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Abstract: Surface upward longwave radiation (SULR) is one of the four components of surface net
radiation. Geostationary satellites can provide high temporal but coarse spatial resolution SULR
products. Downscaling coarse SULR to a higher resolution is important for fine-scale thermal
condition monitoring. Statistical regression downscaling is widely used due to its simplicity and is
built on the assumption that the thermal parameter like land surface temperature (LST) or SULR has
a relationship with the related surface factors like the normalized difference vegetation index (NDVI),
and the relationship remains unchanged in any scales. In this study, to establish the relationship
between SULR and the related surface factors, we chose the multiple linear regression (MLR) model
and five surface factors (i.e., the modified normalized difference water index (MNDWI), normalized
difference built-up and soil index (NDBSI), NDVI, normalized moisture difference index (NMDI), and
urban index (UI)) to drive the downscaling process. Additionally, a step-by-step downscaling strategy
was applied to reach the 100-fold increase in spatial resolution, transitioning the estimated SULR from
4 km of the advanced geostationary radiation imager (AGRI) onboard FengYun-4B (FY-4B) satellite to
40 m of the visual and infrared multispectral imager (VIMI) in infrared spectrum onboard GaoFen5-02
(GF5-02). Finally, we evaluated the downscaling results by comparing the downscaled SULR values
with the in situ measured SULR and GF5-02-calculated SULR, and the root mean square errors
(RMSEs) were 19.70 W/m2 and 24.86 W/m2, respectively. Throughout this MLR-based step-by-step
downscaling method (high-frequency data from FY-4B and high spatial resolution data from GF5-02),
high spatiotemporal SULR (15 min temporal resolution, 40 m spatial resolution) were successfully
generated instead of coarse spatial resolution ones from the FY-4B satellite or a coarse temporal
resolution one from the GF5-02 satellite, relieving the above-mentioned conflict to some extent.

Keywords: SULR; step-by-step downscaling; FY-4B AGRI; GF5-02 VIMI

1. Introduction

Land surface energy balance is central to any land model that characterizes land
surface processes and is depicted using net radiation. Surface upward longwave radiation
(SULR) is an important component of all-wave net radiation, which includes shortwave
and longwave net radiation components [1–3]. SULR is defined as the sum of the radiation
emitted from the land surface and the first-order reflected component of surface downward
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longwave radiation (SDLR) [4]. SULR with high spatiotemporal resolution can greatly
enhance the understanding of atmospheric circulations like hydrological and meteorolog-
ical cycles [5], land surface processes like surface matter–energy exchange [6,7], thermal
condition monitoring [8,9], agricultural applications, and even global climate change [10].
Remote sensing is a promising technology that can estimate SULR on a global or regional
scale. However, the products derived from thermal infrared remote sensing often face
challenges in terms of conflicting spatial and temporal resolutions. For instance, the land
surface temperature (LST) product of the moderate resolution imaging spectroradiometer
(MODIS) onboard Terra and Aqua satellites offers four observations at most during a day
but is limited to a spatial resolution of only 1000 m in the infrared spectrum. The spatial
resolution of the Landsat thermal infrared sensor (TIRS) is 100 m, but its revisit period is
16 days. The advanced geostationary radiation imager (AGRI) onboard the FengYun-4B
(FY-4B) satellite, on the other hand, provides a high temporal resolution with a 15 min
revisit time but has a coarser spatial resolution of 4 km in the infrared spectrum. For the
visual and infrared multispectral imager (VIMI) onboard GaoFen5-02 (GF5-02), the spatial
resolution of its infrared bands is 40 m, and its revisit time is up to 51 days. This conflict
commonly exists and seriously hinders the utilization of remote-sensing products.

To improve the spatial resolution of satellite-derived products, statistical regression
downscaling methods have been developed and widely used due to their consideration of
thermal infrared radiation and their low computational complexity [11–16]. The statistical
regression method is based on the assumption of “scale consistence”, which posits that
physical parameters like LST and LST-related factors such as the normalized difference
vegetation index (NDVI), exhibit a statistical regression relationship that remains consistent
regardless of the spatial scale. By utilizing regression factors with greater spatial texture
information, the spatial resolution of the physical parameter (LST) can be improved. This
kind of method was designed early on for vegetation-covered areas [17,18] using a linear
regression model and single surface factor (e.g., NDVI), limiting the application scenar-
ios. Over time, the approach has evolved to incorporate multiple linear regression (MLR)
models, enhancing the robustness of the fitted relationship and expanding the applicability
to various land cover types [19]. With the increase in remote sensing data and the devel-
opment of regression models, nonlinear regression techniques such as machine learning
have become popular choices for describing surface physical conditions and establishing
complex relationships between LST and regression factors. For instance, Hutengs and
Vohland [20] constructed a nonlinear relationship between LST and surface factors using a
random forest (RF), improving the spatial resolution of MODIS LST products from 1000 m
to 250 m. Zihao et al. employed back propagation neural networks to downscale LST
products, achieving a spatial resolution of 30 m for Landsat thermal infrared images with
an original resolution of 100 m, showcasing their potential ability for complex background
areas [21]. Dong et al. integrated kernel-based and fusion-based downscaling methods
with RF regression techniques, successfully downscaling MODIS LST from 1000 m to 100 m
spatial resolution in alignment with Landsat 8/9 images [22].

However, these methods are generally implemented within a relatively small-scale
span of approximately 10–20 times [18–23]. As the scale span increases, traditional statis-
tical regression downscaling methods tend to perform poorly, which is attributed to the
discrepancy in the assumption of scale–relationship consistency. Thus, the effectiveness
of directly statistical downscaling methods for much larger spans (such as 100 times from
4 km of FY-4B to 40 m of GF5-02) remains unclear. To perform large-span downscaling,
the step-by-step method based on LST was proposed to conduct downscaling in adja-
cent scales with a small span, ensuring the validity of the scale–relationship consistency
assumption [24,25]. On the other hand, these downscaling methods primarily focus on
LST, and their suitability for SULR remains uncertain, even though these two parameters
both show thermal conditions. Therefore, a comprehensive evaluation of a large-span
downscaling method for SULR is necessary. This study aims to achieve the following two
main objectives: (1) to estimate the 4km SULR and downscale to 40 m (aligning with FY-4B
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and GF5-02) and (2) to evaluate the accuracy of large-span (100 times) downscaled results
using in-situ measurement validation and GF5-02 cross-comparison.

The structure of this paper is organized as follows: Section 2 introduces the study
area and provides information on the remotely sensed data from the FY-4B and GF5-02
satellites. Section 3 presents the downscaling methodology using the MLR model with a
step-by-step strategy, detailed with the original SULR estimation, surface factor selection,
and step-by-step downscaling process. The downscaling results and a comparative analysis
are included in Section 4. Finally, conclusions and discussions are presented in Section 5.

2. Study Area and Data
2.1. Study Area

The Huailai Remote Sensing Comprehensive Experiment Station, affiliated with the
Chinese Academy of Sciences, is situated on the border between Beijing and the Hebei
Province. This station is surrounded by diverse land cover types, including farmland,
waterbodies, mountains, grassland, and wetlands. The selection of such a study area
allowed for the comprehensive consideration of complex backgrounds and abundant
components that contribute to the land surface radiation budget. Additionally, to support
the evaluation of the downscaling method, 14 ground radiation stations were strategically
placed across the area. The 14 stations were each equipped with one Kipp and Zonen CGR3
net radiometer, which had a spectral wavelength of 4.5–42 µm, a field of view of 150◦, and
an accuracy of 1 W/m2 after the blackbody-based calibration.

These radiometers collect measurements of SULR and SDLR at 10 min intervals,
providing reliable validation data for the downscaling process. Figure 1 illustrates the
study area and the distribution of the radiation stations.
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Figure 1. (a) The study area location on the boarder of Beijing and the Hebei Provinces, (b) the study
area on a true color composite image. The overview location of the 14 radiation stations is boxed in
the subgraph (b) and the specific situation is depicted in the subgraph, (c) with the land cover types
at a 10 m resolution. C1-C8, RB1, RB3, RB4, GB, M, and OP denote the station names (Crop, Red
Begonia, Green Begonia, Metasequoia, and Oil Pine).
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2.2. Data
2.2.1. GaoFen5-02 VIMI Data

GF5-02 was successfully launched on 7 September 2021 at 11:01 and has since provided
a wealth of high-quality remote sensing image data. The data utilized in this study was
from the VIMI sensor onboard the GF5-02 satellite. This sensor captures imagery with
a width of 60 km and offers two distinct spatial resolutions, depending on the spectral
band. In the visible spectrum, the spatial resolution is 20 m, while in the thermal infrared
spectrum, it is 40 m. The surface reflectance from GF5-02 VIMI after radiometric calibration
and atmospheric correction served to calculate the surface factors to drive the downscaling
process, and the thermal infrared data was used to estimate the SULR and compare it
with the downscaled SULR results. We tried to select more GF5-02 VIMI images of the
study area, but the collected data was scarce due to the long revisit period of GF5-02 and
the serious influence of cloud contamination. We finally obtained four images, as shown
in Figure 2, which was from 24 July 2022, 27 September 2022, 17 November 2022, and 6
March 2023. In addition, the observation area did not completely overlap when the GF5-02
satellite revisited the study area, which meant that the 14 stations were not included on 6
March 2023. Therefore, the validation method based on in-situ measured SULR was only
carried out in three days: 24 July 2022, 27 September 2022, and 17 November 2022.
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Figure 2. Study data collected across four days with the standard false color combination from the
GF5-02 VIMI.

2.2.2. FengYun-4B AGRI Level 1 Data

The FengYun-4 series of meteorological satellites is the second-generation geostation-
ary meteorological satellite of China, designed as an upgrade of the first-generation geosta-
tionary orbit meteorological satellite (FY-2). The FY-4B satellite was launched on 3 June 2021,
and started providing data from 1 June 2022. One of the key instruments onboard FY-4B is
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the AGRI, which offers improved temporal and spatial resolution compared to its predeces-
sor. AGRI observed the study area every 15 min, and it provided thermal infrared data with
a subsatellite point spatial resolution of approximately 4 km. In this study, we downloaded
the FY-4B AGRI 4 km level 1 full disk data for four specific days, which were 24 July 2022, 27
September 2022, 17 November 2022, and 6 March 2023, consistent with the available GF5-02
data across four seasons from https://satellite.nsmc.org.cn/portalsite/Data/Satellite.aspx
accessed on 26 July 2023. The AGRI level 1 data was used to estimate the original SULR
in this study. Every day, there were approximately 90 effective data images available,
generating the same amount of SULR for downscaling.

3. Methodology

The SULR estimation method, downscaling model and driving factors, and step-
by-step downscaling strategy are introduced in Section 3.1, Section 3.2, and Section 3.3,
respectively. The evaluation strategy is provided in Section 3.4.

3.1. Hybrid Algorithm for Estimating SULR

SULR is the sum of the thermal radiation emitted by a surface and the reflected
SDLR. To retrieve the SULR from remote sensing data, state-of-the-art methods can be
categorized into two main approaches: the temperature-broadband emissivity physical
method [4,9,26] and the hybrid method [2,27,28]. The temperature-broadband emissivity
physical method estimates SULR by utilizing the LST, broadband emissivity, and SDLR. On
the other hand, the hybrid method establishes a direct relationship between SULR and the
radiances measured via satellite sensors at the top of the atmosphere. This method bypasses
the temperature emissivity separation process and generally achieves high accuracy [3,29].
We employed the widely-used linear regression hybrid method with the input of top-of-
atmosphere radiances, abbreviated as TOA-LIN [29], to estimate the SULR from the FY-4B
and GF5-02 satellites (see Equations (1) and (2)). The key to this method is to accurately
calibrate the coefficients. Here, the coefficients of TOA-LIN were derived from simulated
datasets including seven typical view zenith angles (VZAs) of 0◦ to 60◦ with a step of
10◦, 946 atmospheric profiles, 6 LSTs from −10 K to 15 K with a step of 5 K, 35 typical
emissivity spectrums including water bodies, vegetation, soil, minerals, ice, snow, and
spectral response functions of the 12–14 FY-4B bands as well as the 9–12 GF5-02 bands [29]
according to the center wavelength of the thermal infrared spectrums.

SULRFY = a0 + a1 ∗ R12 + a2 ∗ R13 + a3 ∗ R14 (1)

where a0–a3 denote the calibrated coefficients, and R12–R14 denote the radiance values of
the 12, 13, and 14 bands of the FY-4B satellite, respectively.

SULRGF = b0 + b1 ∗ R′
9 + b2 ∗ R′

10 + b3 ∗ R′
11 + b4 ∗ R′

12 (2)

Equally, b0–b4 denote the calibrated coefficients and R′
9–R′

12 denote the radiance values
of the 9, 10, 11, and 12 bands of the GF5-02 satellite, respectively.

Consequently, the calibrated coefficients for the 0◦ to 60◦ VZAs were obtained and are
presented in Table 1. The SULR for a specific VZA could be calculated with the coefficients
of two adjacent VZAs via interpolation. The selected TOA-LIN hybrid method in this study
had an acceptable accuracy (with an RMSE of approximately less than 10 W/m2).

https://satellite.nsmc.org.cn/portalsite/Data/Satellite.aspx
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Table 1. Calibrated coefficients to estimate the SULR of the FY-4B and GF5-02 satellites at VZA = 0–60◦

with a 10◦ step.

VZA 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

FY-4B
AGRI

a0 86.0905 86.4723 87.6620 89.7995 93.1742 98.3240 106.2046
a1 −2.4927 −2.5541 −2.7384 −3.0441 −3.4589 −3.9184 −4.1643
a2 105.9331 106.7086 109.0992 113.3028 119.7131 129.0193 142.3019
a3 −68.9081 −69.7235 −72.2442 −76.7023 −83.5696 −93.7132 −108.6330

RMSE (W/m2) 6.65 6.71 6.91 7.27 7.86 8.82 10.48

GF5-02
VIMI

b0 −38.0897 −38.4436 −39.5298 −41.4500 −44.4164 −48.8187 −55.5221
b1 21.8166 22.0164 22.6375 23.7702 25.6111 28.5709 33.6638
b2 104.2309 104.8645 106.8184 110.2269 115.3711 122.7523 132.9230
b3 −53.2957 −53.8959 −55.7607 −59.0569 −64.1387 −71.6837 −82.6188
b4 66.9902 67.2557 68.0969 69.6449 72.1708 76.1867 82.4844

RMSE (W/m2) 6.03 6.09 6.26 6.59 7.13 8.05 9.65

3.2. Surface Factors and Downscaling the Model Selection

Surface factors play a critical role as driving kernels in providing spatial information
for downscaling purposes [30]. These factors encompass a wide range of thermal-related
parameters, ranging from visual and near-infrared spectrums to shortwave infrared spec-
trums. They also include terrain and land-cover type factors specific to the scenes being
studied. For instance, Sánchez et al. downscaled the Sentinel-3 LST to Sentinel-2 resolution
with only the NDVI in a specific agriculture area [31]. Zhu et al. employed a NDVI, digital
elevation model (DEM), slope, latitude, and longitude to describe the distribution and
variation of the LST, downscaling the MODIS LST to a 100 m resolution in an area with a
complex landscape [32]. To clarify how to select the thermal-related factors to drive the
different downscaling processes, Dong et al. conducted a comprehensive comparison of
thirty-five statistical regression downscaling LST algorithms (seven scaling factors × five
regression models) across thirty-two geographical regions worldwide. They concluded
that a RF with approximately 30–50 scaling factors or MLR with approximately six factors
had the highest accuracy [30]. Here, we chose MLR as the regression model, considering
that our study area consisted of only 120 pixels (10 rows × 12 columns) at a 4 km scale,
which is insufficient for training a RF model. Furthermore, given the various landscapes in
the study area (water bodies, vegetation, soil, and urban areas), we selected the following
five surface factors: (1) the modified normalized difference water index (MNDWI), high-
lighting the water bodies in the study area; (2) the normalized difference built-up and soil
index (NDBSI), providing information about the soil and building coverage; (3) the NDVI,
describing the vegetation cover condition in the study area; (4) the normalized moisture
difference index (NMDI), indicating the vegetation moisture, and (5) the urban index (UI),
providing urban information in the study area. These factors effectively characterized the
property of the entire study area, as listed in Table 2. The surface reflectance for calculating
these factors was obtained after the radiometric calibration and atmospheric correction of
the GF5-02 original data. The MLR with the input of the selected factors is provided in
Section 3.3.

Table 2. The definitions, descriptions, and formulas of the surface factors.

Index Description Formula

MNDWI Improves the normalized difference
water body index to highlight water

B2−B6
B2+B6

NDBSI Indicates the degree of dryness of the
ground surface

IBI =
2∗B5

B5+B4 −(
B4

B4+B3 +
B2

B2+B5 )
2∗B5

B5+B4 +(
B4

B4+B3 +
B2

B2+B5 )

SI = (B5+B3)−(B4+B1)
(B5+B3)+(B4+B1)

NDBSI = IBI+SI
2
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Table 2. Cont.

Index Description Formula

NDVI Highlights the vegetation information B4−B3
B4+B3

NMDI Indicates the vegetation moisture B4−(B5−B6)
B4+(B5+B6)

UI Highlights the urban information B6−B4
B6+B4

Notes: B1–B6 denote the surface reflectance of band 1–band 6 of the GaoFen5-02 satellite, which are 0.440–0.510,
0.510–0.580, 0.620–0.680, 0.760–0.870, 1.540–1.700, and 2.060–2.350 µm, respectively.

3.3. MLR-Based Step-by-Step Downscaling Strategy

The statistical regression downscaling method is based on the assumption that the
relationship between the SULR and surface factors remains unchanged across different
spatial scales. However, as the scale difference increases, especially in regions with strong
spatial heterogeneity, the downscaled results perform worse. To solve this problem, the
step-by-step downscaling strategy was introduced [24,25], which establishes and applies
the relationship between the SULR and surface factors in every two adjacent scales. Theo-
retically, the intermediate resolutions could be any number between the initial and target
resolutions. In this study, we selected 1 km and 200 m as the intermediate scales, perform-
ing the downscaling process in 4–1 km, 1 km–200 m, and 200–40 m steps since a too-large
or small adjacent scale resolution difference leads to a weakened scale effect or redundant
computation according to the pre-study test.

As shown in the overall flow chart (Figure 3), in the first-level downscaling from
4 km to 1 km, we initially calculated the MNDWI, NDBSI, NDVI, NMDI, and UI at a 20 m
resolution using GF5-02 VIMI reflectance data as introduced in Section 3.2 and resampled
them to a 4 km resolution to match the FY-4B SULR, which was estimated using the hybrid
method introduced in Section 3.1. Here, we adopted the widely applied areal average
method to aggregate the five selected factors into multiple intermediate scales to drive
the step-wise downscaling processes, which has been proven to be reliable in previous
studies [22,33]. The selected MLR was adopted to build the relationship between the SULR
and surface factors in a coarse resolution and then was applied to the next finer resolution
according to Equations (3) and (4), respectively.

SULRc = p0 + p1 ∗ MNDWIc + p2 ∗ NDBSIc + p3 ∗ NDVIc + p4 ∗ NMDIc + p5 ∗ UIc (3)

SULR f = p0 + p1 ∗ MNDWIf + p2 ∗ NDBSIf + p3 ∗ NDVIf + p4 ∗ NMDIf + p5 ∗ UIf (4)

where p0–p5 denote the fitted coefficients of MLR; subscript c and f denote the coarse-
spatial-resolution and next finer-spatial-resolution, such as the 4 km scale and 1 km scale,
respectively.

In the downscaling process from a 4 km to a 1 km scale, it is necessary to ensure that
the average value of every 4 × 4 pixels at the 1 km spatial resolution is equivalent to that
at the 4 km spatial resolution (i.e., energy balance). Therefore, the unavoidable residual
(∆SULRc, see Equation (5)) between the original SULRc and re-aggerated SULR (SULRf→c)
needs to be allocated back to the downscaled image [18].

∆SULRc = SULRc − SULR f→c (5)

We resampled the ∆SULRc using nearest-neighbor interpolation to fine resolution
(∆SULRc→f) aiming to allocate the residual. To ensure both the energy balance and visual
effectiveness, we employed a mean filter with a window size of 3 × 3 to smooth the resam-
pled residual. Then, the smoothed residual was added back to the primary downscaled
SULR for generating the corrected fine-spatial-resolution SULR at 1 km (the SULR′

f as
shown in Equation (6)).

SULR′
f = SULRf + ∆SULRc→ f (6)
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Subsequently, the MLR function was refitted with the corrected SULR′
f of the 1 km

spatial resolution and 1 km surface factors and applied to generate the 200 m SULR. This
process was repeated at the 200 m SULR to generate the 40 m SULR, as shown in Figure 3.
In summary, we performed the SULR MLR-based step-by-step downscaling method from
FY-4B at a 4 km spatial resolution to a 40 m spatial resolution to align with GF5-02 using
intermediate scales of 1 km and 200 m.

3.4. Evaluation Strategy

In this study, we adopted two strategies to evaluate the downscaling accuracy: (1) an
in situ validation. As introduced in the study area and study data, we had 14 radiation
stations collecting SULR every 10 min. We also obtained extensive downscaled images in
terms of the high-frequency (every 15 min) property of the FY-4B geostationary satellite
data. The in situ measurements were was linearly interpolated to match the FY-4B imaging
time. The downscaled 40 m SULR values located in all the radiation stations were extracted,
containing approximately 90 pairs every day in each station. It is sufficient to evaluate
the downscaling accuracy with these in situ measurements. (2) The calculated SULR
comparison. The calculated SULR results from the high-spatial-resolution GF5-02 data
allowed an image-to-image assessment of the downscaling effectiveness. Specifically, the
downscaled 40 m SULR alignment with the GF5-02 overpass time was compared with
the directly calculated SULR from the GF5-02 satellite data using the hybrid method
(introduced in Section 3.1). To quantitatively evaluate the accuracy of the downscaling
process based on the above two strategies, three metrics containing the root mean square
error (RMSE), mean bias error (MBE), and correlation coefficient (R) were employed as the
indicators. Equations (7)–(9) were used to calculate these metrics.

RMSE =

√√√√ 1
n

n

∑
i=1

(
SULRdownscaled − SULRre f erence

)2

(7)

MBE =
1
n

n

∑
i=1

(
SULRdownscaled − SULRre f erence

)
(8)

R =
Cov

(
SULRdownscaled, SULRre f erence

)
√

VarSULRdownscaled ∗ VarSULRre f erence

(9)

In the above equations, SULRdownscaled denotes the downscaled SULR while SULRreference
denotes the SULR data that was collected in situ from the radiation stations or the calculated
SULR from GF5-02. Cov(SULRdownscaled, SULRdownscaled) denotes the covariance of the two
parameters and VarSULRdownscaled and VarSULRre f erence denote the variance of SULRdownscaled
and SULRreference, respectively.

4. Results and Evaluation

The results and evaluations were categorized into four different aspects as seen in
Table 3. The step-by-step downscaled SULR results were based on one local time observa-
tion (11:15) on a specific day (Section 4.1). The hour-by-hour results were focused on all the
hours of one specific day (Section 4.2). The point-by-point validation was achieved in all
local times for three days (Section 4.3). The image-to-image comparison was conducted in
one local time (11:15) for all four specific days.



Remote Sens. 2024, 16, 1158 10 of 18

Table 3. Data details in Section 4.

Section Time

4.1 Step-by-step downscaled SULR results 11:15 in local time on 27 September 2022 (i.e., the same as the GF5-02 imaging
time of a specific day) (Figure 4)

4.2 Hour-by-hour downscaled SULR results
08:00, 08:15, 08:30. . .24:00 on 27 September 2022
00:15, 00:30. . .07:45 on 28 September 2022 in local time
(i.e., the same as the FY-4B imaging time of a specific day) (Figure 5)

4.3 Point-by-point validation using the
SULR measured in situ

The same time as in Section 4.2 for all 14 stations separately (Figure 6a–n);
The same time as in Section 4.2 for all 14 stations together on 24 July 2022, 27
September 2022, and 17 November 2022 (Figure 6o)

4.4 Image-to-image comparison
using the calculated GF5-02 SULR

11:15 in local time on 24 July 2022, 27 September 2022, 17 November 2022, and
6 March 2023 (i.e., the same as all the GF5-02 imaging times of four specific
days) (Figure 7)

4.1. Step-by-Step Downscaled SULR Results

During the step-by-step downscaling process, we progressively obtained the inter-
mediate downscaled SULR images at 1 km, 200 m, and the final result at the 40 m spatial
resolution by introducing the surface factors in these scales. The study data from 27 Septem-
ber 2022 (11:15 in local time) was selected as an example to illustrate the following detailed
downscaling processes and results. Firstly, Figure 4(a1–f4) exhibits the factors in different
scales and the corresponding SULR via downscaling with these factors. As shown in the
figure, the spatial texture property gradually recovered through the downscaling processes,
demonstrating the successful achievement of step-by-step downscaling. These factors hold
a clear texture on their own, contributing to recovering the SULR in higher spatial resolu-
tions. Figure 4(g1) demonstrates the histogram of the originally estimated SULR before
downscaling, an approximate range of 440–500 W/m2. To validate the preservation of the
energy balance during the large-span downscaling process, we conducted a re-aggregation
of the downscaled SULR at 1 km, 200 m, and 40 m spatial resolution back to a 4 km spatial
resolution and compared the values. This comparison was illustrated in Figure 4(g2–g4)
which remains an energy balance in every intermediate scale of step-by-step downscaling
with the RMSE between the original SULR and the re-aggregated SULR of 3.82 W/m2.
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4.2. Hour-by-Hour Downscaled SULR Results

Based on the high-frequency property of the FY-4B data, the MLR-based step-by-
step downscaling strategy was applied to the other imaging time on 27 September 2022,
generating a high-temporal-resolution SULR dataset that corresponds to the FY-4B original
SULR before downscaling. Figure 5 illustrates the downscaled SULR in 24 selected moments
of a day based on the local time, revealing a distinct trend with lower SULR values during
the nighttime and higher values during the daytime and lower values for waterbodies
during the daytime and higher ones during the nighttime.
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4.3. Point-by-Point Validation Using the SULR Measured In Situ

The SULR collected from 14 radiation stations was employed to quantitatively evalu-
ate the accuracy of the downscaling process based on the above high-temporal-resolution
downscaling results. It was difficult to validate SULR in coarse scales using in situ mea-
surements due to the serious spatial heterogeneity in this study area [34]. Therefore, we
conducted the point-by-point validation only in the targeted 40 m resolution. According to
the latitude and longitude locations of these stations and following the minimum distance
principle, we extracted the downscaled SULR values from the entire downscaled image at a
40 m resolution for each station at 15 min intervals, aligning with the temporal resolution of
FY-4B. On the example day (27 September 2022), there were 90 effective data images avail-
able. Simultaneously, the surface radiation stations collected the SULR values every 10 min,
and the interpolation method was adopted to obtain the intermediate SULR values to en-
sure the temporal resolutions matched. Consequently, 90 pairs of comparisons between the
downscaled SULR values and the in situ SULR values were obtained, and the chronological
comparison results are presented in Figure 6. The chronological trend exhibits diurnal
variation characteristics. On 27 September 2022, the RMSE for 11 out of 14 stations was
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below 20 W/m2, while the average RMSE and MBE for all the stations were 16.90 W/m2

and −1.87 W/m2, respectively. For 24 July 2022, 27 September 2022, and 17 November 2022,
the overall RMSE, MBE, and R of the 14 stations were 19.70 W/m2, 1.42 W/m2, and 0.95,
respectively. These results indicate a favorable downscaling achievement, considering the
acceptable instantaneous error of 20 W/m2 [35]. Recent SULR estimations have achieved
an approximate accuracy with a RMSE from 15.72 to 18.75 W/m2, which is very close to
the RMSE of our study [36–38].
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4.4. Image-to-Image Comparison Using the Calculated GF5-02 SULR

Besides the in situ validation, evaluating the downscaling results from an image
perspective is necessary. We compared the downscaled SULR with the calculated SULR
for each pixel at a 40 m resolution, which was estimated directly from the GF5-02 satellite
thermal infrared data using the hybrid method outlined in Section 3.1. The root mean
square difference (RMSD) between the GF5-02 calculation and FY-4B downscaling results
was approximately 23.21, 24.22, 24.10, and 27.90 W/m2 on four study days (see Figure 7 and
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Table 4). From an image perspective, the downscaled SULR varied in a smaller range than
the reference ones with an overestimation in the water body areas and an underestimation
in the mountain areas.
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Figure 7. Comparison between the GF5-02-calculated SULR and FY-4B-downscaled SULR;
(a1–d1) SULRs calculated from the GF5-02 data on four study days; (a2–d2) downscaled SULR
of the corresponding days; (a3–d3) comparison results. Table 4 shows the detailed comparison values.

Table 4. The RMSD, MBE, and correlation coefficient between the downscaled SULR and calcu-
lated SULR.

24 July 2022 27 September 2022 17 November 2022 6 March 2023

RMSD (W/m2) 23.21 24.22) 24.10 27.90
MBE (W/m2) −11.46 −3.00 6.53 4.68

R 0.42 0.38 0.41 0.31

5. Conclusions and Discussion

In this study, the 4 km SULR from the FY-4B satellite was downscaled to 40 m using
the MLR model and five surface factors based on the step-by-step downscaling strategy.
Simultaneously, leveraging the high frequency of FY-4B geostationary satellite data, high
temporal resolution SULR (approximately 90 observations per day, aligning with the
imaging frequency of FY-4B AGRI) was able to be generated. The downscaled SULR
had an acceptable accuracy with an average RMSE of 24.86 and 19.70 W/m2 with cross-
comparisons and in situ validation, respectively.

Throughout this study, three main conclusions were drawn:
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(1) The processes and results were reliable. The estimated original SULR had an
acceptable accuracy with an RMSE of less than 10W/m2. During the whole downscaling
process, allocating residuals in each intermediate scale ensured the energy balance, the
mean filter smooth for the residual took the visual effectiveness into account, and the final
downscaled SULR had an accuracy with an RMSE of almost less than 20 W/m2;

(2) The data was sufficient. Approximately 3780 pairs of data (90 images every day
for three days in 14 stations) were employed to evaluate the accuracy on a point-to-point
scale. Four image-to-image comparisons covering four seasons showed annual thermal
conditions and hourly downscaled results that revealed a diurnal thermal tendency;

(3) The evaluation was independent of the additional satellite data. The SULR collected
from the station radiometers was directly employed to evaluate the downscaling accuracy
instead of the experimental data, providing reliable and dependent validation.

However, there were still many challenges.
(1) The range of the downscaled results was small. Similar to numerous existing

methods for downscaling, the downscaled SULR had a small range of variation with
underestimated SULR values in the high-value zones and overestimated SULR values in
the low-value zones [19,22,23,39]. The most significant underestimation appeared around
13:00, which could be explained as a limitation of the MLR method (i.e., underestimated
SULR values in high-value zones). In addition, station C3 had the most serious error
compared with the other stations, which is possible due to the inaccurate geolocation since
it is located near a lake. When comparing with the GF5-02-calculated SULR at a 40 m
resolution, the downscaled SULR was also difficult to achieve for a wide range of value
variation, which was flatly concentrated around the median values. This phenomenon
was obvious on 24 July 2022 and 6 March 2023 according to the 1:1 line in Figure 7 and
prominent in the mountain areas and waterbody areas according to Figure 7(a1–d2);

(2) The radiation stations were mainly placed on flat ground and lacked real measured
data for the water bodies or mountain areas. In future work, we are supposed to place
more stations, including more landscapes, to improve the presentiveness of the in situ
measurements;

(3) The comparison valuation strategy has some limits. The GF5-02 observes the
Earth at a nadir direction as a polar-orbiting satellite while the FY-4B satellite is at a
fixed orientation as geostationary satellite. Therefore, the RMSD of the calculated SULR
using the GF5-02 satellite and downscaled SULR from the FY-4B satellite was unable to
strictly present the downscaling accuracy. Furthermore, it was likely that existing thermal
radiation directionality led to a large bias for the downscaled SULR [40]. Looking to 24 July
2022 as an example (Figure 7(a3)), the downscaled SULR was obviously underestimated
according to the MBE of −11.46 W/m2. In future work, methods for thermal radiation
directionality corrections may be introduced to correct the SULR to a unified direction so
that the downscaled results can be compared and evaluated more strictly [38,41].

Author Contributions: Conceptualization, L.Z.; data curation, L.Z., Q.N., B.C., Y.D., H.L. and Z.B.;
formal analysis, Y.D., H.L. and Z.B.; funding acquisition, B.C. and B.Q.; investigation, L.Z. and B.C.;
methodology, L.Z., Q.N. and B.C.; resources, B.C., B.Q., J.B., Y.D., H.L., Z.B., Q.X. and Q.L.; software,
L.Z., Q.N., B.Q. and B.C.; supervision, B.C.; validation, L.Z.; writing—original draft preparation, L.Z.;
writing—review and editing, B.C., Q.N, B.Q., Y.D., H.L. and Z.B.; visualization, L.Z. and B.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China un-
der Grant 41930111, 42130104, 42071317, 42271362, 42130111, and 41871258; in part by the Guangdong
Basic and Applied Basic Research Foundation under Grant 2024A1515011854.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.



Remote Sens. 2024, 16, 1158 17 of 18

References
1. Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets From Ground

Measurement, Remote Sensing and Model Simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [CrossRef]
2. Cheng, J.; Liang, S. Global Estimates for High-Spatial-Resolution Clear-Sky Land Surface Upwelling Longwave Radiation From

MODIS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4115–4129. [CrossRef]
3. Zhang, H.; Tang, B.-H. Retrieval of Daytime Surface Upward Longwave Radiation Under All-Sky Conditions With Remote

Sensing and Meteorological Reanalysis Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]
4. Tang, B.; Li, Z.-L. Estimation of Instantaneous Net Surface Longwave Radiation from MODIS Cloud-Free Data. Remote Sens.

Environ. 2008, 112, 3482–3492. [CrossRef]
5. Jiao, Z.; Yan, G.; Zhao, J.; Wang, T.; Chen, L. Estimation of Surface Upward Longwave Radiation from MODIS and VIIRS Clear-Sky

Data in the Tibetan Plateau. Remote Sens. Environ. 2015, 162, 221–237. [CrossRef]
6. Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre,

C.A.; et al. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 1997, 275,
502–509. [CrossRef] [PubMed]

7. Diak, G.R.; Mecikalski, J.R.; Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Torn, R.D.; DeWolf, R.L. Estimating Land Surface
Energy Budgets From Space: Review and Current Efforts at the University of Wisconsin—Madison and USDA–ARS. Bull. Am.
Meteorol. Soc. 2004, 85, 65–78. [CrossRef]

8. Hu, T.; Du, Y.; Cao, B.; Li, H.; Bian, Z.; Sun, D.; Liu, Q. Estimation of Upward Longwave Radiation From Vegetated Surfaces
Considering Thermal Directionality. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6644–6658. [CrossRef]

9. Ge, N.; Zhong, L.; Ma, Y.; Fu, Y.; Zou, M.; Cheng, M.; Wang, X.; Huang, Z. Estimations of Land Surface Characteristic Parameters
and Turbulent Heat Fluxes over the Tibetan Plateau Based on FY-4A/AGRI Data. Adv. Atmos. Sci. 2021, 38, 1299–1314. [CrossRef]

10. Wu, H.; Zhang, X.; Liang, S.; Yang, H.; Zhou, G. Estimation of Clear-sky Land Surface Longwave Radiation from MODIS Data
Products by Merging Multiple Models. J. Geophys. Res. Atmos. 2012, 117, 2012JD017567. [CrossRef]

11. Zhan, W.; Chen, Y.; Zhou, J.; Li, J.; Liu, W. Sharpening Thermal Imageries: A Generalized Theoretical Framework From an
Assimilation Perspective. IEEE Trans. Geosci. Remote Sens. 2011, 49, 773–789. [CrossRef]

12. Nie, J.; Wu, J.; Yang, X.; Liu, M.; Zhang, J.; Zhou, L. Downscaling Land Surface Temperature Based on Relationship between
Surface Temperature and Vegetation Index. Acta Ecol. Sin. 2011, 187, 259–272.

13. Quan, J.; Zhan, W.; Chen, Y.; Liu, W. Downscaling Remotely Sensed Land Surface Temperatures: A Comparison of Typical
Methods. J. Remote Sens. 2013, 17, 361–387.

14. Wang, Y.; Xie, D.; Li, Y. Downscaling Remotely Sensed Land Surface Temperature over Urban Areas Using Trend Surface of
Spectral Index. J. Remote Sens. 2014, 18, 13.

15. Hua, J.; Zhu, S.; Zhang, G. Downscaling Land Surface Temperature Based on Random Forest Algorithm. Remote Sens. Land Resour.
2018, 30, 78–86.

16. Yu, F.; Zhu, S.; Zhang, G.; Zhu, J.; Zhang, N.; Xu, Y. A Downscaling Method for Land Surface Air Temperature of ERA5 Reanalysis
Dataset under Complex Terrain Conditions in Mountainous Areas. J. Geosci. 2022, 24, 750–765.

17. Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating Subpixel Surface Temperatures and Energy Fluxes from the
Vegetation Index–Radiometric Temperature Relationship. Remote Sens. Environ. 2003, 85, 429–440. [CrossRef]

18. Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A Vegetation Index Based Technique for Spatial Sharpening of
Thermal Imagery. Remote Sens. Environ. 2007, 107, 545–558. [CrossRef]

19. Zhu, S.; Guan, H.; Millington, A.C.; Zhang, G. Disaggregation of Land Surface Temperature over a Heterogeneous Urban and
Surrounding Suburban Area: A Case Study in Shanghai, China. Int. J. Remote Sens. 2013, 34, 1707–1723. [CrossRef]

20. Hutengs, C.; Vohland, M. Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression. Remote
Sens. Environ. 2016, 178, 127–141. [CrossRef]

21. Wang, Z.; Qin, Q.; Sun, Y. Downscaling of Remotely Sensed Land Surface Temperature with the BP Neural Network. Remote Sens.
Technol. Appl. 2018, 33, 793–802.

22. Dong, P.; Zhan, W.; Wang, C.; Jiang, S.; Du, H.; Liu, Z.; Chen, Y.; Li, L.; Wang, S.; Ji, Y. Simple yet Efficient Downscaling of Land
Surface Temperatures by Suitably Integrating Kernel- and Fusion-Based Methods. ISPRS J. Photogramm. Remote Sens. 2023, 205,
317–333. [CrossRef]

23. Hu, Y.; Tang, R.; Jiang, X.; Li, Z.-L.; Jiang, Y.; Liu, M.; Gao, C.; Zhou, X. A Physical Method for Downscaling Land Surface
Temperatures Using Surface Energy Balance Theory. Remote Sens. Environ. 2023, 286, 113421. [CrossRef]

24. Zhang, Q.; Wang, N.; Cheng, J.; Xu, S. A Stepwise Downscaling Method for Generating High-Resolution Land Surface Temperature
from AMSR-E Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5669–5691. [CrossRef]

25. Li, X.; Zhang, G.; Zhu, S.; Xu, Y. Step-By-Step Downscaling of Land Surface Temperature Considering Urban Spatial Morphological
Parameters. Remote Sens. 2022, 14, 3038. [CrossRef]

26. Jung, H.-S.; Lee, K.-T.; Zo, I.-S. Calculation Algorithm of Upward Longwave Radiation Based on Surface Types. Asia-Pac. J. Atmos.
Sci. 2020, 56, 291–306. [CrossRef]

27. Wang, C.; Tang, B.-H.; Huo, X.; Li, Z.-L. New Method to Estimate Surface Upwelling Long-Wave Radiation from MODIS
Cloud-Free Data. Opt. Express 2017, 25, A574. [CrossRef] [PubMed]

https://doi.org/10.1109/JSTARS.2010.2048556
https://doi.org/10.1109/TGRS.2016.2537650
https://doi.org/10.1109/TGRS.2022.3194085
https://doi.org/10.1016/j.rse.2008.04.004
https://doi.org/10.1016/j.rse.2015.02.021
https://doi.org/10.1126/science.275.5299.502
https://www.ncbi.nlm.nih.gov/pubmed/8999789
https://doi.org/10.1175/BAMS-85-1-65
https://doi.org/10.1109/TGRS.2016.2587695
https://doi.org/10.1007/s00376-020-0169-5
https://doi.org/10.1029/2012JD017567
https://doi.org/10.1109/TGRS.2010.2060342
https://doi.org/10.1016/S0034-4257(03)00036-1
https://doi.org/10.1016/j.rse.2006.10.006
https://doi.org/10.1080/01431161.2012.725957
https://doi.org/10.1016/j.rse.2016.03.006
https://doi.org/10.1016/j.isprsjprs.2023.10.011
https://doi.org/10.1016/j.rse.2022.113421
https://doi.org/10.1109/JSTARS.2020.3022997
https://doi.org/10.3390/rs14133038
https://doi.org/10.1007/s13143-020-00175-5
https://doi.org/10.1364/OE.25.00A574
https://www.ncbi.nlm.nih.gov/pubmed/28788839


Remote Sens. 2024, 16, 1158 18 of 18

28. Zhou, S.; Cheng, J. Estimation of High Spatial-Resolution Clear-Sky Land Surface-Upwelling Longwave Radiation from VIIRS/S-
NPP Data. Remote Sens. 2018, 10, 253. [CrossRef]

29. Qin, B.; Cao, B.; Li, H.; Bian, Z.; Hu, T.; Du, Y.; Yang, Y.; Xiao, Q.; Liu, Q. Evaluation of Six High-Spatial Resolution Clear-Sky
Surface Upward Longwave Radiation Estimation Methods with MODIS. Remote Sens. 2020, 12, 1834. [CrossRef]

30. Dong, P.; Gao, L.; Zhan, W.; Liu, Z.; Li, J.; Lai, J.; Li, H.; Huang, F.; Tamang, S.K.; Zhao, L. Global Comparison of Diverse Scaling
Factors and Regression Models for Downscaling Landsat-8 Thermal Data. ISPRS J. Photogramm. Remote Sens. 2020, 169, 44–56.
[CrossRef]

31. Sánchez, J.M.; Galve, J.M.; Nieto, H.; Guzinski, R. Assessment of High-Resolution LST Derived From the Synergy of Sentinel-2
and Sentinel-3 in Agricultural Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 916–928. [CrossRef]

32. Zhu, X.; Song, X.; Leng, P.; Hu, R. Spatial Downscaling of Land Surface Temperature with the Multi-Scale Geographically
Weighted Regression. J. Remote Sens. 2021, 25, 18. [CrossRef]

33. Yoo, C.; Im, J.; Park, S.; Cho, D. Spatial Downscaling of MODIS Land Surface Temperature: Recent Research Trends, Challenges,
and Future Directions. Korean J. Remote Sens. 2020, 36, 609–626. [CrossRef]

34. Li, H.; Li, R.; Tu, H.; Cao, B.; Liu, F.; Bian, Z.; Hu, T.; Du, Y.; Sun, L.; Liu, Q. An Operational Split-Window Algorithm for
Generating Long-Term Land Surface Temperature Products From Chinese Fengyun-3 Series Satellite Data. IEEE Trans. Geosci.
Remote Sens. 2023, 61, 1–14. [CrossRef]

35. Wang, W.; Liang, S.; Augustine, J.A. Estimating High Spatial Resolution Clear-Sky Land Surface Upwelling Longwave Radiation
from MODIS Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1559–1570. [CrossRef]

36. Zeng, Q.; Cheng, J.; Dong, L. Assessment of the Long-Term High-Spatial-Resolution Global LAnd Surface Satellite (GLASS)
Surface Longwave Radiation Product Using Ground Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13,
2032–2055. [CrossRef]

37. Zeng, Q.; Cheng, J.; Guo, M. A Comprehensive Evaluation of Three Global Surface Longwave Radiation Products. Remote Sens.
2023, 15, 2955. [CrossRef]

38. Qin, B.; Cao, B.; Roujean, J.-L.; Gastellu-Etchegorry, J.-P.; Ermida, S.L.; Bian, Z.; Du, Y.; Hu, T.; Li, H.; Xiao, Q.; et al. A Thermal
Radiation Directionality Correction Method for the Surface Upward Longwave Radiation of Geostationary Satellite Based on a
Time-Evolving Kernel-Driven Model. Remote Sens. Environ. 2023, 294, 113599. [CrossRef]

39. Duan, S.-B.; Li, Z.-L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression:
Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [CrossRef]

40. Cao, B.; Liu, Q.; Du, Y.; Roujean, J.-L.; Gastellu-Etchegorry, J.-P.; Trigo, I.F.; Zhan, W.; Yu, Y.; Cheng, J.; Jacob, F.; et al. A
Review of Earth Surface Thermal Radiation Directionality Observing and Modeling: Historical Development, Current Status and
Perspectives. Remote Sens. Environ. 2019, 232, 111304. [CrossRef]

41. Hu, T.; Roujean, J.-L.; Cao, B.; Mallick, K.; Boulet, G.; Li, H.; Xu, Z.; Du, Y.; Liu, Q. Correction for LST Directionality Impact on the
Estimation of Surface Upwelling Longwave Radiation over Vegetated Surfaces at the Satellite Scale. Remote Sens. Environ. 2023,
295, 113649. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs10020253
https://doi.org/10.3390/rs12111834
https://doi.org/10.1016/j.isprsjprs.2020.08.018
https://doi.org/10.1109/JSTARS.2023.3335896
https://doi.org/10.11834/jrs.20211202
https://doi.org/10.7780/KJRS.2020.36.4.9
https://doi.org/10.1109/TGRS.2023.3315968
https://doi.org/10.1109/TGRS.2008.2005206
https://doi.org/10.1109/JSTARS.2020.2992472
https://doi.org/10.3390/rs15122955
https://doi.org/10.1016/j.rse.2023.113599
https://doi.org/10.1109/TGRS.2016.2585198
https://doi.org/10.1016/j.rse.2019.111304
https://doi.org/10.1016/j.rse.2023.113649

	Introduction 
	Study Area and Data 
	Study Area 
	Data 
	GaoFen5-02 VIMI Data 
	FengYun-4B AGRI Level 1 Data 


	Methodology 
	Hybrid Algorithm for Estimating SULR 
	Surface Factors and Downscaling the Model Selection 
	MLR-Based Step-by-Step Downscaling Strategy 
	Evaluation Strategy 

	Results and Evaluation 
	Step-by-Step Downscaled SULR Results 
	Hour-by-Hour Downscaled SULR Results 
	Point-by-Point Validation Using the SULR Measured In Situ 
	Image-to-Image Comparison Using the Calculated GF5-02 SULR 

	Conclusions and Discussion 
	References

