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Abstract: The transboundary region along the Heilongjiang River, encompassing the Russian Far East
and Northeast China, possesses abundant agricultural natural resources crucial for global food security.
In the face of the challenge of disruptions in the global food supply chain, the precise monitoring and
exploitation of agricultural resources in the Heilongjiang Basin becomes imperative. This study employed
deep learning to classify crop status in 2023 in the Heilongjiang Basin using Sentinel-2 satellite remote
sensing images at a 10 m resolution. Various vegetation indices, including the Normalized Difference
Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Enhanced Vegetation
Index (EVI), the Modified Soil Adjusted Vegetation Index (MSAVI), and others, were computed and
analyzed for different crops. The Google Earth Engine (GEE) platform was utilized for validation point
sampling based on plot objects. The random forest (RF) classification method was successfully employed
to classify and identify major crops in the study area (wheat, maize, rice, and soybean), as well as
wetlands, tree cover, grassland, water, and constructed land, with an overall classification accuracy of
86%. Tree cover dominated the land cover, constituting 62%, while wheat, maize, rice, and soybeans
accounted for 7% of the total area. Of these, soybeans occupied the largest area (57,646.60 hectares),
followed by rice (53,209.53 hectares), maize (39,998.37 hectares), and wheat (8782.31 hectares). This
study demonstrated that sample selection based on plot objects facilitates efficient sample labeling,
providing insights into crop classification in other, potentially larger, areas. This method simultaneously
distinguishes wetland, cultivated land, and forest features, supporting further integrated investigations
for more natural resources.

Keywords: crop classification; food security; Sentinel-2; random forest; sample label

1. Introduction

Food security features as a priority goal within the United Nations’ Sustainable Devel-
opment Goals (SDG2). Eurasia, serving as an important producer and exporter of global
food, energy, fertilizers, and other commodities, plays a crucial role in maintaining the
stability of international food prices and ensuring global food supply. The Heilongjiang
River Basin, located in Northeast Asia and far from Europe, holds significant potential as a
crucial grain-producing region. The basin benefits from convenient water transportation
and abundant water resources, with a geographic environment and climate conducive to
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crop growth. It is rich in agricultural resources, with flat and contiguous arable land, deep
topsoil, fertile soil, and abundant species resources [1]. The Northeast China region in this
basin is one of the world’s four major black soil belts, covering an area of 1.09 million square
kilometers, with a cultivated black soil area of 185.33 million hectares [2]. Therefore, in the
face of the disruptions present in the global food supply chain, the precise monitoring and
exploitation of agricultural resources in the Heilongjiang Basin have become imperative [3].

Remote sensing is a useful tool for monitoring agricultural development in vast
regions, especially in cross-boundary areas [4,5]. Numerous studies indicate that the utiliza-
tion of time-series satellite imagery data, leveraging their temporal characteristics, has been
successful in remote sensing classification and crop identification [6–8]. Du et al. [9] utilized
Sentinel-2A multispectral data to construct Normalized Difference Vegetation Index (NDVI)
time-series datasets. Using an object-oriented classification approach, they extracted spa-
tial information from crops in Beian City, Heilongjiang Province, China, achieving an
overall accuracy of 96.2%. Jie et al. [10], relying on multi-temporal GF-I WFV remote
sensing data, employed a semi-automatic approach combining supervised classification
and visual interpretation. They extracted spatial information on crops in Tongjiang City,
Heilongjiang Province, for the year 2017, achieving an overall accuracy of 90% through
ground point measurements with GPS. Song [11] focused on Beian City, Heilongjiang
Province, utilizing the “backward exclusion” method to select GF-1A/WFV multi-temporal
spectral and spatial texture features. By employing Support Vector Machines (SVMs),
she identified soybeans, maize, wheat, and rice in the study area. This method effec-
tively addressed the constraints associated with limited temporal coverage in remote
sensing images, ensuring the comprehensive identification of the “optimal phenological
window” for crops. Han [12] utilized multi-temporal Landsat 8, Sentinel-2, and Sentinel-
1 data from May to October. Using the minimum distance method, the Classification
and Regression Tree (CART) classifier, and the random forest (RF) classifier, he extracted
spatial information for soybeans, maize, and rice in Jilin Province. Zhang et al. [13], em-
ploying the NDVI, the time-series coefficient of variation (NDVI_COVfp), and the Peak
Slope Difference Index (PSDI), proposed a new rapid mapping model for winter wheat in
Heilonggang, Hebei Province.

As a powerful cloud computing platform, Google Earth Engine (GEE) is widely
utilized for crop mapping and dynamic monitoring [14,15]. GEE allows users to access
various satellite data freely and utilize numerous built-in remote sensing image-processing
tools [16,17]. For example, Shelestov et al. [18] explored the efficiency of employing multi-
temporal remote sensing images in the GEE cloud platform for large-scale crop classification,
comparing and evaluating the extraction results and merits of various classifiers. Wang
et al. [19], utilizing all available historical images from Landsat, trained an RF classifier
in GEE to create maps of maize and soybeans in 13 states in the Midwest United States.
The overall error in the crop planting area, compared with statistics from the National
Agricultural Statistics Service, was less than 10%. Ning et al. [20] combined GEE with
multisource remote sensing data and, using the RF machine learning method, rapidly,
accurately, and efficiently extracted information on large-scale marsh wetlands in the
Heilongjiang River Basin in 2018. The overall accuracy in their study reached 91.54%,
indicating that GEE holds significant potential for applications in large-scale wetland
information extraction.
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Classification methods commonly employed in the field of remote sensing frequently
fall short of achieving satisfactory accuracy in classification problems. Those based on
multi-temporal features typically utilize machine learning techniques, such as the SVM and
RF methods, or non-supervised non-linear classifiers like deep learning. These classifiers
often interpret the various dimensions of input feature vectors as linearly independent
variables, leading to poor model interpretability. Additionally, such classifiers usually
require a large number of ground samples for model training, and the quantity and quality
of these samples directly impact the reliability of the final classification results [21]. Richard
et al. [22] used time-series MODIS (250 m) NDVI products as data sources. By analyzing the
time-series phenological characteristics of various crops, they developed two automated
decision tree (DT) classification methods that successfully extracted information on soy-
beans, maize, rice, cotton, and potatoes in the United States. Zhao et al. [23] employed the
RF method based on Sentinel-1 radar data to accurately obtain information on vegetation
species and spatial dynamics in coastal salt marsh wetlands. Zhang et al. [24] utilized
the RF algorithm and feature selection to extract information on the Yellow River Delta
wetlands. Their results indicated that the RF algorithm can effectively perform feature
selection and wetland information extraction, achieving an overall accuracy of 90.93%.

However, most of these studies primarily focused on the singular classification of small
regions and did not extensively utilize high-resolution remote sensing imagery for crop
identification. Therefore, there is a need to further enhance methods for large-scale crop
classification based on high-resolution remote sensing imagery to improve classification
accuracy. In this study, the Heilongjiang River Basin was selected as the research area,
and by leveraging the GEE cloud platform, Sentinel-2 satellite imagery was utilized as the
data source. This study employed the RF classification method to identify various crops
in the research area and extract the spatial distribution of major crops in the Heilongjiang
River Basin, including wheat, maize, rice, and soybeans, as well as wetlands, tree cover,
grassland, water, and constructed land.

2. Study Area and Data Sources
2.1. Study Area

The Heilongjiang River, as an international river, spans three countries: China, Russia,
and Mongolia. Originating from the Kherlen River in Mongolia, the Heilongjiang River
spans a total length of 5498 km, ranking as the sixth-longest river globally. The Heilongjiang
River Basin (41.72◦–55.903◦N, 108.051◦–141.128◦E) encompasses the northeastern region
of China, a significant part of the Russian Far East, and a small portion of eastern Mongo-
lia, with the majority located within the borders of China and Russia. Covering an area
of approximately 1.843 million square kilometers, the basin ranks tenth in the world in
terms of geographical size. The climate in the Heilongjiang River Basin spans two climatic
zones: temperate and cold-temperate. The basin exhibits a noticeable monsoon climate,
with an average annual temperature ranging from −8 to 6 ◦C, while the average annual
precipitation is between 250 and 800 mm. The region boasts abundant natural resources, fa-
vorable climatic conditions, and significant potential for agricultural development, making
it suitable for cultivating crops such as wheat, soybeans, rice, and maize, among others. An
overview of the research area and sample point distribution is illustrated in Figure 1.

The main types of crops in the Heilongjiang Basin include soybeans, maize, rice, and
wheat, among others. Figure 2 delineates the growing conditions of crops within the
Heilongjiang Basin.
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Figure 2. The phenological features of the main crops in the Heilongjiang Basin [25].

2.2. Data Sources

This study utilized Sentinel series satellite remote sensing images, captured from 1 July
2023 to 30 September 2023 (totaling eight scenes) at a spatial resolution of 10 m. The images
were overlaid with vector generations, which were uploaded to the GEE cloud platform first.
The Sentinel-2 satellite comprises 13 multispectral bands, including 4 bands with a 10 m
resolution, 6 bands with a 20 m resolution, and 3 bands with a 60 m resolution, as shown in
Table 1. The satellite’s orbital width is 290 km. The reflectance dataset from Sentinel-2 was
obtained from the GEE cloud platform. The provided product underwent pre-processing
steps such as radiometric calibration, geometric correction, and atmospheric correction.
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Table 1. Sentinel-2 sensor spectral bands.

Sentinel-2 Bands Wavelength (µm) Reflection (m)

Band 1: Coastal aerosol 0.443 60
Band 2: Blue 0.490 10

Band 3: Green 0.560 10
Band 4: Red 0.665 10

Band 5: Vegetation red edge 0.705 20
Band 6: Vegetation red edge 0.740 20
Band 7: Vegetation red edge 0.783 20

Band 8: NIR 0.842 10
Band 8A: Vegetation red edge 0.865 20

Band 9: Water vapor 0.945 60
Band 10: SWIR-Cirrus 1.375 60

Band 11: SWIR1 1.610 20
Band 12: SWIR2 2.190 20

2.3. Data Collection

For the domestic side in China, we used a Chinese crop cultivation dataset, which
served as a good reference for our experiments. Compared with the rich reference data in
China, we needed more field survey data from the Russian side. In August 2023, a field
survey was conducted in the research area, utilizing handheld GPS devices to collect the
coordinates of sample points for the main crops. Following the classification system of the
Heilongjiang River Basin, sample points were generated in the study area using a random
sampling approach. High-resolution images from sources such as Google Earth (in 2023)
were visually interpreted to identify the crops at the sample points. A total of 4197 samples
were obtained, with a training-to-validation ratio of 7:3. There was no overlap between the
training and validation samples. Field sampling photos for different crops are illustrated in
Figure 3.
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3. Materials and Methods

The overall technical workflow of this study is illustrated in Figure 4 and can be
broadly divided into the following three parts. (1) The research focused on rapidly acquiring
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Sentinel-2A multisource remote sensing images for the Heilongjiang River Basin from July
to September 2023 using the GEE cloud computing platform. Synthetic and clipping
operations were performed, along with the generation of training and validation sample
points, using various thematic data sources. (2) Multiple remote sensing datasets were
utilized to create various sets of classification feature variables, including spectral indices,
terrain, and texture features. Feature set selection was carried out to obtain an optimal
remote sensing classification feature set. (3) Using the selected remote sensing classification
feature set, an RF classification algorithm was employed for land cover classification. This
resulted in the identification of land cover types such as wheat, maize, soybeans, rice,
wetlands, tree cover, grassland, water, and constructed land. Simultaneously, an accuracy
assessment was conducted using validation sample points, and a brief analysis of the
spatial distribution pattern of crops in the Heilongjiang River Basin was performed.
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3.1. Feature Set Construction

For this study, Sentinel-2A spectral features, vegetation indices, water body indices,
and topographic features were selected to construct the feature set. A detailed description
of each feature is provided in Table 2.

Table 2. Feature descriptions.

Feature Variable Acronym Feature Description

Spectral characteristics B B1–B4, B8, B8a, B9–B12

Vegetation index
NDVI (B8a − B4)/(B8a + B4)
EVI 2.5 × (B8a − B4)/(B8a + 6 × B4 − 7.5×B2 + 1)

MSAVI 0.5 × (2 × B8a + 1 − sqrt((2 × B8a + 1) × (2 × B8a + 1) – 8 × (B8a − B4)))

Water index NDWI (B3 − B8a)/(B3 + B8a)

Terrain index
Elevation Elevation

Slope Slope

3.2. Random Forest Algorithm

After obtaining the optimal feature set through the selection of the crop classification
features, it was input into a random forest classifier for remote sensing crop classification
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in the Heilongjiang River Basin. The random forest algorithm, proposed by Breiman [26],
is an ensemble learning model based on a Classification and Regression Tree (CART). It
comprises a large number of decision trees constructed independently of each other. The
random forest classification algorithm exhibits excellent accuracy, and it can efficiently
operate on large datasets and handle samples with high-dimensional features.

This study employed the RF algorithm for crop classification in the Heilongjiang River
Basin. In comparison with other machine learning algorithms such as DT and SVM, RF is
more robust and user-friendly [27]. The construction process of the RF algorithm involves
the following steps. First, bootstrap non-parametric sampling is used to randomly extract
samples with replacement from the original training sample set, thereby generating a
training sample set for training a DT model. Assuming each sample has M features, at each
node of the DT, m (m < M) features are randomly selected from the M features for node
splitting. As RF is an ensemble learning method less prone to overfitting, pruning is not
required during the DT construction process [28]. These steps are repeated k times to obtain
an RF composed of DT models. The classification result for each sample is determined by a
majority vote from multiple DTs, as illustrated in Figure 5.
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The effectiveness of the RF is fine-tuned through two parameters: the number of
DTs and the number of features used per node (m). Drawing from previous research,
when the number of features is set to the following values (with a fixed number of trees at
500) [29], the change in classification accuracy is minimal: (1) one-third of the total features,
(2) the square root of the total features, (3) half of the total features, (4) two-thirds of the
total features, and (5) using all features. Therefore, following recommendations from the
literature, the number of features per node was set to the square root of the total features. In
this study, the RF algorithm provided by the GEE platform was employed, and adjustments
were made to the number of DTs.

3.3. Accuracy Evaluation

The error matrix is a commonly used tool for evaluating the accuracy of remote sensing
image classification [30]. This tool reflects the degree of proximity between the remote
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sensing classification results and the actual land cover types on the ground. Reference
indicators in the confusion matrix include overall accuracy, Kappa coefficient, user accuracy,
and mapping accuracy (producer accuracy).

The classification and accuracy validation of crops in the Heilongjiang River Basin
were conducted using a confusion matrix and sample points collected from high-resolution
images, including those from Google Earth. Computed metrics included overall accuracy,
the Kappa coefficient, mapping accuracy, and user accuracy. Overall accuracy reflects the
algorithm’s overall performance, measuring the proportion of correctly classified samples
to the total number of validation samples [31]. The Kappa coefficient indicates the degree of
consistency between ground-truth data and predicted values, remaining unchanged regard-
less of the size of the sampled data to ensure that smaller categories are not overlooked [32].
Mapping accuracy represents the probability of correctly classifying ground-truth reference
data (validation samples) for a specific category [33]. User accuracy signifies the rate at
which validation points falling into a particular category on the classification map are
correctly classified [34].

PA =
xii
x+i

× 100% (1)

UA =
xii
xi+

× 100% (2)

OA =

r
∑

i=1
xii

N
× 100% (3)

Kappa =

N ·
r
∑

i=1
xii −

r
∑

i=1
(xi+ · x+i)

N2 −
r
∑

i=1
(xi+ · x+i)

(4)

where xii is the number of correctly categorized pixels, x+i is the total number of pixels of
class i in the reference data, xi+ is the total number of pixels of class i in the land cover data
product in the verification, r is the number of types, and N corresponds to the total number
of pixels.

4. Results
4.1. Object-Level Plot Construction

When addressing the challenges of high confusion and low accuracy among crops,
sample selection for the Heilongjiang River Basin was facilitated using GEE. A crop classifi-
cation method was proposed, employing an object-level parcel construction approach. The
fundamental concept of crop classification based on parcels involves segmenting medium-
resolution current satellite imagery into numerous basic parcel units defined by parcel
boundaries. This method allows all pixels within a parcel to be collectively involved in
the classification process, maximizes the utilization of pixel space, and overcomes misclas-
sification issues caused by spectral variations within parcels. Additionally, vector data
representing parcel boundaries enable the correct spatial positioning, geometric shape, and
landscape features of parcels on the imagery to correspond to actual ground parcels. There-
fore, parcel-oriented classification effectively addresses spectral variations within parcels
and spectral mixing at parcel boundaries, commonly referred to as the “salt and pepper”
phenomenon in pixel classification. Simultaneously, this method significantly reduces the
difficulty of sample labeling, enhancing the speed of sample annotation. This approach
serves as a valuable reference for extending crop classification to larger or different regions,
as illustrated in Figure 6. Numerous studies also indicate that parcel-oriented land cover
classification methods can provide more accurate results compared with traditional pixel-
based classification methods. The concept of parcel-oriented remote sensing classification
has not only been a subject of theoretical research but has also found practical application in
China. For instance, Cheng et al. [35], utilizing GIS parcel boundary information, proposed
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a DT classification method based on grayscale features, texture features, and morphological
features within parcel boundaries for standard land use types, achieving high identification
accuracy. Wu et al. [36] employed a classification method based on segmented patches to
classify dynamically changing and complex coastal zones, leading to an improvement in
classification accuracy and demonstrating robust noise resistance. However, this method
tends to exhibit a higher probability of misclassification in road classification due to the
complexity of adjacent land features.
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Figure 6 illustrates that Sentinel-2 delivered favorable recognition results, highlighting
the potential of Sentinel-2 imagery in identifying crops. However, a certain degree of mis-
classification and omission is also evident. The selected samples include other substances
that contribute to confusion. To address this, crops such as soybeans and maize were
divided at the parcel level, followed by the application of an RF algorithm on the GEE
platform for further refinement. This not only enhanced precision but also significantly
improved the speed of sample selection.

4.2. Crop Classification

With the assistance of GEE, preprocessing was conducted on multi-temporal Sentinel-2
satellite remote sensing imagery from 2023. Various typical vegetation indices, including
the NDVI, the Normalized Difference Water Index (NDWI), the Enhanced Vegetation Index
(EVI), and the Modified Soil-Adjusted Vegetation Index (MSAVI), were calculated and
analyzed for different crops. An RF classification method was employed to classify and
identify multiple crops in the study area. This process successfully extracted information
on the spatial distribution of major crops in the Heilongjiang River Basin, including wheat,
maize, rice, and soybeans, as well as wetlands, tree cover, grassland, water, and constructed
land. The final step involved using ArcGIS for mapping. Figures 7 and 8 illustrate the crop
classification results for the year 2023; the area occupied by each land class is presented in
Table 3, while Figure 9 provides visual representations.
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Table 3. Area of the Heilongjiang River Basin occupied by each category in 2023.

Land Cover Type Area (km2) Proportion

Grassland 557,706.11 24.4%
Tree cover 1,426,354.90 62.3%
Soybeans 57,646.60 2.5%

Water 35,620.78 1.6%
Wetland 18,098.08 0.8%

Constructed land 92,187.46 4.0%
Wheat 8782.31 0.4%

Rice 53,209.53 2.3%
Maize 39,998.37 1.7%
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As shown in Table 3, overall, in 2023, the most extensive land cover type in the
Heilongjiang River Basin was tree cover, which was predominantly located in the northeast
region of the basin. This tree cover spanned 1,426,354.90 km2 and constituted 62% of the
total area of the river basin. Among several crop types, soybeans dominated, occupying
the largest area, followed by rice, wheat, and maize, covering 57,646.60 km2, 53,209.53 km2,
39,998.37 km2, and 8782.31 km2, respectively, contributing to 8% of the total basin area.
These crops were predominantly found to be distributed in the southeastern region of the
Heilongjiang River Basin.

This analysis involved visual interpretation combined with the on-site inspection of
selected validation samples and vegetation classification results derived from Sentinel-2 im-
agery. A confusion matrix was computed to evaluate the accuracy of vegetation classification,
yielding an overall accuracy of 86% and a Kappa coefficient of 0.83. Given the relatively small
proportion of wheat in the region, although the accuracy of wheat classification was lower, its
impact on the subsequent analysis of the study area was minimal.

4.3. Wetland Feature Differentiation

In the Heilongjiang River basin, the terrain is flat, with abundant wetlands, posing a
potential challenge in distinguishing them from crops. Figure 9 illustrates the classifica-
tion results for specific details: (a) represents cultivated land, (b) represents forests, and
(c) represents wetlands. The final classification results exhibit clear boundaries with min-
imal fragmentation. Compared with optical imagery, the majority of land cover types
are accurately distinguished. In Figure 9a, the predominant land cover type is cultivated
land, encompassing crops such as rice, wheat, maize, and soybeans. Cultivated land is
utilized for food production and may undergo extensive agricultural practices. Figure 9b
highlights forests as the main land cover type. Forests may have humid conditions, but
unlike wetlands, they do not emphasize water saturation, and water flow is less significant.
Upon on-site inspection, the classification aligns well with the actual conditions, yielding
satisfactory extraction results. In Figure 9c, the principal land cover type is wetlands,
characterized by high water levels and typically featuring soil that is consistently moist
or flooded. In this study, most areas were correctly identified, and the distribution of
rivers, forestry, and cultivated land within wetlands was also clearly visible. The on-site
inspection confirmed that the extraction results are consistent with the actual conditions
and are deemed satisfactory.

Preserving the ecological structure and functionality of wetlands and implementing
scientifically informed management of tidal flats are of paramount importance. These
measures contribute to achieving the harmonious development of regional socio-economic
and ecological environments [37].

5. Discussion

This study adopted a sample-point selection approach based on land parcels and
utilized the RF classification method to identify various crops in the study area. Simultane-
ously, the study distinguished land features such as wetlands, cultivated land, and forests
within the research area. This map is likely one of the higher-resolution crop classification
datasets covering the entire Heilongjiang River Basin. In contrast to research endeavors that
often focus on a specific crop type or localized area or, indeed, those that employ similar
types of research methods, this study offers several advantages.

Firstly, it was possible to obtain a fine-resolution crop classification map of the Hei-
longjiang River Basin using Sentinel-2A imagery with high spatiotemporal resolution. Previ-
ous large-scale crop type recognition studies have predominantly employed medium to low
spatial resolution imagery, which has been shown to struggle to capture the subtle features
of various crops, often resulting in a single pixel encompassing multiple vegetation types,
thereby severely constraining the accuracy of crop type recognition [38]. This study investi-
gated the extensive multispectral and multi-temporal data provided by Sentinel-2 to construct
a robust set of classification features. The importance of each feature was evaluated using a
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feature selection method. Previous studies have employed Landsat data for crop mapping
in Heilongjiang Province [39]. When compared with Landsat data, Sentinel-2 data included
additional red-edge bands, shortened revisit periods, and enhanced spatial resolution.

Secondly, in large-scale classification, a “zone classification” strategy is employed
to alleviate the adverse effects of heterogeneity in crop spectral and phenological feature
spaces on classification accuracy. The phenomena of “same object, different spectrum” and
“different object, same spectrum”, resulting from spatial heterogeneity, present a consid-
erable challenge in constructing classification models (specifically, rules). The study area
spanned two climate zones, temperate and cold-temperate, where differences in climate
background and management practices lead to noticeable intra-class differences in certain
classification features, thereby affecting model training and accuracy improvement. There-
fore, it is necessary to divide the study area into relatively homogeneous subregions. We
utilized the “Agricultural Climate Zoning Scheme” for zoning, conducting separate feature
selection and classification model training in each agricultural climate subregion. Similar
strategies have proven successful in identifying large-scale croplands and grasslands. These
approaches demonstrate that independent modeling based on homogeneous subregions
can effectively enhance the reliability of classification results.

However, this study has some limitations. Firstly, because of factors such as weather
conditions or satellite revisit cycles, it was often challenging to obtain continuous multi-
year coverage of large areas using medium to high-resolution remote sensing images.
Secondly, crop growth tends to be highly variable over a short period, and the selection
of sampling points and parameters at a single stage can lead to large uncertainties in
mapping accuracy. In future studies, we will consider the fusion of Sentinel-2 imagery
with other remote sensing data sources in order to fully explore the spectral, textural, and
phenological characteristics of land features, thereby further enhancing the accuracy of crop
identification. We plan to retrieve and analyze multi-period cropland spatial distribution
and temporal dynamic changes to provide a basis for the optimal allocation of cropland
natural resources in the transboundary basin of the Heilongjiang River.

6. Conclusions

This study leveraged the powerful computational capabilities of GEE and high-spatial-
resolution remote sensing data collected by Sentinel satellites. The study focused on the
Heilongjiang River Basin, and various typical vegetation indices, including the NDVI, the
NDWI, the EVI, and the MSAVI, were computed and analyzed. Sampling was conducted
on the GEE platform using parcels as unit samples. The RF classification method was
employed to identify various crops in the study area, successfully extracting the spatial
distribution of major crops (wheat, maize, rice, and soybean), as well as wetlands, tree
cover, grasslands, water, and constructed land, in the Heilongjiang River Basin. The results
indicate the following: (1) The overall classification accuracy of RF reaches 86%, with a
Kappa coefficient of 0.83. (2) In 2023, the primary land cover type in the Heilongjiang
River Basin was tree land, predominantly distributed in the northeast region, covering an
extensive area of 1,426,354.90 km2. Among several crops, soybeans occupied the largest
land area, followed by rice, wheat, and maize, totaling 8%, with land areas of 57,646.60 km2,
53,209.53 km2, 39,998.37 km2, and 8782.31 km2, respectively. These crops were mainly
distributed in the southeast region of the Heilongjiang River Basin. (3) Concerning sample
selection, the study adopted a parcel-based approach, significantly reducing the difficulty
of sample annotation and accelerating the sample labeling process. The parcel-level sample
annotation strategy facilitates more convenient sample creation. (4) The differentiation of
wetland, forestry, and cultivated land results in clear boundaries in the final classification
results, with minimal fragmentation. Compared with optical imagery, most land cover
types were accurately distinguished. Protecting the ecological structure and functionality
of wetlands has positive implications for achieving coordinated development between
regional socio-economic and ecological environments.
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