
sions, all consolidated in a unified database such as Google Earth Engine (GEE), combined
with the ability to efficiently and consistently process this vast amount of data and infor-
mation, underscores the need for a systematic approach. This provides an opportunity to
standardize the diverse methodologies advocated in the existing literature, particularly
those related to the identification of key geomorphological parameters, such as the active
river channel. These parameters will then serve as fundamental components for carrying
out more advanced analyses of geomorphological dynamics.

In the last decades, fluvial researchers have developed methods to characterize the
main macro units—water, vegetation, and exposed sediments [9,48,49]—and to investigate
changes in river morphology [50], such as vegetation encroachment [51,52] and meander
sinuosity and migration rate [39,53]. In most cases, single images were used, with the
notable exceptions of [28,32]. The continuous increase in the temporal resolution of satellite
data, with weekly and sometimes daily images, allows the use of a temporal reducer to
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filter out small-scale variations and identify the different geomorphic macro units more
accurately. For many geomorphological applications, the relevant time scale is notably
longer than the data acquisition frequency, and the use of an annual or seasonal synthetic
image can help to identify the relevant changes.

Furthermore, the proposed approach for multitemporal active channel mapping un-
derpins the inherent dynamicity of riverscapes over space and time, including the spatially
explicit relative frequency of the river occupying its erodible corridor. In riverscape moni-
toring and management, such spatiotemporal metrics represent the necessary shift from
single-epoch assessments and metrics to inter-epoch ones. In this perspective, the proposed
methodology was found to be capable of delineating the multitemporal active channel at
the reach scale and provides a tool for selecting the appropriate temporal resolution, taking
into account the processes to be monitored and the associated dynamics of water, sediment,
and vegetation. Due to the lack of morphologically-based approaches to define the riverine
domain, it is common to approximate the riverscape from global datasets derived from
other sources. For example, the Global Surface Water Extent (GSWE) [7] provides the
spatial extent of water surfaces over time from 1985 to 2020. With an appropriate buffer, the
GSWE represents a valid approximation of the multitemporal active channel from 1985, but
it does not account for the presence and dynamics of exposed sediments and in-channel
vegetation within the river corridor.

Our work provides a fast and robust delineation of the active channel, using an
original procedure based on geomorphologic processes that can be easily adapted to
different contexts. After testing the methodology on three different Mediterranean rivers,
we can outline some major suggestions (synthesized in Figure 10) for working with cloud
computing and medium-resolution multispectral remote sensing data, such as Landsat and
Sentinel-2 data, in particular for the delineation of the river active channel:

• The application of temporal reducers is a valid approach to obtain representative
synthetic images that can be used to delineate the active channel on an annual or
seasonal scale. However, synthetic images computed from single bands or from
considered indexes (in this caseNDVI and MNDWI) produce different results, with
the former overestimating the active channel compared to the index approach.

• The choice of the percentile of temporal reduction substantially affects the extraction
of the active channel. Our work suggests using the 90th percentile with respect to
the median.

• An annual temporal resolution is preferable for the computation of the active channel
envelope over time in Mediterranean biogeoclimatic regions. Indeed, the annual
temporal resolution improves the detection of the riverbed and the distinction from
the floodplain in the three case studies. However, the difference between the annual
and the seasonal multitemporal active channels is minor. A proper investigation of its
effects in other biogeoclimatic regions of the planet is suggested.

Regarding the last point, only an appropriate adaptation of the procedure could en-
hance ecological and environmental assessments by tailoring remote sensing approaches to
specific climatic conditions. This would enable more accurate and contextually meaning-
ful interpretations of vegetation and hydrological dynamics. For instance, Arctic regions
present a thermal control not only on vegetation seasonality but also on the hydrological
regime. Thus, the seasonal window for vegetation, from May to October [54], is the same
as the main hydrological activity [55]. In winter, rivers are at low flow and are mostly
frozen, with ice and snow making it difficult to detect riverscape features from multispectral
imagery. Improvements in water and ice detection are expected with the use of new hyper-
spectral data (e.g., PRISMA, IRIDE missions). So far, in the Arctic context, it is reasonable to
limit the active channel extraction to the summer months. Similarly, investigations in tropi-
cal regions with clearly defined rainy seasons may benefit from different, shorter periods
over which the synthetic images and the active channel are derived [56]. In addition, we
expect differences when considering rivers where the main riparian species are deciduous
or evergreen, as this may produce different temporal patterns of the NDVI index.
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Figure 10. Suggested approach for riverine active channel extraction from Landsat and Sentinel-2
data within GEE.

Once the active channel has been defined, researchers may be interested in observing
and monitoring different processes characterized by specific spatiotemporal scales and
resolutions, such as channel lateral migration, riparian vegetation recruitment, growth
and erosion, or inundation dynamics. Each process should be observed at the appropriate
spatiotemporal scale, which may be different from that used to define the riverine domain.
For example, intra-seasonal vegetation dynamics can be investigated at weekly or monthly
resolution, covering the temporal extent of the vegetative season, with Sentinel-2 or higher-
resolution imagery. At an even finer temporal resolution, single images could be used to
compute water coverage, coupled with water level or discharge measured on the same
day and time of image acquisition [57]. It should be noted that, in this work, the water
mask is defined with a fixed threshold of the 90th percentile synthetic MNDWI index, for
comparison purposes only. For more detailed wet channel monitoring, more advanced ex-
traction procedures are suggested, such as Canny Edge detection and subsequent buffering
to apply an adaptive thresholding approach [58].

According to [59], Google Earth Engine offers rapid and immediate access to under-
standing a river’s capacity for adjustment to changes in environmental conditions, such as
water and sediment fluxes. Monitoring this adjustment process, in the case of both natural
and anthropogenic changes, provides information about river sensitivity [60]. This includes
gaining insight into the range of variability and how different river reaches adapt, along
with the reasons for these adjustments. The implementation of models in the GEE platform
helps to assess the role of disturbance events and the off-site consequences of river adjust-
ments, thus supporting the interpretation of the evolutionary trajectory of rivers. Clear
procedures and a cloud computing environment can also help to further integrate ecologi-
cal, hydrological, and morphological data and concepts, and foster collaborative research
networks that address the study and management of riverscapes as macrosystems [61].
As pointed out by [23], the increasing amount of satellite imagery calls for “big data in-
frastructure”, capable of processing data and producing outputs in an automated way, to
inform river managers and enable continuous monitoring [62]. Indeed, one of the major
challenges for river scientists remains the transfer of river geomorphology [59] and RS
approach [22] to practitioners—as managers and stakeholders—for systematic monitoring
as a source for decision-making and well-informed management of riparian zones. The
combination of remotely sensed imagery, characterized by increasing spatial, temporal, and
spectral resolution, with cloud computing, such as GEE, provides a powerful tool to apply
methods and concepts developed in the last decade [63–65] to better understand the recent
morphological trajectories of river systems and thus assess their ecosystem potential.

5. Conclusions

The procedure proposed in this work improves our ability to extract—in an accurate
and effective manner—the fluvial erodible corridor, which is considered a fundamental step
in understanding the morphology and dynamics of a river system [24]. In particular, we
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highlight an increased accuracy in the detection of the active channel using synthetic images
derived from multispectral indexes (such as NDVI and MDWI) than when using synthetic
images derived from single bands. We also quantify the effect of using different percentiles
as temporal reducers on a collection of images. For the investigated Mediterranean braided
rivers, with dry summer and deciduous vegetation, we suggest the use of the 90p instead
of the median to better classify vegetated areas compared to the active water and sediment
areas. Taking into account the hydrological and bioclimatic adaptations already discussed,
add[]the application of this procedure can be easily extended to many rivers, and is
particularly relevant where other topographic data and surveys are missing or fragmented.
Moreover, the use of cloud-based computing allows the application at a wide range of
spatial scales, from single rivers to whole catchments and regional studies. To this end, the
developed and available Python script could be easily converted into a more user-friendly
Google Earth Engine online App, accessed 17 October 2023 https://www.earthengine.
app/ to further enhance its use by managers and practitioners for river management,
conservation and restoration.
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