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Abstract: Anthropogenic activities and natural disturbances cause changes in natural ecosystems,
leading to altered Plant Ecological Units (PEUs). Despite a long history of land use and land cover
change detection, the creation of change detection maps of PEUs remains problematic, especially
in arid and semiarid landscape. This study aimed to determine and describe the changes in PEUs
patterns in the past and present, and also predict and monitor future PEUs dynamics using the
multi-layer perceptron-Markov chain (MLP-MC) model in a semiarid landscape in Central Zagros,
Iran. Analysis of PEUs classification maps formed the basis for the identification of the main drivers
in PEUs changes. First, an optimal time-series dataset of Landsat images were selected to derive PEUs
classification maps in three periods, each separated by 16 years. Then, PEUs multi-temporal maps
classified for period 1 (years 1986–1988) period 2 (years 2002–2004), and period 3 (years 2018–2020)
were employed to analyze and predict PEUs dynamics. The dominant transitions were identified,
and the transition potential was determined by developing twelve sub-models in the final change
prediction process. Transitions were modeled using a Multi-Layer Perceptron (MLP) algorithm. To
predict the PEU map for period 3, two PEUs classification maps of period 1 and period 2 were used
using the MLP-MC method. The classified map and the predicted map of period 3 were used to
evaluate and validate the predicted results. Finally, based on the results, transitions of future PEUs
were predicted for the year 2036. The MLP-MC model proved to be a powerful model that can predict
future PEUs dynamics that are the result of current human and managerial activities. The findings of
this study demonstrate that the impact of anthropogenic processes and management activities will
become visible in the natural environment and ecosystem in less than a decade.

Keywords: plant ecological unit’s changes; land change modeler; time-series dataset; Markov
chain model

1. Introduction

Land cover is the combination of biotic and abiotic physical substances on the earth’s
surface. Typically, it includes natural vegetation (forests, grassland), water, soil, and man-
made surfaces [1,2]. Mapping and monitoring changes in land cover types are pivotal for
land cover sustainability planning and environmental management needs [3–5]. However,
the benefits and importance of land cover maps based on plant ecological units (PEUs) are
less understood [6]. PEUs represent the potential plant communities that can occur on a
site. Because of differences in elevation, soil, historic background, and land abandonment
processes, a variety of plant communities with distinctive amounts and types of vegetation
can be found in an area. Thereby, the identification of PEUs provides a reference for the
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interpretation of land cover data and research, monitoring, and land management [7]. PEUs
mapping through classification techniques is extremely important, and their accuracy will
directly affect the extraction of the final prediction results and change detection maps [8].
Therefore, documenting and evaluating the temporal dynamics of PEUs and making
predictions of plausible future PEUs dynamics is vital for plant community and land
cover monitoring.

Optical remote sensing data offer a valuable source of information for studying
change detection. Several studies in change detection have been related to land use/cover
changes [9,10]. The key areas in these land use studies included urban areas [11,12], dry-
lands [13], protected areas [14], and wetlands [8,15]. Modeling PEUs changes, on the other
hand, not only helps evaluate the current condition of land cover but also helps managers
and natural resource planners prevent or reduce negative consequences of undesirable
future PEUs changes. Meanwhile, PEUs are hardly distinguishable due to their similar
spectral behavior and low inter-class separability, especially in arid and semiarid areas.
Therefore, these PEUs impose challenges to classification and predictions of future changes.
In a related study about improving land cover map accuracy, Aghababaei et al. [7] found
that the development of an accurate land cover map is feasible in a semiarid rangeland
when a dataset of time-series images is entered into the classification. So far, publicly
available satellite data have been used in change detection studies, such as MODIS [16],
SPOT [3], and Landsat [17,18]. Nevertheless, the most notable applications of Landsat
data are land cover change analyses. Landsat is widely used in these studies due to its
long-range time-series data and free access [19]. By exploiting the temporal dimension of
Landsat data, the effects of poor-quality observations can be minimized in the classification
and change detection [20]. Regarding the processing of multi-temporal images, the Google
Earth Engine (GEE) platform allows researchers to classify and process large volumes of
satellite images, including Landsat [21–23]. The combination of an unprecedented data
catalog with powerful processing possibilities caused a paradigm shift in Optical Earth
observation (EO) data analysis that moved away from traditional image analysis using
desktop software to cloud-based processing.

Various models have been used in predicting LULC changes, such as the Markov Chain
model (MC), Cellular Automata (CA), and Multi-Layer Perceptron–Markov Chain (MLP-
MC). However, integrated models such as MLP-MC are implemented in the integration
of the Multi-Layer Perceptron Neural Network (NN-MLP) model with the MC model as
an effective approach in prediction studies [8]. This model is used to predict geospatial
changes with the use of previous changes [24]. Studies show that the MC model gives
better results when predicting long-term temporal LULC variations, future scenarios, and
landscape changes [15,25–27].

Altogether, the objectives of the study presented here are the following. Firstly, to
develop a classification strategy using a multi-temporal dataset that achieves accurate
and efficient PEUs mapping. Secondly, using the MLP-MC to monitor changes in PEUs
dynamics from 1986 to 2020 with 16-year time intervals and forecasting future changes
for 16 years later, i.e., 2036, in a semiarid rangeland landscape in Southwest Iran, where
the low vegetation covers make it a challenging task. This work can help natural resource
managers and planners make a sustainable result for natural resource protection, climate
regulation, and erosion control by understanding current and future PEUs changes.

2. Materials and Methods

2.1. Study Area

The study presented here is based on the Marjan watershed case study area located
in the Chaharmahal-Va-Bakhtiari province in Southwest Iran. As shown in Figure 1,
PEUs boundaries can be straightforwardly observed in this area due to the relatively
narrow ecotones and sharp borders between them. The study area is characterized by a
heterogeneous, semiarid landscape with a predominance of different PEUs. The covered
area is 7736.58 ha. There are some effects of anthropogenic processes and management
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activities present, leading to spatial changes in PEUs maps in different periods. We are not
aware of work focusing on modeling these PEUs dynamics.
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Figure 1. Location of Marjan in the Chaharmahal-Va-Bakhtiari province: (a) Chaharmahal-Va-
Bakhtiari border; (b) study area border (Marjan).

2.2. Field Measurements

Four PEUs groups were distinguished in the area, including (1) PEU1 (Astragalus verus
Olivier (As ve)), (2) PEU2 (Bromus tomentellus Boiss (Br to)), (3) PEU3 (Scariola orientalis
Sojak (Sc or)), and (4) PEU4 (Astragalus verus Olivier—Bromus tomentellus Boiss (As ve—Br
to)). Canopy cover data could potentially be used to identify structural and compositional
PEUs or a combination of both, the so-called physiognomic–floristic classification, to gain a
sound and accurate perspective on PEUs. We sampled the four identified PEUs using three
replicates, in each of which canopy cover was sampled along three transects of 100 m that
were evenly distributed throughout the study area. The sampling was randomly systematic
(the first node was selected randomly but the rest were systematically distributed along
the transects). We collected species-based canopy cover within each quadrat. In each
PEUs, the canopy cover percentage was calculated and the PEUs were named according to
their dominant floristic composition (Figure 2). For this purpose, first, the dominant plant
species of each PEU was identified and then its accompanying species was determined,
with the dominant species having 50% or more canopy cover than the previously dominant
species. Thus, each PEU was named based on a physiognomic–floristic method.



Remote Sens. 2024, 16, 1612 4 of 19Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

 

 

 

Figure 2. Cont.



Remote Sens. 2024, 16, 1612 5 of 19Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. The location of PEUs in Google Earth images and the corresponding field photos. (a) PEU1 
(As ve); (b) PEU2 (Br to); (c) PEU3 (Sc or); and (d) PEU4 (As ve—Br to). * Canopy cover percentage 
of dominant and accompanied species that was calculated on transects. 

2.3. NDVI Spectral Curve and Selection of Optimal Time-Series Datasets 
This study used multi-temporal satellite data. The satellite data consisted of 3 periods 

with 16-year time intervals acquired by Landsat 5 TM for period 1 (1986, 1987, 1988), 
Landsat 7 ETM+ for period 2 (2002, 2003, 2004), and Landsat 8 OLI for period 3 (2018, 2019, 
2020). With the support of Google Earth Engine (GEE), we used the Top of Atmosphere 
(TOA) reflectance (ee. Image Collection (‘LANDSAT/LT05/C01/T1_TOA’)), (ee. Image 
Collection (‘LANDSAT/LE07/C01/T1_TOA’)), and (ee. Image Collection (‘LAND-
SAT/LC08/C01/T1_TOA’)) for Landsat 5, Landsat 7, and Landsat 8 images, respectively. 
Likewise, using the cloud filter (ee. Filter. Less than (‘CLOUD_COVER’, 5)), only satellite 
images with less than 5% cloud cover were selected. So, some images were filtered due to 
persistent cloudiness. Finally, the NDVI time-series profile was calculated from January 
to December of each year (Equation (1)). 

By analyzing the NDVI temporal profile, we identified a multi-temporal dataset as 
an input for PEUs classification for each period [6]. 

NDVI =    (1)

where RED is the reflectance in the red band, and NIR is the reflectance in the near-infra-
red band [24]. 

2.4. Methodology 
Figure 3 shows the conducted workflow of PEUs change detection and prediction 

using the MLP-MC model. First, using the physiognomic–floristic method, we selected 4 
dominant PEUs in the region, and using GPS, training and testing samples were collected 
by field survey in the study area. We used the RF classification algorithm and an optimal 
combination of multi-temporal images to produce PEUs maps for period 1 (years 1986–
1988), period 2 (years 2002–2004), and period 3 (years 2018–2020), respectively. Detection 
of PEUs changes was based on the Markov Chain model (MLP-MC model) that was ob-
tained from change analysis in PEUs classes from two dates. 

For period 3, a prediction map was created using the forecast model and the PEUs 
classification maps for period 1 and period 2. To validate the accuracy of the predicted 
map, we used the PEU classification map of the same period (period 3 classified map and 
period 3 predicted map). Finally, using the MLP-MC model, we obtained a PEU predic-
tion map for the year 2036. 
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2.3. NDVI Spectral Curve and Selection of Optimal Time-Series Datasets

This study used multi-temporal satellite data. The satellite data consisted of 3 periods
with 16-year time intervals acquired by Landsat 5 TM for period 1 (1986, 1987, 1988),
Landsat 7 ETM+ for period 2 (2002, 2003, 2004), and Landsat 8 OLI for period 3 (2018,
2019, 2020). With the support of Google Earth Engine (GEE), we used the Top of Atmo-
sphere (TOA) reflectance (ee. Image Collection (‘LANDSAT/LT05/C01/T1_TOA’)), (ee.
Image Collection (‘LANDSAT/LE07/C01/T1_TOA’)), and (ee. Image Collection (‘LAND-
SAT/LC08/C01/T1_TOA’)) for Landsat 5, Landsat 7, and Landsat 8 images, respectively.
Likewise, using the cloud filter (ee. Filter. Less than (‘CLOUD_COVER’, 5)), only satellite
images with less than 5% cloud cover were selected. So, some images were filtered due to
persistent cloudiness. Finally, the NDVI time-series profile was calculated from January to
December of each year (Equation (1)).

By analyzing the NDVI temporal profile, we identified a multi-temporal dataset as an
input for PEUs classification for each period [6].

NDVI =
(NIR − Red)
(NIR + Red)

(1)

where RED is the reflectance in the red band, and NIR is the reflectance in the near-infrared
band [24].

2.4. Methodology

Figure 3 shows the conducted workflow of PEUs change detection and prediction
using the MLP-MC model. First, using the physiognomic–floristic method, we selected
4 dominant PEUs in the region, and using GPS, training and testing samples were col-
lected by field survey in the study area. We used the RF classification algorithm and an
optimal combination of multi-temporal images to produce PEUs maps for period 1 (years
1986–1988), period 2 (years 2002–2004), and period 3 (years 2018–2020), respectively. Detec-
tion of PEUs changes was based on the Markov Chain model (MLP-MC model) that was
obtained from change analysis in PEUs classes from two dates.
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Figure 3. The workflow for PEUs change detection (1986–2020) and future prediction of PEUs
(2020–2036) in this study.

For period 3, a prediction map was created using the forecast model and the PEUs
classification maps for period 1 and period 2. To validate the accuracy of the predicted
map, we used the PEU classification map of the same period (period 3 classified map and
period 3 predicted map). Finally, using the MLP-MC model, we obtained a PEU prediction
map for the year 2036.

2.4.1. Training and Verification Points

After identifying the dominant PEUs in the study area, in total, 300 points were
recorded for the PEUs using a Garmin eTrex 32× GPS. Then, by examining aerial pho-
tographs from each period, it was ensured that each sample point was selected in the PEUs
center. Finally, the points were divided into two groups, the “training samples” (60%) and
“verification samples” (40%), used for the classification and validation of results.

2.4.2. PEUs Multi-Temporal Classification and Maps Validation

We used random forests (RF) to produce PEU maps for period 1 (years 1986–1988), pe-
riod 2 (years 2002–2004), and period 3 (years 2018–2020). After selecting the multi-temporal
dataset for each period, RF algorithm, as one of the most accurate machine learning al-
gorithms [28–31], was used to perform PEUs classification. The mapping accuracy was
evaluated by means of a confusion matrix (including Overall Accuracy (OA), Overall Kappa
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(OK), User’s Accuracy (UA), Producer’s Accuracy (PA), and Kappa Index of Agreement
(KIA)) for all years [32].

2.4.3. PEUs Change Detection and Analysis Using the LCM Model

Change detection and prediction mapping were achieved by the Land Change Modeler
(LCM). The LCM consists of a suite of tools for evaluating losses and gains and assessment
of land cover changes and transformations between the land cover classes in the map [33].
The PEUs maps based on the RF classification algorithm and an optimal combination of
multi-temporal images of Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images
were used in order to quantify the PEUs. The recognition of changes can facilitate the
determination of future PEUs changes and scenarios. The detection of PEUs changes are
based on the Markov Chain matrix that is obtained from change analysis in PEUs classes
from two dates (period 1 to period 2). In addition, this matrix can predict future PEUs
changes [26]. Based on the detection and analysis of PEUs changes, changes from one class
type to another were characterized. Cross-tabulation analysis was performed to quantify
PEUs changes from period 1 to period 2, from period 2 to period 3, and from period 1 to
period 3. The PEUs changes in areas from one period to another period can be determined
quantitatively and spatially by this analysis. The gains and losses experienced by various
PEUs classes and analysis of the spatial trend of these changes for the study area were
investigated for period 1, period 2, and period 3.

2.4.4. Selection of PEUs Transitions

Multiple mechanisms of transitions may occur in PEUs between two periods. All the
PEUs changes and transitions were collected into a set of sub-models using the NN-MLP
algorithm. The land cover change prediction was based on dependent and independent
variables. In this work, six dependent variables (environmental factors), i.e., slope, aspect,
DEM, distance from roads, temperature, and precipitation, were considered. These vari-
ables were selected according to the results of other studies in this field [8] (Dey, Nataraj
Narayan, 2021) and according to the Kramer correlation coefficient. PEUs maps were
considered independent variables. PEUs transition potential maps for each sub-model
were produced based on PEUs transitions, as well as environmental factors with the help
of an NN-MLP integrated in the LCM model.

2.4.5. Prediction of Future PEUs Changes

The MLP-MC model was used to predict and simulate the PEUs dynamics for a
specified future date. Using the NN-MLP model, it is possible to determine the transitions
that will be integrated for future PEUs change prediction. This model includes an input
layer, many hidden layers, and an output layer, thereby known as a reputed change
prediction model for its higher accuracy [34]. The MLP-MC model for the period 3 predicted
map was created using the forecast model and the PEUs classification maps of period 1 and
period 2. To validate the accuracy of the predicted map, we used the PEU classification map
of the same period (period 3 classified map and period 3 predicted map). Finally, using the
MLP-MC model, we obtained a PEU prediction map for the year 2036.

3. Results

3.1. Selecting the Optimal Time-Series Datasets

Figure 4a–c show the extracted NDVI temporal profiles for three periods. In these
profiles, patterns and trends in NDVI changes can be observed for selected periods. The
highest NDVI value belongs to the spring season, as this season is the peak of PEUs
vegetative growth. In contrast, the lowest NDVI value can be observed in autumn and
winter. As shown in Figure 4a–c, generally, the highest NDVI value occurs for selected
periods between April and June. The multi-temporal images with the maximum NDVI
values were selected for PEUs classification for each period (Table 1).
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Figure 4. (a) The NDVI time-series profile of Landsat 5 TM (1986–1988), images for the periods of
January to December in each year. (b) The NDVI time-series profile of Landsat 7 ETM+ (2002–2004),
images for the periods of January to December in each year. (c) The NDVI time-series profile of
Landsat 8 OLI (2018–2020), images for the periods of January to December in each year.
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Table 1. Details of multi-temporal images used in this study for PEUs classification.

Sensor Year Month/Day Year Month/Day Year Month/Day

Landsat 5
TM 1986

24 April
17 May
2 June

18 June

1987

2 April
4 May

20 May
5 June
21 June

1988
4 April
7 June
23 June

Landsat 7
ETM+ 2002

5 May
14 May
17 June

2003 24 May 2004

8 April
10 May
26 May
11 June
27 June

Landsat 8
OLI 2018

25 May
10 June
26 June

2019

26 April
28 May
13 June
29 June

2020

12 April
28 April
14 May
30 May
15 June

3.2. PEUs Classification and Validation

Using the RF classification algorithm, PEUs classification was performed for selected
periods. Figure 5 shows three PEUs classification maps. The accuracy of the PEUs maps
were was estimated using confusion matrices. In Table 2, the OA and OK of each period
are presented. Also, the PA, UA, and KIA of PEUs are reported. The OA of the maps was
0.73, 0.77, and 0.81 for period 1, period 2, and period 3, respectively.
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Table 2. Confusion matrix results of PEUs classification of periods 1, 2, and 3.

Period

PEUs
Class

Period 1 Period 2 Period 3

PA1 UA1 KIA1 PA2 UA2 KIA2 PA3 UA3 KIA3

PEU1 0.84 0.74 0.84 0.91 0.77 0.87 0.91 0.91 0.88
PEU2 0.79 0.64 0.50 0.84 0.72 0.76 0.75 0.82 0.67
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Table 2. Cont.

Period

PEUs
Class

Period 1 Period 2 Period 3

PA1 UA1 KIA1 PA2 UA2 KIA2 PA3 UA3 KIA3

PEU3 0.58 0.75 0.63 0.67 0.89 0.58 0.84 0.67 0.75
PEU4 0.70 0.78 0.56 0.67 0.73 0.56 0.75 0.90 0.68

OK = 0.63, OA = 0.73 OK = 0.68, OA = 0.77 OK = 0.74, OA = 0.81

PA: Producer’s Accuracy %; UA: User’s Accuracy %; and KIA: Kappa Index of Agreement %.

3.3. Change Analysis in PEUs Classes

As shown in Table 3(a), significant changes occurred in all PEUs over the three periods.
These changes were analyzed from period 1 to period 2, period 2 to period 3, and period
1 to period 3 (Table 3(b)). PEU1 in period 1 covered an area of 1224.27 ha (15.82%) and it
increased to 1582.12 ha (20.48%) and 1779.84 ha (23%) in period 2 and period 3, respectively.
From period 1 to period 2, period 2 to period 3, and period 1 to period 3, PEU1 grew by
4.66%, 2.51%, and 7.18%, respectively.

Table 3. (a) Area of PEUs of period 1, period 2, and period 3. (b) Amount of changes in PEUs during
period 1, period 2, and period 3 in the study area.

(a) Area

Period 1 Period 2 Period 3

PEU Class Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)

PEU1 1224.27 15.82 1582.12 20.48 1779.84 23
PEU2 2089.62 27.08 1389.57 17.96 2567.79 33.19
PEU3 2314.17 29.91 1444.58 18.67 1189.26 15.37
PEU4 2108.7 27.25 3317.31 42.87 2199.69 28.43

Total class 7736.58 100 7736.58 100 7736.58 100

(b) Amount of Changes

Period 1–Period 2 Period 2–Period 3 Period 2–Period 3

PEU Class Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)

PEU1 360.95 4.66 194.72 2.51 555.67 7.18
PEU2 −699.97 −9.04 1178.22 15.22 478.25 6.18
PEU3 −869.59 −11.23 −255.32 −3.3 −1124.91 −14.54
PEU4 1208.61 15.62 −1117.62 −14.4 90.99 1.17

PEU2 covered an area of 2089.62 ha (27.08%) in period 1, and it decreased to
1389.57 ha (17.96%) in period 2, while it increased to 2567.79 ha (33.19%) in period 3.
From period 1 to period 2, PEU2 decreased by 9.04%, while from period 2 to period 3
and period 1 to period 3, PEU2 increased by 15.22% and 6.18%, respectively. Also, it
was determined that in period 1, the PEU3 area covered an area of 2314.17 ha (29.91%)
and it reduced to 1444.58 ha (18.67%) and 1189.26 ha (15.37%) in period 2 and period 3,
respectively. A continuous decrease in PEU3 was observed by 11.23%, 3.30%, and 14.54%
from period 1 to period 2, period 2 to period 3, and period 1 to period 3, respectively. The
area covered by PEU4 in period 1 was 2108.7 ha (27.25%), and it increased to 3317.31 ha
(42.87%) in period 2, while it decreased to 2199.69 ha (28.43%) in period 3. From period 1 to
period 2, PEU4 increased by 15.62%, while during period 2 to period 3, PEU4 decreased by
14.4% and again increased by 1.17% from period 1 to period 3.
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3.4. Transition Potential Modeling

3.4.1. Testing and Selecting Environmental Variables

This step identifies the environmental variables that have the ability to describe
changes in the area. As shown in Figure 6, a total of six environmental variables, including
the Digital Elevation Model (DEM), aspect, slope, distance from roads, precipitation, and
temperature, were used for the transition potential modeling. These variables were selected
according to other studies in this field [25,35], and also according to Cramer’s V statistics.
Cramer’s V statistics were used to evaluate the potential power of these variables (as an
independent variable) on the sub-model in which change was observed (as a dependent
variable). The variables with a Cramer’s V value of about 0.15 or higher are regarded as
effective [36]. As presented in Table 4, the best Overall Cramer’s coefficient of 0.44 was
obtained using the DEM variable.
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Table 4. Cramer’s V statistics results for environmental variables.

Environmental Variables Overall Cramer’s

Digital Elevation Model (DEM) 0.4458

Aspect 0.182

Slope 0.194

Distance from roads 0.21

Precipitation 0.396

temperature 0.264
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3.4.2. Transition Sub-Models

After reaching acceptable Cramer’s V values for all environmental factors, subse-
quently, the transfer potential model was run. This model expresses the tendency of each
image cell to receive a change from one PEU type to another type with respect to environ-
mental variables. All the observed PEUs transitions were collected into a set of sub-models.
Likewise, the transition potential was determined by developing twelve sub-models in
the NN-MLP algorithm. Table 5 gives the results of transfer potential modeling using the
NN-MLP algorithm. To evaluate the transfer potential modeling, three factors of Accuracy
Rate, Testing RMS, and Training RMS were determined. The results in all sub-models show
an accuracy of 61 to 89%.

Table 5. Results of accuracy assessing of transfer potential modeling using NN-MLP algorithm.

Sub-Models Testing RMS Training RMS Accuracy Rate

PEU1 to PEU2 0.27 0.27 89.14

PEU1 to PEU3 0.39 0.39 78.16

PEU1 to PEU4 0.43 0.43 71.51

PEU2 to PEU1 0.41 0.43 73.26

PEU2 to PEU3 0.42 0.42 75.27

PEU2 to PEU4 0.4 0.39 77

PEU3 to PEU1 0.41 0.4 76

PEU3 to PEU2 0.39 0.4 79

PEU3 to PEU4 0.44 0.44 70.53

PEU4 to PEU1 0.37 0.37 82

PEU4 to PEU2 0.41 0.4 75.29

PEU4 to PEU3 0.47 0.48 61.18

3.5. Prediction and Validation of PEUs Changes with Markov Chain Modeling

To predict a PEU map for period 3 (years 2018–2020), two different PEUs maps of
period 1 and period 2 were used to create the prediction map (Figure 7) and transition
probability matrix (Table 6) using the MC prediction process. As shown in Table 6, the
probability of a change of PEU4 into PEU1 and PEU2 in period 3 from period 1 to period 2
is 33.91% and 17.22%, respectively. Also, the probability that PEU3 converts into PEU2 in
period 3 is 26.99%.

Table 6. Markov Chain transition probability matrix of changes among PEUs (period 1–period 2) for
period 3.

PEU Class PEU1 PEU2 PEU3 PEU4

PEU1 0.7563 0 0.1149 0.1228
PEU2 0 0.7958 0.1282 0.0761
PEU3 0.028 0.2699 0.5162 0.1853
PEU4 0.3391 0.1722 0.1411 0.3476
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To evaluate and validate the MC prediction process, the period 3 classified map and
the period 3 predicted map were used. Cross-tabulation analysis shows that the Overall
Cramer’s value is 68.53% and the Overall Kappa is 77.6%.

In addition, Figure 8 shows the side-by-side comparison of PEUs in two classified and
predicted maps of period 3. In this map, the PEUs that are classified in both maps in the
correct pixels are marked with 1-1, 2-2, 3-3, and 4-4. This means that there are pixels that
are classified in the same class in both maps. The parts that are white on the map show the
wrong pixels. This means that this model has incorrectly predicted the white parts.
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3.6. Prediction of Future PEUs Changes

The PEUs maps of period 2 and period 3 were used to predict the future PEU scenarios
for the year 2036 using the MLP-MC model. The predicted PEUs map (Figure 9) and
transition probability matrices (Table 7) were produced using the PEUs maps of period 2
and period 3. By utilizing the PEU of period 3 as the base map, the transition potential maps,
and the transition probability matrices of period 2 to period 3, the future PEU scenarios
were predicted for the year 2036. The probability of PEU4 turning into PEU1 and PEU2 in
the year 2036 is 32.10% and 15.88%, respectively. Also, the probability of PEU3 turning into
PEU2 and PEU4 in 2036 is 19.17% and 20.93%, respectively.
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Table 7. Markov Chain transition probabilities matrix of changing among PEUs (period 2–period 3)
for 2036.

PEU Class PEU1 PEU2 PEU3 PEU4

PEU1 0.7437 0 0.0935 0.1628
PEU2 0 0.8369 0.1482 0.0150
PEU3 0 0.1917 0.5990 0.2093
PEU4 0.3210 0.1588 0.1119 0.4084

The areas of the PEUs classes of the predicted map of 2036 are presented in Table 8. A
comparison of the prediction map of the year 2036 and the classification map of period 3
(2018–2020) reveals that PEU2 and PEU4 will increase by 333.63 ha (4.30%) and 60.46 ha
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(0.07%), respectively. Meanwhile, PEU1 and PEU3 will decrease by 153.07 ha (1.98%) and
241.02 ha (3.12%), respectively.

Table 8. Area distribution of PEUs classes for predicted year 2036.

Area (ha) Area %

PEU1 1626.77 21.02
PEU2 2901.42 37.50
PEU3 948.24 12.25
PEU4 2260.15 29.21

Total area 7736.58 100

4. Discussion

Knowledge and understanding of historical PEUs patterns, changes, and future trends
are important in proactive environmental management. To enable the study and prediction
of long-term PEUs dynamics, it is critical to analyze and understand the various changes
shaping the land cover, which, among other factors, can help to minimize undesired
changes in plant communities [6]. PEUs change is the result of complex interactions
between human activities and environmental factors from the past to the present [33]. We
started with the four dominant PEU classes in the study area: PEU1 (As ve), PEU2 (Br to),
PEU3 (Sc or), and PEU4 (As ve—Br to).

With the purpose of understanding the spatial–temporal dynamics of PEUs, we di-
vided this work into four sections: (1) Preparation of PEU multi-temporal classification
maps and accuracy assessment for three different periods. (2) Change analysis of periods
1–2, periods 2–3, and periods 1–3. (3) Prediction of period 3 by the MLP-MC model, and
comparison of the prediction results with the classified PEU map of period 3. (4) Prediction
of future scenarios of PEUs for the year 2036 using the MLP-MC model that produced the
best results in the prediction of period 3. These sections are further discussed below.

4.1. PEUs Multi-Temporal Classification Maps for Three Periods

This study used time series of Landsat data in three periods of three years that include
period 1 (Landsat 5 TM images for 1986–1988), period 2 (Landsat 7 ETM+ images for
2002–2004), and period 3 (Landsat 8 OLI images for 2018–2020). According to the NDVI
temporal profile, we selected the optimal multi-temporal images for each period. As shown
in Figure 5, the most informative temporal windows were observed in spring for the period
of April through June. A total of 12 cloudless images were extracted for period 1, 9 cloudless
images were extracted for period 2, and 12 cloudless images were extracted for period 3
(Table 1).

The GEE platform allows the synchronization of all the Landsat data and then the
creation of a high-quality multi-temporal dataset using codes already provided [37]. The
RF algorithm was chosen for PEUs classification. The RF algorithm is a tree-based machine
learning method that leverages the power of multiple decision trees for making decisions
and is suitable for situations when we have a large dataset [1]. At this stage, three multi-
temporal PEU maps were obtained with an OA of 73%, 77%, and 81% for period 1, period
2, and period 3, respectively. The increasing OA from period 1 to period 3 can be related to
the development of Landsat generations’ capabilities specifically in terms of radiometric
properties and the consequently decrease in the noise-to-signal ratio. PEUs as a sub-class
of rangeland cover are involved. Sub-classes of vegetation cover are more similar in terms
of their spectral reflectance than that of a higher hierarchical land cover classification [7].
Thereby, PEUs classification process using an optimal time-series dataset is required to
accurately identify and discriminate the past and current trends as well as to predict future
trends of PEUs.
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4.2. Analysis of PEUs Changes

The study area during period 1 (1986–1988), period 2 (2002–2004), and period 3
(2018–2020) experienced intense changes in PEUs. There are significant changes that oc-
curred in all PEUs classes. Each of the PEU represents the different succession stages of
each period in the study area. Natural disturbances and human activities such as fire,
drought, land tillage, and irregular grazing can change the plant community’s succes-
sional stages. Thereby, it will lead to a decrease in vegetation and a descending trend
in plant community succession. The PEUs classification maps of period 1, period 2, and
period 3 demonstrate PEUs changes well (Figure 5). In period 1, PEU3 covered most of
the study area and was the dominant PEU with 2314.17 ha (29.91%). PEU3 is dominated
by semi-shrub species (Sc or). This plant species is ecologically an invasive species, and
in areas where the plant community has been destroyed by tilling, it becomes dominant
in the area [38]. Examination of 1986-1988 documents shows that this area was heavily
tilled and cultivated but was abandoned due to low yields. Thereby, PEU3 became the
dominant PEU in the area, which shows plant succession’s declining trend and the severe
destruction of the plant community. Meanwhile, due to the implementation of appropriate
management practices in the region, such as tillage inhibition, PEU3 reduced to 18.67% and
15.37% in period 2 and period 3, respectively. Thereby, after 16 years (period 2) and 32 years
(period 3), much of the area has recovered its vegetation with a suitable canopy cover,
whereby shrubs (PEU1) and perennial grasses (PEU2) became dominant. Likewise, the
plant succession trend is upward and positive. In period 2, PEU2 had the lowest coverage
in the study area, with 1389.57 ha (17.96%). Meanwhile, shrubs and non-palatable species
(e.g., PEU1) have become more widespread. PEU2 is dominated by grass species
(Br to). These plant species are palatable to livestock and are destroyed by grazing be-
fore their growth is completed [38]. Examination of 2002–2004 documents shows that
this area was affected by severe grazing. Therefore, PEU2 decreased in period 2. After
16 years, PEU2 increased to 33% in period 3, mainly due to appropriate management prac-
tices and preventing severe grazing. Much of the area is dominated by perennial grasses
(i.e., PEU2). This suggests that, with the implementation of proper management policies
and the prevention of destructive processes such as tilling and heavy grazing, the plant
community will approach a climax stage.

4.3. Transition Probabilities of Change among PEUs

For modeling future PEUs dynamics, the transition probability assessment among
different PEUs is an important aspect. The NN-MLP algorithm was used to determine
the weights of transitions for two periods that were included in the transition probability
matrix using the MC model for future prediction. The MC model is very effective in
determining the behaviors and extent of land cover changes by analyzing land cover maps
of two periods [8]. Based on a projection of the transition potentials, the method determines
exactly how many PEUs would transition from the specified date to the predicted date
in the future [33]. In this study, in the first step, two different PEUs maps of period 1
and period 2 were used to create the transition potential maps for period 3 (Table 6). For
validation of the MC prediction process, the PEUs prediction map of period 3 was compared
with the PEUs classification map of period 3 using cross-tabulation analysis. It was found
that the Kappa Index of Agreement value is 77.6%, showing good agreement between the
observed and predicted PEUs maps. Then, in the next step, the PEUs map of period 2 and
period 3 were used to predict the future PEUs changes for 2036 (Table 7). In both stages,
the probability of the change of PEU4 into PEU1 and PEU2 in period 3 and 2036. Also,
the probability of change of PEU3 into PEU2 is significant in both predicted dates. This
suggests that the MC is a robust model and can predict future PEUs changes.

4.4. Prediction of Future PEUs for Year 2036

The last step is the prediction of future scenarios of PEUs for the year 2036 using the
MLP-MC model that produced the best results in the prediction of period 3. By utilizing
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the PEU of period 3 as the base map, the transition potential maps, and the transition
probability matrices of period 2 to period 3, the future PEU scenarios were predicted
for 2036. The prediction results for 2036 are shown in Table 8; the dominant vegetation
of the area for 2036 will be PEU2 and PEU4 with 37.50% and 29.21%, respectively. The
predicted results further show that by 2036, PEU3 will have the lowest coverage with
12.25%. Comparing the 2036 predicted map with the period 3 classified map shows that
the PEU1 area decreases (153.07 ha). PEU1 is dominated by shrub species (As ve). Field
investigations in recent years have shown that tragacanth gum extraction from As ve has
dramatically increased. However, little information is available about the best method
of gum harvesting, which is economically efficient and maintains the health of the plant.
This study’s results demonstrate that the MLP-MC method has the ability to predict and
describe future PEU changes that are the result of current activities. Also, by aiming to
compare three prediction models, Cellular Automata–Markov Chain (CA-MC), Stochastic
Markov Chain (ST-MC), and MLP-MC, to predict land cover changes in the Varanasi
district, ref. [25] reported that the MLP-MC prediction model had the best results for
an accurate understanding of changes and predicting future landscape scenarios. The
implementation of an arsenal of management activities and natural resource conservation
policies will reduce pressure on plant communities such as PEUs, thereby contributing to
natural environmental sustainability even in the future.

5. Conclusions

This study aimed to reveal and analyze the dynamics in PEUs patterns. Nowadays,
land use change patterns and urban area development and construction are considered
the main variables in the analysis and monitoring of the terrestrial environment and
natural system changes. In many areas, however, land cover and plant communities have
declined for multiple reasons. The main cause is human activities, such as intense grazing,
fire, tilling, and drought. But what is often unsaid is that anthropogenic processes and
management activities are the most important drivers in plant community changes. It is
therefore essential to identify these activities for the sake of future planning and natural
resource management. This study evaluated the MLP-MC model to identify the main
processes in PEUs changes from the past to the future and predicted future PEUs dynamics.
We first selected three periods with 16-year time intervals. PEUs information extracted
for period 1 and period 2 was employed to predict PEUs changes for period 3 using
the MLP-MC prediction model. The predicted results were compared with the classified
PEUs information for period 3 to appraise the validity of models through cross-tabulation
analysis and kappa index statistics (Overall Kappa: 77.6%). Finally, we predicted future
PEUs changes 16 years ahead of period 3, for the year 2036. The results demonstrated that
the MLP-MC model is efficient in predicting PEUs patterns in the future. The basis for this
model is the anthropogenic and natural processes of the past. Our study suggests that the
impact of anthropogenic processes and management activities will become visible in the
natural environment and ecosystem in less than a decade.
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