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Abstract: It is crucial to detect and classify industrial heat sources for sustainable industrial devel-
opment. Sustainable Development Science Satellite 1 (SDGSAT-1) thermal infrared spectrometer
(TIS) data were first introduced for detecting industrial heat source production areas to address the
difficulty in identifying factories with low combustion temperatures and small scales. In this study, a
new industrial heat source identification and classification model using SDGSAT-1 TIS and Landsat
8/9 Operational Land Imager (OLI) data was proposed to improve the accuracy and granularity
of industrial heat source recognition. First, multiple features (thermal and optical features) were
extracted using SDGSAT-1 TIS and Landsat 8/9 OLI data. Second, an industrial heat source identifi-
cation model based on a support vector machine (SVM) and multiple features was constructed. Then,
industrial heat sources were generated and verified based on the topological correlation between
the identification results of the production areas and Google Earth images. Finally, the industrial
heat sources were classified into six categories based on point-of-interest (POI) data. The new model
was applied to the Beijing–Tianjin–Hebei (BTH) region of China. The results showed the following:
(1) Multiple features enhance the differentiation and identification accuracy between industrial heat
source production areas and the background. (2) Compared to active-fire-point (ACF) data (375 m)
and Landsat 8/9 thermal infrared sensor (TIRS) data (100 m), nighttime SDGSAT-1 TIS data (30 m)
facilitate the more accurate detection of industrial heat source production areas. (3) Greater than
2~6 times more industrial heat sources were detected in the BTH region using our model than were
reported by Ma and Liu. Some industrial heat sources with low heat emissions and small areas
(53 thermal power plants) were detected for the first time using TIS data. (4) The production areas
of cement plants exhibited the highest brightness temperatures, reaching 301.78 K, while thermal
power plants exhibited the lowest brightness temperatures, averaging 277.31 K. The production areas
and operational statuses of factories could be more accurately identified and monitored with the
proposed approach than with previous methods. A new way to estimate the thermal and air pollution
emissions of industrial enterprises is presented.

Keywords: industrial heat sources; production area; multiple features; SDGSAT-1 TIS;
Beijing–Tianjin–Hebei

1. Introduction

Industrial heat source production areas are areas where waste heat is generated and
emitted as a result of the operation of industrial heat sources, such as the smelting and
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rolling of nonferrous metals, cement production, oil refining, oil exploration, and chemical
processing [1,2]. The development of industrial heat sources, requiring vast amounts of
basic materials and equipment, is a significant driving force for national development.
However, the large amount of industrial heat source emissions can significantly exacerbate
air pollution [3–5]. Direct industrial emissions account for 21% of the global carbon dioxide
emissions related to fossil fuels, with the steel industry being the highest emitter, con-
tributing 5% of fossil fuel-related greenhouse gas emissions [6]. Moreover, anthropogenic
CO2 emissions from cement production constitute ~8% of global CO2 emissions [7,8]. This
not only impacts human health and quality of life but also causes long-term damage to
the natural environment [9,10]. Therefore, establishing a comprehensive, accurate, and
detailed inventory of industrial heat sources can aid in assessing air pollution, supporting
environmental monitoring, analyzing energy consumption, assisting in industrial decision
making, and implementing reform measures.

The complex spatial distribution and large number of industrial heat sources necessi-
tate the use of remote sensing methods as alternatives to traditional approaches for obtain-
ing relatively accurate information [11,12]. Currently, satellite remote sensing monitoring
is being applied in various fields, such as tracking the expansion of urban construction [13],
changes in forest cover [14], radiant emissions from urban nighttime lighting [15], and heat
release activities in industrial areas [16]. Thermal infrared sensors can capture radiation
energy differences caused by temperature variations, making them suitable for monitoring
thermal emissions produced by industrial heat source production activities [17,18]. Sev-
eral thermal infrared sensors, such as the Advanced Very High Resolution Radiometer
(AVHRR), the Along Track Scanning Radiometer (ATSR) and Advanced ASTR (AATSR),
the Visible and Infrared Scanner (VIRS), the Moderate Resolution Imaging Spectrometer
(MODIS), the Visible Infrared Imaging Radiometer Suit (VIIRS), the Landsat 8/9 Thermal
Infrared Sensor (TIRS), and the Sentinel-3 Sea and Land Surface Temperature Radiometer
(SLSTR) [19–22], are available for generating heat-related products. These products are
mostly used for identifying heat sources such as wildfires, agricultural burning, and volca-
noes [23–26]. Only a few of these products are used for the identification and monitoring
of industrial heat sources. In most of the existing related research, high-resolution optical
remote sensing imagery [27,28] and thermal anomaly products were used for detecting
and monitoring industrial heat source variations in large-scale areas [29–31]. Guo et al. [27]
and Chen et al. [28] employed remote sensing imagery to explore the industrial layout
of steel mills and the production equipment used. However, it remains challenging to
determine whether a factory is in operation, and it is even more difficult to estimate heat
emissions during the production process. Accurate industrial heat source detection using
thermal infrared remote sensing data provides an objective and suitable way to identify
and monitor industrial heat sources at a large scale [32–34]. Therefore, an increasing num-
ber of scholars have used thermal infrared remote sensing data or thermal anomalies to
detect heat emissions from factories. Baugh used NPP VIIRS nighttime thermal anomaly
data to detect the temporal and spatial distributions of natural gas flaring from 2012 to
2015 [35]. Elvidge et al. used the VIIRS Nightfire (VNF, 750 m) product to obtain the spatial
locations of global natural gas flaring and found that the majority of natural gas flaring
occurs primarily in upstream production areas [36]. Tkachenko et al. used Sentinel 2 data,
acquired global cement plant locations, and described the characteristics of the cement
production assets and their upstream suppliers [37]. However, their focus was predomi-
nantly on detecting specific types of factories or burning areas, and they did not monitor
other categories of industrial heat sources. Liu first adopted the VIIRS VNF, combined
with spatiotemporal temperature information, for the identification and classification of
multiple classes of industrial heat sources [29]. Later, Ma introduced high-spatial-resolution
VIIRS active-fire-point (ACF) data (375 m) and employed an enhanced adaptive K-means
algorithm to detect industrial heat sources in small areas [30]. However, the temperature
range of the VIIRS VNF product used by Liu for detecting thermal anomalies in industrial
heat sources was 500–2500 K, and confidence in detection at temperatures below 500 K was
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relatively low [29]. In addition, the VIIRS ACF product used by Ma can be used to detect
the temperature of thermal anomalies ranging from 400 to 1200 K [38]. When the VNF or
ACF product is used, smaller or cooler industrial heat sources might be overlooked. Using
Landsat 8 thermal infrared sensor (TIRS) data and GF-2 image data, Zhou calculated the
temperature difference between the main production areas and other regions to assess the
economic activities of steel mills [39]. Han expanded upon Zhou’s work and studied the
seasonal, long-term production status of steel mills [34]. However, they studied only the
production activities of factories and did not provide a method for detecting factories. Kato
et al. used Landsat 8 OLI and Sentinel-2 MSI data to detect and classify global heat sources,
from which numerous plants as small as a few square meters were obtained. The afore-
mentioned studies were able to detect only the general locations of factories and could not
identify the locations of the production areas within these factories. Therefore, a detection
method that can be used to precisely identify industrial heat sources and production areas
at lower temperatures and smaller scales is needed.

The launch of the Sustainable Development Science Satellite 1 (SDGSAT-1) offered
a new approach for identifying industrial heat sources. Among the thermal infrared
data types, SDGSAT-1 thermal infrared spectrometer (TIS) data exhibit the highest spatial
resolution in civilian use and have been widely applied in tasks such as target detection
and monitoring [40–42]. Therefore, in this study, SDGSAT-1 TIS data were first introduced
to identify industrial heat sources and production areas, aiming to address the issues of
the insufficient spatial precision in identifying industrial heat sources and the insensitivity
to low-heat emission sources. The identification of new industrial heat source production
areas and an industrial heat source classification model using SDGSAT-1 TIS and Landsat
8/9 Operational Land Imager (OLI) data were proposed. First, multiple features (combining
thermal and optical features) were extracted using SDGSAT-1 TIS and Landsat 8/9 OLI
data. Second, an industrial heat source production area identification model based on a
support vector machine (SVM) and multiple features was constructed. Then, industrial heat
source objects were generated and verified based on the topological correlation between
the industrial heat source production area identification results and Google Earth images.
Finally, the industrial heat source objects were classified into six categories based on point-
of-interest (POI) data and high-resolution image data. The new model was applied to the
Beijing–Tianjin–Hebei (BTH) region in China. The results showed that our new model could
be employed to accurately identify industrial heat sources and production areas. This study
supports a new way to effectively monitor and evaluate the operational statuses and heat
emissions of industrial heat sources at a large scale. This approach can be used to estimate
the heat emissions of industrial heat sources and it provides support for the industry to
adjust its factory production and operation strategies and plans in a timely manner.

Descriptions of the study area, data sources, and methods used in this paper are
provided in Section 2. The categorical characteristics and spatial distributions of the
industrial heat sources identified by our new method are described in the Results Section.
Third, an error analysis and comparative evaluation of industrial heat source production
areas detected from three thermal infrared datasets and existing industrial heat source data
are performed, and the significance and limitations of the study are discussed. Finally, the
main conclusions are drawn in the last Section.

2. Materials and Methods
2.1. Study Area

The BTH region mainly comprises 13 cities and 200 districts and counties in the Bei-
jing, Tianjin, and Hebei provinces (as shown in Figure 1). Located in the northern part
of the North China Plain, the BTH region extends from 113◦27′E to 119◦50′E longitude
and from 36◦05′N to 42◦40′N latitude. The region has a total population of 141.26 million
people (2021) and a total area of approximately 217,200 km2. As of 2020, Beijing encom-
passes 16 municipal districts, while Tianjin also comprises 16 municipal districts. The
administrative division of Hebei Province is complex, consisting of 47 municipal districts,
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27 county-level cities, and 94 counties. In the BTH region, Beijing serves as the core city,
with Tianjin, Shijiazhuang, Tangshan, Baoding, and Handan functioning as regional central
cities. Langfang, Cangzhou, Hengshui, Xingtai, Qinhuangdao, Zhangjiakou, and Chengde
function as nodal cities, forming a regional development pattern characterized by one core,
two cities, three axes, four areas, and multiple nodes.
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Figure 1. Location of BTH region.

In 2021, the total gross domestic product (GDP) of the BTH region reached approxi-
mately CNY 9.6 trillion, accounting for 8.43% of the national GDP [43]. The BTH region,
as an essential base for China’s manufacturing and modern industry, has attracted many
energy-intensive and highly polluting industries. It is facing severe environmental pollu-
tion problems [44,45]. Between October and December 2020, the average fine particulate
matter (PM2.5) concentration in Beijing, Tianjin, Hebei, and adjacent regions was restricted
to less than 63 µg/m3 [46]. The average number of days of high pollution in these cities
was limited to five days a year, yet the region continues to experience pronounced haze
pollution [46].

2.2. Data Sources
2.2.1. SDGSAT-1 TIS Product

The SDGSAT-1 satellite is the first global sustainable satellite dedicated to the United
Nations’ 2030 Agenda for Sustainable Development Goals (SDGs) developed by the Chinese
Academy of Sciences [47]. It carries three payloads: a multispectral imager (MII), a TIS, and
a glimmer imager (GIU) [48]. Its primary objective is to investigate the interrelationship
between human activities and the natural environment. SDGSAT-1 operates in a sun-
synchronous orbit at an altitude of 505 km and an inclination of 97.5◦, with a local time of
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9:30 AM for the descending node and a revisit cycle of 11 days. The primary technical and
performance indices of the SDGSAT-1 satellite are provided in Table 1.

Table 1. Technical and performance indices of SDGSAT-1.

Sensor Type Wavelength (µm) Spatial Resolution (m) Imaging Swath Width (km) Designed Radiometric Accuracy

MII

B1: 0.38~0.42

10 300 Relative: 2%
Absolute: 5%

B2: 0.42~0.46
B3: 0.46~0.52
B4: 0.52~0.60
B5: 0.63~0.69

B6: 0.765~0.805
B7: 0.805~0.90

TIS
B1: 8~10.5

30 300 Relative: 5%
Absolute: 1 K@300 K

B2: 10.3~11.3
B3: 11.5~12.5

GIU

P: 0.45~0.90 10

300 Relative: 2%
Absolute: 5%

B: 0.43~0.52
40G: 0.52~0.615

R: 0.615~0.69

The TIS is currently China’s highest-resolution civil on-orbit thermal infrared imager
and it exhibits the world’s highest swath-to-resolution ratio [49]. It provides three infrared
bands, namely, B1 (8.0~10.5 µm), B2 (10.60~11.19 µm), and B3 (10.50~12.51 µm) [50], and
can detect differences with an accuracy for the noise equivalent differential temperature
(NEDT) of less than 0.041 K @ 300 K at a spatial resolution of 30 m. The TIS is more
precise than the Landsat satellite, which provides an NEDT of 0.047 K @ 300 K, with a
100 m spatial resolution, and it outperforms the MODIS, which provides an NEDT of
0.05 K @ 300 K, with a 1000 m spatial resolution [51]. During the commissioning phase
of the TIS, analysis revealed that the NEDT values for the B1, B2, and B3 bands were
0.034, 0.047, and 0.076 K, respectively [52]. Specifically, the B1 band exhibits fewer strip
noise issues (i.e., signal fluctuations in sensor scans caused by detector noise) than the
other two bands (B2 and B3) [53]. The B2 and B3 bands are commonly used for retrieving
surface temperatures in two split-window channels. In contrast, the B1 band is not typically
used in infrared observational missions. The B1 band, exhibiting a wavelength range
of 8.0–10.5 µm, is often used in combination with the B2 and B3 bands to enhance the
accuracy of the surface temperature estimation through the application of a three-channel,
split-window algorithm [52]. Liu et al. showed that the three-band approach outperforms
the two-band method, achieving a root-mean-square error of less than 1 K [54].

Considering that the integration of the above three bands enables more precise surface
temperature inversion and environmental monitoring, all three bands of the SDGSAT-1
TIS were used in this study for industrial heat source detection. Nighttime data are more
accurate for detecting heat sources than daytime data because of the relatively stable
background conditions, and the influence of solar radiation on high-temperature objects is
limited [38]. Therefore, SDGSAT TIS cloudless data were collected in the evening. Complete
coverage of the BTH region by TIS data requires nine image scenes, and the corresponding
information is provided in Table 2.
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Table 2. Information on the satellite data and derived products used in this study.

SDGSAT-1 TIS Landsat 8 OLI Landsat 9 OLI

3 January 2022 13:19:42 19 April 2022 02:53:12 28 March 2022 02:41:45

13:19:13 02:53:36 02:41:22

Date and time (UTC)

13:18:43 26 April 2022 02:59:44 2 April 2022 03:00:42

20 February 2022 13:31:21 02:59:20 18 April 2022 02:59:22

13:30:51 3 May 2022 03:05:57 22 May 2022 02:47:54

13:30:21 03:05:33 02:47:30

13:30:21 21 May 2022 02:54:31 02:47:06

25 April 2023 13:18:19 02:54:07 02:46:43

13:17:49 28 May 2022 03:00:17 27 May 2022 03:06:26

30 May 2022 02:48:21

2.2.2. Landsat 8/9 OLI Product

The Landsat 8 and 9 satellites were launched on 11 February 2013 and 27 September
2021, respectively [55,56]. Landsat 8 carries the OLI with a spatial resolution of 30 m and
a TIS with a 100 m resolution, while Landsat 9 carries OLI-2 and TIRS-2. The Landsat
8/9 constellation operates in a sun-synchronous orbit at an altitude of 705 km and an
inclination of 98.2◦, with a revisit cycle of 16 days. The radiometric resolution of Landsat
8 is 12 bits, that of Landsat 9 is 14 bits, and the area covered by each Landsat 8/9 image
scene is 185 × 185 km2 [57]. Landsat 8/9 satellite information is listed in Table 3. Landsat
8/9 data can be applied in various scientific domains, such as environmental monitoring,
agriculture, and urban planning, offering essential information for Earth observation.

Table 3. Information on the Landsat 8/9 satellite system.

Items Parameters

Landsat
satellite 8 9

Launch 11 February 2013 27 September 2021

Sensors OLI/TIRS OLI-2/TIRS-2

Revisit cycle 16 d 16 d

Width 185 km 185 km

Radiometric
resolution (bits) 12 14

Spectral
(spatial)

resolution

Pan 500~680 nm 15 m Pan 500~680 nm 15 m

Blue
433~453 nm

30 m

Blue 430~450 nm

30 m

450~515 nm 450~510 nm

Green 525~600 nm Green 530~590 nm

Red 630~680 nm Red 640~670 nm

Near infrared (NIR) 845~885 nm NIR 850~880 nm

Shortwave infrared (SWIR)

1560~1660 nm

SWIR

1570~1650 nm

1360~1390 nm 1360~1380 nm

2100~2300 nm 2110~2290 nm

TIRS
10,600~11,190 nm

100 m TIRS
10,600~11,190 nm

100 m
11,500~12,510 nm 11,500~12,510 nm
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In 2017, the U.S. Geological Survey (USGS) adopted Collection for data, software, and
algorithm update management and reprocessed all the archived Landsat data, including
Landsat-8 data, into the Collection-1 (C1) format. In December 2020, the USGS updated and
reprocessed the entire Landsat archive to conform to the Collection-2 (C2) format. Landsat
8/9 C2 Level-2 products are created by applying extra corrections to Level-1 products
to eliminate atmospheric effects that vary over time, space, and spectrum. Level-2 data
can be directly adopted in quantitative research applications, while Level-1 data, which
are subjected only to geometric rectification, necessitate radiometric calibration for use
in scientific studies [58]. Landsat 8/9 OLI data are suitable for detecting industrial heat
sources because they exhibit the same spatial resolution as SDGSAT-1 TIS data and a stable
data quality. Therefore, we chose 19 image scenes from the Collection-2 Level-2 product
that were temporally aligned with SDGSAT-1 TIS data and exhibited a cloud coverage
lower than 10% to achieve comprehensive spatial coverage of the entire BTH region.

2.2.3. POI Data

Geospatial big data, represented by POIs, provide new concepts for studying the
urban spatial distribution and structure [59]. Notably, points, lines, and area structures
with categorical attributes are used to abstractly express geographical entities such as
factories and supermarkets [60]. Currently, POI data can be obtained from various mapping
services and social media platforms, such as Google Maps, AutoNavi, Baidu Maps, Yelp,
and Foursquare [61]. These platforms provide a wealth of geographical information
resources that are extensively used in various fields, ranging from business analytics
to urban planning. In this paper, POI data obtained from the Amap database via an
open application programming interface (API) (https://lbs.amap.com/api/webservice/
guide/api/search, (accessed on 29 August 2023)) are used to classify industrial heat source
objects. Amap is one of the largest web-mapping, navigation, and location-based service
(LBS) platforms in China; it hosts a vast and detailed database that includes geographical
information, road networks, POI information, and various traffic data. The Amap POI
database provides comprehensive and categorized data for various POIs in China, such
as dining services, shopping facilities, entertainment and leisure facilities, cultural and
educational institutions, public facilities, financial and insurance facilities, real estate
facilities, companies and enterprises, transportation facilities, and medical and healthcare
service facilities. This study utilizes POI data specifically from the category of companies
and enterprises.

2.2.4. Auxiliary Data

The coordinate system used for the spatial calculations and analyses was the standard
Universal Transverse Mercator coordinate system of 50◦N based on the WGS84 datum.
High-resolution (0.5 m) optical images acquired from Google Earth were used to identify
the main production areas and validate the reliability of the industrial heat source products.
The NPP-VIIRS active-fire/hotspot (ACF) dataset was used for comparative data analysis
and to determine the operational statuses of industrial heat sources. Two industrial heat
source inventories from Ma [30] and Liu [29] were adopted for comparison with the
detection results. The information for the datasets used in this paper is presented in Table 4.

2.3. Methods

The framework of the workflow in this paper is shown in Figure 2. The workflow
includes five steps: data preprocessing, multifeature extraction, model construction for
industrial heat source production area identification, industrial heat source and production
area identification, and industrial heat source classification and validation.

https://lbs.amap.com/api/webservice/guide/api/search
https://lbs.amap.com/api/webservice/guide/api/search


Remote Sens. 2024, 16, 768 8 of 28

Table 4. Information on the datasets used in this paper.

Dataset Name Period Resolution Website

SDGSAT-1 TIS product 2022–2023 30 m http://124.16.184.48:6008 (accessed on 2 July 2023)

Landsat 8/9 OLI product 2022 30 m https://www.usgs.gov (accessed on 3 July 2023)

POI data 2023 Points
open API of Gaode Maps

(https://lbs.amap.com/api/webservice/guide/api/search
(accessed on 29 August 2023))

NPP-VIIRS active-fire/hotspot data
(ACF) 2022 375 m https://firms.modaps.eosdis.nasa.gov/ (accessed on 9

September 2023)

High-resolution optical images / 0.5 m Google Earth (https://www.google.cn (accessed on 8 July 2023))

Industrial heat source
datasets

Liu’s
datasets 2018 Polygon https://doi.org/10.1016/j.rse.2017.10.019 (accessed on 9

October 2023)

Ma’s
datasets 2018 Polygon https://doi.org/10.3390/su10124419 (accessed on 7 July 2023)

BTH administrative divisions 2020 Polygon https://www.webmap.cn (accessed on 18 June 2023)
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2.3.1. Data Preprocessing

A reduced geometric positioning error contributes to enhancing the accuracy of image
analysis and processing. The SDGSAT-1 TIS L4A/L4B products and Landsat 8/9 OLI
C2 Level-2 science products (L2SP) used in this study have already been geometrically
corrected [62]. Radiometric calibration, a basic processing step for remote sensing images,
involves converting the digital numbers (DNs) captured by satellite sensors into metrics
such as the radiance, reflectance, or brightness temperature at the sensor level [63].

http://124.16.184.48:6008
https://www.usgs.gov
https://lbs.amap.com/api/webservice/guide/api/search
https://firms.modaps.eosdis.nasa.gov/
https://www.google.cn
https://doi.org/10.1016/j.rse.2017.10.019
https://doi.org/10.3390/su10124419
https://www.webmap.cn
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In this study, radiometric calibration based on parameters sourced from the data file
was employed to convert the SDGSAT-1 TIS data. The spectral radiance of the SDGSAT-1
TIS data was calculated using Equation (1):

Lλi = MLi ∗ Qcali + ALi, (1)

where Lλi is the spectral radiance value of the ith band (W/(m2 × sr × µm); i denotes the
band identification number of the SDGSAT-1 TIS; MLi and ALi are the gain and migration
parameters, respectively, which can be obtained from the corresponding *.calib.xml file;
and Qcali is the DN value of the band.

To derive surface reflectance values from the Landsat 8/9 OLI C2 Level-2 data, the
reflectance data should be multiplied by a scaling factor of 0.0000275 and then increased by
a constant of −0.2 [64].

2.3.2. Multifeature Extraction

In this study, seven thermal features and three optical features were extracted to dis-
tinguish industrial heat source production areas and nonindustrial heat source production
areas in the BTH region. Although thermal features are the most prominent characteristic
of industrial heat source production areas, relying solely on these features is insufficient
for distinguishing industrial heat source production areas from water bodies and roads.
Research has indicated that optical features, based on the visible and near-infrared spectral
range characteristics of an object or area, can support the effective differentiation of various
land cover types [65]. Therefore, thermal and optical features were combined to identify
industrial heat source production areas.

1. Thermal Features

The designed thermal features included the satellite brightness temperature and
thermal radiation indices. The satellite brightness temperature comprises three parts: the
atmospheric upward radiation brightness, the real radiation brightness of the ground after
passing through the atmosphere to reach the satellite sensor, and the energy reflected by
the downward atmospheric radiation that reaches the ground [66]. The satellite brightness
temperatures of the thermal infrared bands within the atmospheric windows are similar
to the actual surface temperatures [67]. The three bands of the SDGSAT-1 TIS are all
located within the atmospheric windows. Therefore, the SDGSAT-1 TIS satellite brightness
temperature can, to a certain extent, reflect the relative surface temperatures of different
cover types on the Earth’s surface. The satellite brightness temperature of each band of the
SDGSAT-1 TIS can be calculated with Equation (2):

SBTBi =
hc

λi × k × ln
(

1 + 2hc2

Lλi×u5

) , (2)

where SBTBi is the satellite brightness temperature of the ith band of the SDGSAT-1
TIS (K); h is the Planck’s constant (6.626 × 10−34J·S); and k is the Boltzmann’s constant
(1.38 × 10−23J/S). Moreover, c is the speed of light in a vacuum (2.998 × 108 m/s), and λi
is the central wavelength of the emitted radiation band (i) (µm).

Due to the temporal differences in the SDGSAT-1 TIS data used in this study and
considering the spatial distribution characteristics of industrial heat source production
areas, a normalization method was used to mitigate or eliminate the effects of varying times
and seasons without changing the spatial distribution of the data [39]. This approach can
accurately reflect the spatial distribution characteristics of industrial heat source production
areas, as expressed in Equation (3):

SBTBr =
SBTBa − SBTBmin

SBTBmax − SBTBmin
, (3)
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where SBTBr is the relative SBTB, SBTBa is the absolute SBTB, and SBTBmin and SBTBmax are
the minimum and maximum SBTB values, respectively.

Four thermal radiation indices (RIs) were proposed using both the satellite brightness
temperature and the near-infrared band of the Landsat 8/9 OLI to characterize the temper-
ature difference between given industrial heat source production areas and the background.
First, in industrial heat source production areas, the thermal radiation intensity in Band 2
was greater than that in Band 1, and the thermal radiation intensity in Band 1 was greater
than that in Band 3. Then, RI1 and RI2 were constructed to highlight the differences among
these three bands and balance the influence of the atmospheric conditions using normalized
difference indices. The RI1 and RI2 formulas combine the use of SBTB1, SBTB2, and SBTB3,
which enhance the intensity of the thermal radiation from industrial heat sources in differ-
ent wavelength bands and background regions. To enhance the differences in land cover
types among these three bands and increase the sensitivity of the NIR band to changes in
different feature characteristics, a reflectance value based on the NIR was introduced to
construct RI3 and RI4, which are similar to the thermal anomaly index (TAI) [68]. These
indices can be calculated as follows:

RI1 =
SBTB2 − SBTB1

SBTB2 + SBTB1
, (4)

RI2 =
SBTB3 − SBTB1

SBTB3 + SBTB1
, (5)

RI3 =
SBTB2 − SBTB1

ρnir
, (6)

RI4 =
SBTB3 − SBTB1

ρnir
, (7)

where SBTB1, SBTB2, and SBTB3 are the satellite brightness temperatures of Bands 1, 2, and
3, respectively, of the SDGSAT-1 TIS, and ρnir is the reflectance value based on the NIR
band of the Landsat 8/9 OLI data.

2. Optical Features

While thermal characteristics are the primary features of industrial heat sources, water
bodies and certain land surfaces with high heat capacities also experience relatively high
temperatures and thermal radiation at night [69]. Therefore, relying solely on thermal char-
acteristics may not aid in effectively distinguishing between industrial and nonindustrial
heat sources. Hence, additional features must be incorporated to enhance the differentiation
between industrial heat sources and background areas. Optical features possess unique
advantages in differentiating surface cover types. The integrated application of thermal
and optical features can significantly enhance the identification and distinction capabilities
of industrial heat sources and their background areas, thereby optimizing the accuracy of
monitoring and analysis.

The optical features mainly include color, texture, shape, and spectral information [70].
These features are commonly used in fields such as image analysis and interpretation,
object identification, and environmental monitoring [71,72]. The normalized difference
vegetation index (NDVI), normalized difference built-up index (NDBI), and normalized
difference water index (NDWI), which are derived from analyzing reflectance values at
different wavelengths, are three important and widely applied optical feature indices used
to analyze and monitor various aspects of the Earth’s surface [73,74]. Therefore, these
typical spectral information features (NDVI, NDBI, and NDWI) were used to distinguish
industrial heat source production areas from other land cover types in this study, aiming to
accurately identify industrial heat source production areas. Because the SDGSAT-1MII data
do not provide the mid-infrared band information needed for calculating the NDBI, stable
Landsat 8/9 OLI data with the same spatial resolution as that of the SDGSAT-1 TIS data
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were chosen to extract the features of the NDVI, NDBI, and NDWI. These optical features
can be calculated as follows:

NDVI = (ρnir − ρr)/(ρnir + ρr), (8)

NDBI = (ρswir–ρnir)/(ρswir + ρnir), (9)

NDWI =
(
ρg–ρnir

)
/
(
ρg + ρnir

)
, (10)

where ρnir, ρr, ρswir, and ρg are the reflectance values based on the near-infrared, red,
mid-infrared, and green bands, respectively, of the Landsat 8/9 OLI data.

2.3.3. Industrial Heat Source Production Area Identification Model Based on SVM

An SVM is a powerful mathematical computational model used for classification
tasks. As supervised learning models, SVMs (with a strong statistical foundation and high
efficiency) have been used in both the regression and classification fields [75]. They can map
the input sample space to a high-dimensional feature space using core mapping, which
allows them to overcome traditional machine learning issues, such as dimensional disasters
and overfitting problems [76]. Additionally, they provide significant benefits for resolving
small-sample, nonlinear, and high-dimensional identification problems. Therefore, an
SVM was used to construct an industrial heat source production area identification model.
First, sample points from the BTH region, including industrial heat source production
area (positive) and nonindustrial heat source production area (negative) samples, were
established using SDGSAT-1 satellite brightness temperature and high-resolution images.
Industrial heat source production area samples corresponded to anomaly points with high
thermal radiation according to SDGSAT-1 satellite brightness temperature data in industrial
areas. The nonindustrial heat source production area (negative) samples corresponded to
background areas. Then, multiple features of the sample points, as outlined in Section 2.3.2,
were extracted. Second, an industrial heat source production area identification model
was developed based on an SVM using the sample set, with the training and test sam-
ples randomly distributed at an 8:2 ratio. The training samples were utilized for model
construction, while the test samples were employed to evaluate the quality and reliability
of the model. Finally, an industrial heat source production area identification model was
constructed for BTH.

2.3.4. Industrial Heat Source and Production Area Identification

In the process of heat source and production area identification, there were two steps.
First, industrial heat source production areas in the BTH region were identified using
the industrial heat source production area identification model and multiple features of
the BTH region. The identified industrial heat source production areas were production
facilities or production areas at factories in operation. In addition, a single factory may
comprise multiple industrial heat source production areas, and identifying industrial heat
sources was necessary to obtain a comprehensive list of factories. Therefore, industrial heat
source objects were generated based on topological correlation and the identification of
industrial heat source production areas. Finally, the industrial heat source objects were
obtained through manual screening and verification using Google Earth images.

2.3.5. Industrial Heat Source Classification and Validation

The identified industrial heat source objects were classified and validated by POI data
and high-resolution image data. First, 310,879 valid POI data points were obtained and
filtered based on the “company enterprise” category. Then, the place name attributes of the
POIs were assigned to the industrial heat source objects based on the spatial relationship
between the POI data and industrial heat source objects. Based on the keywords of the place
names and widely used industrial classification standards in China, the industrial heat
source objects were divided into six categories: cement plants, steel plants, coal chemical
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plants, oil and gas development plants, thermal power plants, and other plants. The
keywords used are listed in Table 5.

Table 5. Keywords used for industrial heat source categorization.

Category Keywords

Cement plants Cement

Steel plants Steel Foundry Smelting Casting Metal products

Coal chemical plants Coal chemical Coking Coke making Coal Coal gas

Oil and gas development plants Petroleum Natural gas Energy Petrochemical Chemical industry

Thermal power plants Thermal power

Other plants New energy Building materials Lime Concrete ...

Finally, the identification and classification results for the industrial heat source objects
were manually verified based on Google Earth and historical images. The remote sensing
image characteristics of the different categories of industrial heat source objects are as
follows, and examples of the objects of each type are shown in Figure 3: (1) Cement plants:
Cement plants are often located in mountainous areas where stone mining can easily be
performed. Generally, the production facilities of cement plants include raw material
storage yards, crushing workshops, raw material silos, clinker silos, calcining facilities
(shafts and rotary kilns), cement silos, etc. (2) Steel plants: the production facilities of steel
plants generally include sintering facilities, ironmaking facilities, steel-rolling areas, storage
areas, gas storage tanks, and others. (3) Coal chemical plants: Coal chemical plants are
typically located in areas rich in coal and have convenient transportation infrastructure and
an abundant energy supply. The operational areas at coal chemical plants generally include
coal preparation areas, coking zones, purification zones, and dry-quenching areas. (4) Oil
and gas development plants: Oil and gas development plants are generally located away
from residential areas. The production areas of these plants primarily include coking areas,
crude-oil tank areas, boiler sections, catalytic cracking zones, hydrogenation processing
areas, etc. (5) Thermal power plants: Thermal power plants usually operate near cities or
industrial zones to facilitate energy transmission and minimize energy loss. The production
facilities mostly include combustion chambers, boilers, steam turbines and generators, cool-
ing towers, and electrical and thermal transmission facilities. (6) Other plants: Other plants
encompass all industrial heat sources that do not fall within the previously mentioned
five categories; these plants cover a wide range of production activities across various
industries, such as new energy plants and building material factories. Moreover, this
category includes factories for which the heat source category cannot be determined due to
the absence of POI data or the insufficient resolution of remote sensing images.
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Figure 3. Remote sensing images of different types of industrial heat sources. 
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3. Results
3.1. Validation of Industrial Heat Source Production Areas Identified Using Multiple
Features and SVM

To validate the effectiveness of identifying industrial heat source production areas
using multiple features and an SVM, we conducted experiments with five different sets of
feature combinations, as detailed in Table 6. The Landsat 8/9 optical features (L8/9 OFs)
were only from Landsat 8/9 OLI data; the Landsat 8/9 temperature features (L8/9 TFs)
were only from Landsat 8/9 TIRS data; the SDGSAT-1 thermal features (SDG TFs) were
only from SDGSAT-1 TIS data; the Landsat 8/9 optical and temperature features (L8/9
OFs and TFs) were both from Landsat 8/9 OLI and TIRS data; and the Landsat 8/9 optical
features and SDGSAT-1 thermal features (L8/9 OFs and SDG TFs) were from Landsat 8/9
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OLI data and SDGSAT-1 TIS data. The L8/9 TF was the surface temperature derived from
Landsat 8/9 Band 10.

Table 6. Information for different combinations of features.

Feature Combination Abbreviation Features

Landsat 8/9 optical features L8/9 OFs NDVI, NDBI, NDWI

Landsat 8/9 temperature features L8/9 TFs TL8/9

SDGSAT-1 thermal features SDG TFs SBTBr1, SBTBr2, SBTBr3, RI1, RI2, RI3, RI4

Landsat 8/9 optical and temperature features L8/9 OFs and TFs NDVI, NDBI, NDWI, TL8/9

Landsat 8/9 optical features and SDGSAT-1
thermal features L8/9 OFs and SDG TFs NDVI, NDBI, NDWI, SBTBr1, SBTBr2, SBTBr3,

RI1, RI2, RI3, RI4

In this paper, 3443 sample points were produced, with 1131 sample points from
nonindustrial heat source production areas. The 3443 sample points were divided into
test and training samples, of which approximately 688 sample points were included in the
test sample set. For each classification experiment, the accuracy of the trained model was
assessed based on four metrics: the producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA), and kappa coefficient (K). The OA is frequently employed to quantify the
proportion of correctly classified pixels, offering a direct measure of the model precision,
whereas the K provides an essential statistical evaluation of the classification performance
beyond chance levels [77].

Table 7 and Figure 4 show the accuracy and visual results obtained in different feature
combination experiments. Table 7 shows that the L8/9 OF and SDG TF combinations
had the highest OA (90.96%) and K (0.79) compared to the other feature combinations.
Additionally, these combinations exhibited a high PA, enabling the effective and accurate
detection of industrial heat sources in production areas. As illustrated in Figure 4, the
L8/9 OF and SDG TF combinations were more effective at distinguishing industrial heat
source production areas from background areas than the other feature combinations were.
Although some building surfaces associated with industrial heat sources can be identified
solely from Landsat optical features, this approach fails to pinpoint the actual production
area locations of factories, leading to missed factories with heat emissions. Furthermore,
the SDG TF misidentifies high-temperature water as an industrial heat source. In summary,
combining thermal features from the SDGSAT-1 TIS with optical features from Landsat 8/9
OLI data enables the effective and accurate identification of production area locations and
industrial heat sources (as mentioned in Section 2.3.2).

Table 7. The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and kappa
coefficient (K) values for different feature combination experiments.

Feature Combination PA UA OA K

L8/9 OFs 80.00 3.77 69.97 0.05
L8/9 TFs 72.81 72.81 81.92 0.59
SDG TFs 95.51 64.89 85.42 0.67

L8/9 OFs and TFs 77.39 79.46 85.71 0.72
L8/9 OFs and SDG TFs 98.86 74.36 90.96 0.79

3.2. Analysis of Industrial Heat Source Detection and Identification Results for BTH

A total of 793 industrial heat source objects (shown in Figure 5) were identified in this
study. A total of 748 objects were manually confirmed as real industrial heat source objects
based on Google Earth images, reflecting an identification accuracy of 94.33%. Most of the
nonindustrial heat source objects are located in Hebei Province, accounting for 91.11% of
the total number of nonindustrial heat sources (41). These data included buildings and
abandoned sites with thermal anomalies. In addition, the industrial heat source objects are
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mainly concentrated in the eastern part of Hebei, especially in the Tangshan area and in the
southeastern parts of Beijing and Tianjin.
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3.3. Analysis of Industrial Heat Source Classification and Identification Results for BTH

Through the methods described in Section 2.3.4 and remote sensing image characteris-
tic classification for the industrial heat sources, a total of 748 real industrial heat sources
were categorized into six types. The spatial distribution and a statistical analysis of the clas-
sification results are shown in Figures 6 and 7, respectively. In the BTH region, 354 plants
fall in the “other plants” category, accounting for 47.33% of the total number of plants.
In addition, there are 130 steel plants (17.38%), 121 oil gas development plants (16.18%),
60 cement plants (8.02%), 53 thermal power plants (7.09%), and 30 coal chemical plants
(4.01%) in the BTH region. Excluding the “other plants” category, steel plants are the most
common, accounting for 32.99% of these five types of factories, followed by oil and gas
development plants, with a proportion of 30.71%.
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3.4. Spatial Distribution Characteristics of Industrial Heat Source Identification Results in
BTH Region
3.4.1. Spatial Distribution Characteristics of Industrial Heat Sources at Provincial Scale

The spatial distribution of the industrial heat source identification results at the provin-
cial scale is shown in Figure 8a. In the BTH region, the real industrial heat source objects
are predominantly located in Hebei Province, totaling 640, accounting for 85.56% of all
identified objects. All of the identified coal chemical plants are located in Hebei Province.
Cement plants account for as much as 95% of the total number of factories in this category,
while steel factories account for 89.23%. Tianjin ranks second, with 83 real industrial heat
source objects (10.59%). Among them, oil and gas development factories account for the
highest percentage of the total number of factories in this category, at 22.31%. However,
in Beijing, there are 25 real industrial heat source objects, accounting for 3.34% of the total
number of industrial heat sources. Among them, other plants account for the highest
percentage of the total number of factories in this category in Beijing, at 4.52%. Hebei
Province is rich in coal, oil, and iron and has a relatively high number of steel factories.
Tianjin’s mineral resources largely include coal and oil. The primary mineral resources in
Beijing are anthracite and iron.
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3.4.2. Spatial Distribution Characteristics of Industrial Heat Sources at Municipal Scale

The spatial characteristics of the municipal-scale industrial heat source objects in the
study area are shown in Figure 8b, and the specific quantities for each city category are
shown in Table 8. Based on the concentration of the industrial heat sources, the cities
can be categorized into five levels: low (the number of industrial heat sources is in the
range of 0~4), relatively low (5~28), medium (29~58), medium–high (59~84), and high
(85~261) concentrations. (1) In the BTH region, the industrial heat sources are mainly
concentrated in the Tangshan–Tianjin and Shijiazhuang–Xingtai–Handan regions, revealing
a spatial distribution pattern of high values in the southeast and low values in the northwest.
(2) The total number of industrial heat source objects in the cities at the medium–high
concentration level is the largest, accounting for 40.61% of the total number of heat source
objects identified in this paper, and the numbers in Tianjin and Handan (84) are the largest
among the studied cities. (3) With 261 industrial heat sources, Tangshan has significantly
more heat objects than other cities (the only city at the high-concentration level), as it is
an important industrial base in China. Zhangjiakou, Chengde, Xingtai, and Handan are
mature resource-based cities, while Tangshan is a regenerative resource-based city. These
cities possess relatively mature and stable industrial and resource support systems, serving
as crucial bases for ensuring China’s energy resource security at present. However, industry
advancement unavoidably leads to atmospheric pollution. This significantly contributes
to PM2.5 transport from heavily industrialized cities, such as Tangshan, Shijiazhuang, and
from Handan to Beijing.



Remote Sens. 2024, 16, 768 18 of 28

Remote Sens. 2024, 16, 768 17 of 29 
 

 

 
Figure 6. Spatial distribution of cement plants, steel plants, coal chemical plants, oil and gas devel-
opment plants, thermal power plants, and other plants. 

  

(a) (b) 

Figure 7. Industrial heat source classification results: (a) percentage of classification results exclud-
ing (1) nonindustrial heat sources (NIHSs) and (2) nonindustrial heat sources (NIHSs) and other 
plants; (b) distribution of six categories in each municipality of BTH region. 

  

Figure 7. Industrial heat source classification results: (a) percentage of classification results excluding
(1) nonindustrial heat sources (NIHSs) and (2) nonindustrial heat sources (NIHSs) and other plants;
(b) distribution of six categories in each municipality of BTH region.
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Most of the cement plants are concentrated in Tangshan and Handan. The majority of
the steel plants are located in Tangshan, Handan, and Tianjin. The coal chemical plants are
primarily found in Tangshan and Handan, with very few or no coal chemical plants found
in the other cities. The oil and gas development plants are mainly distributed across Tianjin,
Cangzhou, Tangshan, and Shijiazhuang. The thermal power plants are mainly located in
Tangshan, Tianjin, and Shijiazhuang. Most of the other plants are located in Tangshan,
totaling 105, accounting for 14.04% of the total number of plants. In Zhangjiakou, there are
no other plants. Tangshan is a well-known steel base, and, excluding other plants, steel
plants account for 44.37% of the total number of factories in Tangshan, followed by cement
plants at 20.42%. In 2021, the total steel production in Tangshan city reached 131 million
tons, ranking first in China.
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Table 8. Specific number of factories in each category in each city.

Cement
Plants Steel Plants Coal Chemical

Plants

Oil and Gas
Development

Plants

Thermal
Power Plants Other Plants Sum

Tangshan 29 63 18 20 12 105 247
Tianjin 1 13 0 27 10 32 83

Handan 8 21 6 8 6 29 78
Shijiazhuang 3 7 1 15 8 42 76

Xingtai 3 3 3 9 4 42 64
Cangzhou 0 5 0 25 4 21 55
Baoding 3 1 0 1 5 27 37
Beijing 2 1 0 4 2 16 25

Qinhuangdao 4 8 0 2 1 9 24
Hengshui 0 0 0 6 0 15 21
Langfang 0 4 0 1 1 12 18
Chengde 6 3 1 2 0 4 16

Zhangjiakou 1 1 1 1 0 0 4
Sum 60 130 30 121 53 354 748

3.4.3. Spatial Distribution Characteristics of Industrial Heat Sources at County Scale

The county-scale industrial heat source identification results are shown in Figure 8c.
According to these results, the industrial heat sources in the BTH region exhibit a locally
clustered pattern, with a high density in several counties along the coast and a few counties
in the southern region. Based on the distribution of the number of industrial heat sources,
the 200 counties in the BTH region can be divided into five levels: none (the number
of industrial heat sources is 0) and low (1~9), medium (10~23), medium–high (24~42),
and high (43~64) concentrations. The 54 counties without industrial heat sources are
located primarily in the northwestern regions of Zhangjiakou–Chengde–Baoding and the
southeastern region of Cangzhou. This may be due to resource scarcity, policy constraints,
or geographic limitations that limit industrial development. The 126 counties at the low-
concentration level are distributed across the central and southern parts of the BTH region,
encompassing 361 industrial heat sources, which account for 45.52% of the total number
of pollutants. The 15 counties at the medium-concentration level largely occur in the
southeastern part of Tangshan, the eastern part of Shijiazhuang, and the western part
of Handan. The four counties at the medium–high-concentration level include Wuan
(28) in Handan, Huanghua (33) in Cangzhou, Fengnan District (36) in Tangshan, and the
Binhai New Area (42) in Tianjin. Fengrun District in Tangshan city is classified at the high-
concentration level, with 64 industrial heat sources, accounting for 8.07% of the total number
of heat sources in the study region. Notably, there are many industrial heat sources scattered
around Tangshan, revealing a spatial pattern of central clustering–external enclosure.

In Tangshan’s Fengrun District, the number of other plants is the largest, with 22 industrial
heat source objects. There are no coal chemical factories in Fengrun District. There are 22
fewer industrial heat source objects in Tianjin’s Binhai New Area than in Fengrun District.
According to the identification results, there are no cement, steel, or coal chemical plants
in the Binhai New Area, with oil and gas development plants being the most common,
accounting for 17.36% of the total number of plants in this category.

4. Discussion
4.1. Effectiveness of Industrial Heat Source Production Area Detection Based on Nighttime
SDGSAT-1 TIS Data Compared to Other TIS Data

To analyze the effectiveness of the industrial heat source production area detection
based on nighttime TIS data, low-resolution (ACF data, 375 m), medium-resolution (Land-
sat 8/9 TIRS data, 100 m), and high-resolution (SDGSAT-1 TIS data, 30 m) daily data were
compared. Then, the thermal radiation characteristics of the obtained industrial heat source
production areas (as shown in Figure 9) were analyzed for the Donghua Steel Plant using
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four datasets. Figure 9a shows a hotspot density map constructed from the ACF data be-
tween 1 January and 31 December 2022. Notably, although there is a clear thermal radiation
phenomenon at the Donghua Steel Factory, production areas cannot be distinguished from
the background. Figure 9c was constructed based on the temperature data from Band 10
of the Landsat 8 TIRS product on 1 May 2023. In this case, there is a pronounced increase
in thermal radiation at the Donghua Steel Factory. However, the areas with concentrated
thermal radiation predominantly exhibit smooth surface covers. Additionally, Figure 9d,e
show the day- and nighttime satellite brightness temperature distributions based on the
SDGSAT-1TIS data. During the daytime, the Donghua Steel Factory exhibits a distinct
aggregation of thermal radiation, as shown in Figure 9d, which indicates that these data
can capture the thermal radiation surface boundaries of buildings more precisely than
Landsat 8 data can. However, the high-temperature areas mostly exhibit smooth surface
covers, resulting in considerable fluctuations in the brightness temperature. In contrast, the
nighttime data in Figure 9e clearly indicate that the thermal radiation at the Donghua Steel
Factory is concentrated in the major production areas, such as the sintering, iron, and steel
zones. Moreover, areas such as storage sections, gas storage tanks, and residential areas do
not exhibit prominent thermal radiation aggregation. In summary, high-spatial-resolution
TIS data can accurately reflect changes in thermal radiation for different land cover types.
The nighttime SDGSAT-1 TIS data more accurately reflect the operational statuses of indus-
trial heat sources. Therefore, these data constitute the best choice for effectively detecting
industrial heat source production areas.
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Figure 9. (a) Distribution of ACF kernel densities around Donghua Steel Plant in 2022. (b) Image
of Donghua Steel Plant from Google Earth on 8 November 2022. (c) Landsat 8 TIRS Band 10 tem-
perature distribution for 1 May 2023, at Donghua Steel Plant. (d) Distribution of satellite brightness
temperature based on SDGSAT-1 TIS Band 1 during daytime on 30 March 2023. (e) Distribution
of satellite brightness temperature based on SDGSAT-1 TIS Band 1 during nighttime on 25 April
2023. Note: in the figures, the colors range from green to red, with redder colors indicating higher
thermal radiation.
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4.2. Analysis of Spatial Distribution of Brightness Temperature Using Nighttime SDGSAT-1 TIS
Data for Different Categories of Industrial Heat Sources

To reveal the spatial distributions of the brightness temperatures of the different
categories of industrial heat sources, the plant areas were divided into production and
nonproduction areas based on high-resolution Google Earth images and the brightness
temperatures determined from nighttime SDGSAT-1 TIS data (Figure 10). Most heat
is generated in production areas during production-related processes. Nonproduction
areas include material storage areas and residential and administrative areas, among
others, which do not generate a significant amount of heat in the factory production
process. Additionally, buildings, vegetation, cultivated land, grasslands, and bare land
near the obtained plants were extracted to serve as background areas. Table 9 indicates the
following results: (1) The production areas of cement plants exhibit the highest brightness
temperatures, reaching 301.78 K; these areas are primarily distributed in calcination zones
(vertical/rotary kilns). The maximum brightness temperature in the production areas of
cement plants is approximately 35.70 K greater than that in the background areas (buildings).
(2) The production areas of thermal power plants exhibit the lowest brightness temperatures,
averaging 277.31 K; these areas are predominantly associated with combustion chambers,
cooling towers, boilers, electrical sections, and heat transfer equipment. The maximum
brightness temperature in the production areas of thermal power plants is 2.30 K greater
than that in the nonproduction areas and 2.96 K greater than that in the background areas
(buildings). (3) The maximum brightness temperature in the production areas of steel plants
is 292.31 K, a value mainly observed in the sintering, iron, and steel areas. The maximum
brightness temperature in the entire production area of steel plants is approximately 9.49 K
lower than that in the corresponding area of cement plants, while the minimum brightness
temperatures are roughly similar. (4) The mean brightness temperature in the production
area of coal chemical plants is 280.84 K, a value mainly observed in coking areas. The
overall brightness temperature in the production area of coal chemical factories is slightly
greater (by 2.68 K) than that in the corresponding area of steel factories. (5) The production
areas of oil and gas development plants are mainly the coking and blast furnace areas.
The maximum brightness temperature in the production areas of oil and gas development
plants is 283.81 K, which is 7.20 K greater than that in the nonproduction areas and 7.26 K
greater than that in the background areas (building area). The maximum, minimum, and
average brightness temperatures in the nonproduction areas of oil and gas development
plants are the highest overall.

4.3. Comparison with Existing Industrial Heat Source Data

To validate the accuracy and precision of our generated dataset, our results were
compared with the industrial heat source datasets created by Ma [16] using ACF data
(updated to 2021) and Liu [29,78] using the VIIRS VNF product (updated to 2017). In
addition, 493 and 242 industrial heat source objects were obtained in the BTH region. Then,
469 (95.13%, 493/469) and 229 (94.62%, 229/242) RIGHS objects were manually verified
using high-resolution Google Earth images and POI data. Considering the relevant policies
involving structural adjustment and production capacity reduction proposed in 2015 and
the air pollution control policy introduced in 2013 [79], some factories were converted into
other uses or shut down in the BTH region. Notably, only 214 and 108 industrial heat
sources were still in operation in 2022 according to the ACF point data between January
1 and 31 December 2022. More comparison details are shown in Figure 11 and Table 10.
The comparison results indicate that our dataset provides significant improvements in
the number, scale, and spatial overlap of identified objects (Figure 10b). (1) Our method
yields many more actual industrial heat source objects (748) and operational industrial heat
sources—nearly 3.50 times more—than that (214) reported by Ma, and 6.93 times more than
that reported by Liu (108). (2) The total area of industrial heat sources identified with our
method was 552.01 km2, which was 8.9% larger than the area identified by Ma (506.76 km2)
and 27.45% smaller than the area identified by Liu (703.52 km2). Additionally, the average
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identification area based on our results was 0.7 km2, while those of Ma and Liu were
1.03 and 2.91 km2, respectively. This suggests that the industrial heat sources detected
by our method are more precise, with a smaller number and smaller total area. (3) The
spatial overlap of our results was greater than those for the other two datasets. Our results
exhibit an overlap of 82.24% (176/214) with Ma’s data, which have 57.57% greater coverage
than our data (185/750). In addition, a 67.86% increment in overlap was obtained when
comparing our results with Liu’s data.
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Figure 10. Google Earth images and satellite brightness temperatures based on SDGSAT-1 TIS Band 
1 for different categories of industrial heat sources: (a) Jinyu Jidong Cement Pingquan Company 
(Chengde, China); (b) Tangshan Jidong Cement Plant (Tangshan, China); (c) Anfeng Steel Company 
(Qinhuangdao, China); (d) Ruifeng Steel Group (Tangshan, China); (e) Tangshan Baoliyuan Coking 
Co., Ltd. (Tangshan, China); (f) Tangshan Dafeng Coking Co., Ltd. (Tangshan, China); (g) Tianjin 
Weierke Petrochemical Company (Tianjin, China); (h) China Petroleum Dagang Petrochemical 
Company (Tianjin, China); (i) Hebei Datang International Fengrun Thermal Power Co., Ltd. (Tang-
shan, China); and (j) Hebei JianTou Zunhua Thermal Power Co., Ltd. (Tangshan, China). 
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(Chengde, China); (b) Tangshan Jidong Cement Plant (Tangshan, China); (c) Anfeng Steel Company
(Qinhuangdao, China); (d) Ruifeng Steel Group (Tangshan, China); (e) Tangshan Baoliyuan Coking
Co., Ltd. (Tangshan, China); (f) Tangshan Dafeng Coking Co., Ltd. (Tangshan, China); (g) Tianjin
Weierke Petrochemical Company (Tianjin, China); (h) China Petroleum Dagang Petrochemical Com-
pany (Tianjin, China); (i) Hebei Datang International Fengrun Thermal Power Co., Ltd. (Tangshan,
China); and (j) Hebei JianTou Zunhua Thermal Power Co., Ltd. (Tangshan, China).

Table 9. Different categories of industrial heat source brightness temperature information.

Category Maximum Brightness
Temperature (K)

Minimum Brightness
Temperature (K)

Mean Brightness
Temperature (K)

PA N-PA PA-
NPA PA N-PA PA-

NPA PA N-PA PA-
NPA

Cement plants 301.78 275.32 26.46 274.76 264.32 10.44 282.47 271.25 11.22
Steel plants 292.31 276.12 16.19 274.10 269.51 4.59 278.16 272.77 5.38

Coal chemical plants 294.82 275.78 19.03 275.23 270.38 4.85 280.84 273.90 6.94
Oil and gas development plants 283.81 276.61 7.20 275.38 270.94 4.44 277.61 275.12 2.49

Thermal power plants 277.31 275.01 2.30 273.88 270.08 3.80 275.70 273.00 2.70

Notably, 563 industrial heat source objects identified in this paper were not recognized
by Ma, and 625 such objects were not identified by Liu. In particular, 53 thermal power
plants detected by our method were not identified by Liu. The only thermal power plant
identified by Ma was erroneously classified as a steel industrial heat source object. This
difference might be due to the lower heat emissions in the production areas of thermal
power plants, which typically have brightness temperatures less than approximately 278 K,
relative to those of other types of industrial heat sources. Consequently, the production
areas of thermal power plants cannot be detected based on ACF and VNF data. Although
our method yielded a larger number of industrial heat source objects, some plants were
correctly identified by Ma and Liu but were missed by our approach. The primary reason for
these missed detections was that the SDGSAT-1 TIS product associates comparatively lower
temperatures with these objects, differing from the temperatures of high-heat emissions
from industrial heat sources, making these sources difficult to identify with our model.

4.4. Study Significance and Uncertainties

Our method integrates SDGSAT-1 TIS data and Landsat 8/9 OLI data, enhancing
the precision and granularity of the identification of industrial heat sources. Compared
to traditional methods based on thermal anomaly data, our method employs SDGSAT-1
TIS data with a higher spatial resolution and temperature sensitivity, allowing for the
identification of more low-temperature emissions and small-scale industrial heat sources.
Additionally, this approach enables the precise detection of the production areas in factories.
This study is the first to introduce SDGSAT-1 TIS data into industrial heat source monitoring,
demonstrating its potential application value in environmental monitoring and industrial
emission analysis.

This research has several limitations. First, due to the lack of inversion parameters
for retrieving land surface temperatures (LSTs) from SDGSAT-1 thermal infrared data,
this study could not utilize LSTs, which accurately reflect the thermal characteristics of
industrial heat sources. Second, the classification accuracy of industrial heat source data is
affected by the absence or inaccuracy of the POI data, as source classification is based on
POI data. Future research could focus on inverting more accurate surface temperatures to
improve the identification accuracy. Additionally, the combination of other land features
or data for classifying industrial heat sources, rather than relying solely on POI and high-
resolution data, could be explored.



Remote Sens. 2024, 16, 768 24 of 28

Remote Sens. 2024, 16, 768 24 of 29 
 

 

were 1.03 and 2.91 km2, respectively. This suggests that the industrial heat sources de-
tected by our method are more precise, with a smaller number and smaller total area. (3) 
The spatial overlap of our results was greater than those for the other two datasets. Our 
results exhibit an overlap of 82.24% (176/214) with Ma’s data, which have 57.57% greater 
coverage than our data (185/750). In addition, a 67.86% increment in overlap was obtained 
when comparing our results with Liu’s data. 

Table 10. A comparison of the industrial heat sources identified using the method described in this 
study with Ma’s inventory based on active-fire-point data [30] and Liu’s inventory based on night-
fire data [29]. For comparison, Ma’s and Liu’s datasets were synchronized to 2022. 

 
Updated 

Year 

Industrial 
Heat Sources 

Detected 

Real Industrial 
Heat Sources Accuracy Closed 

Real and Operating 
Industrial Heat 

Sources 

Total Area 
(km2) 

Average Area 
(km2) 

Our results 2022 793 748 94.33% / 748 552.01 0.7 
Ma’s inventory 2021 493 469 95.13% 255 214 506.76 1.03 
Liu’s inventory 2017 242 229 94.62% 121 108 703.53 2.91 

 
Figure 11. Comparison of our results with the real and operating IHSs (industrial heat sources) de-
tected by Ma et al. [30] and Liu et al. [29]. (a) Statistical comparison of the three datasets. (b) Com-
parison of the spatial distributions of the matches and mismatches among the three datasets. 

Notably, 563 industrial heat source objects identified in this paper were not recog-
nized by Ma, and 625 such objects were not identified by Liu. In particular, 53 thermal 
power plants detected by our method were not identified by Liu. The only thermal power 
plant identified by Ma was erroneously classified as a steel industrial heat source object. 
This difference might be due to the lower heat emissions in the production areas of ther-
mal power plants, which typically have brightness temperatures less than approximately 

Figure 11. Comparison of our results with the real and operating IHSs (industrial heat sources)
detected by Ma et al. [30] and Liu et al. [29]. (a) Statistical comparison of the three datasets.
(b) Comparison of the spatial distributions of the matches and mismatches among the three datasets.

Table 10. A comparison of the industrial heat sources identified using the method described in this
study with Ma’s inventory based on active-fire-point data [30] and Liu’s inventory based on night-fire
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Updated
Year

Industrial
Heat Sources

Detected

Real
Industrial

Heat Sources
Accuracy Closed

Real and
Operating

Industrial Heat
Sources

Total
Area
(km2)

Average
Area
(km2)

Our results 2022 793 748 94.33% / 748 552.01 0.7
Ma’s inventory 2021 493 469 95.13% 255 214 506.76 1.03
Liu’s inventory 2017 242 229 94.62% 121 108 703.53 2.91

5. Conclusions

The accurate identification and categorization of industrial heat sources and produc-
tion areas are crucial for effective energy management, heat emission and environmental
pollution monitoring, and global climate change mitigation. However, existing methods
cannot be used to accurately identify industrial heat source production areas, and they fail
to recognize industrial heat sources with low-heat emissions and small areas. In this study,
a new industrial heat source production area identification and industrial heat source clas-
sification model using SDGSAT-1 TIS and Landsat 8/9 OLI data was proposed to improve
the accuracy and granularity of industrial heat source recognition. Then, industrial heat
sources and production areas in the BTH region were accurately identified and classified.
The following conclusions are drawn from this study:
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1. The use of SDGSAT-1 TIS thermal features combined with Landsat 8/9 OLI optical
features for identifying industrial heat sources significantly enhances the distinction
between production and background areas while also providing high accuracy and
visual quality;

2. Compared to the ACF data (375 m) and Landsat 8/9 TIRS data (100 m), the nighttime
SDGSAT-1 TIS data (30 m) can be used to more accurately detect industrial heat source
production areas;

3. More than 2~6 times more industrial heat sources were detected in the BTH region
using our model than were reported by Ma and Liu. Some industrial heat sources with
low-heat emissions and small areas, such as 53 thermal power plants, were detected
using TIS data but were not in the other cases;

4. The industrial heat source objects were mainly concentrated in the Tangshan–Tianjin
and Shijiazhuang–Xingtai–Handan regions, revealing a spatial distribution pattern of
high values in the southeast and low values in the northwest;

5. The spatial distributions and statistical characteristics of the brightness temperature
differed for the different categories of industrial heat sources. The production areas of
the cement plants exhibited the highest brightness temperatures, reaching 301.78 K,
while the thermal power plants exhibited the lowest brightness temperatures, averag-
ing 277.31 K.

The research findings indicate that the identification method proposed in this paper
can be used to precisely detect the production areas of plants and effectively identify
industrial heat sources with low-heat emissions, resolving the issue of low granularity in
the identification process. The results provide accurate information regarding production
areas and regional positions, providing valuable data for industrial layout planning in the
BTH region. Future work could focus on the more accurate classification of industrial heat
source objects and the use of more accurate surface temperature data to identify industrial
heat source production areas in much larger regions.
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