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Abstract: In hyperspectral image (HSI) classification, convolutional neural networks (CNNs) and
transformer architectures have each contributed to considerable advancements. CNNs possess
potent local feature representation skills, whereas transformers excel in learning global features,
offering a complementary strength. Nevertheless, both architectures are limited by static receptive
fields, which hinder their accuracy in delineating subtle boundary discrepancies. To mitigate the
identified limitations, we introduce a novel dual-branch adaptive convolutional transformer (DBACT)
network architecture featuring an adaptive multi-head self-attention mechanism. The architecture
begins with a triadic parallel stem structure for shallow feature extraction and reduction of the
spectral dimension. A global branch with adaptive receptive fields performs high-level global feature
extraction. Simultaneously, a local branch with a cross-attention module provides detailed local
insights, enriching the global perspective. This methodical integration synergizes the advantages of
both branches, capturing representative spatial-spectral features from HSI. Comprehensive evaluation
across three benchmark datasets reveals that the DBACT model exhibits superior classification
performance compared to leading-edge models.

Keywords: hyperspectral image classification; adaptive multi-head self-attention; convolutional
neural networks; transformers

1. Introduction

Hyperspectral imaging captures both spatial and rich narrowband spectral informa-
tion, playing a critical role in analyzing surface distribution, object detection, and natural
resources across various fields [1–3]. Hyperspectral images (HSIs) are capable of gathering
spectral data for every pixel within a given spatial region, with each pixel distinctly catego-
rizing a land cover type [4]. Hyperspectral imagery possesses a higher spectral resolution,
enabling it to offer more detailed features of terrestrial objects compared to panchromatic
and multispectral images [5]. HSI classification represents a critical component within
the field of hyperspectral image analysis. However, hyperspectral image classification re-
mains challenging due to the redundancy in its spectral bands and the uneven distribution
of samples.

Numerous methods have been proposed to enhance the accuracy of hyperspectral
image classification. In the early phase, traditional techniques, such as support vector
machines (SVM) [6], sparse representation [7], the k-nearest neighbor [8], and random
forests (RF) [9], were predominantly used. Early efforts in hyperspectral classification
were mainly directed towards extracting spectral information. Nevertheless, the neigh-
boring pixels in hyperspectral imagery exhibit a high degree of correlation, suggesting
that these pixels often represent the same category. Traditional approaches concentrated
exclusively on spectral data, neglecting the spatial correlations present within the im-
agery. This oversight resulted in an incomplete exploitation of the available comprehensive
hyperspectral features.
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As deep learning technologies have swiftly advanced in domains like computer
vision (CV) and natural language processing (NLP), their extensive application has equally
proliferated into the area of hyperspectral classification [10]. Unlike traditional classification
methods that rely on manually designed features, deep learning excels at identifying
high-level semantic features, providing a superior capability for feature representation
end to end. Due to their specialized localized receptive fields and robustness against
distortion, convolutional neural networks have proven to be of considerable practical
importance, especially in their capacity for local feature extraction. Characterized by a
three-dimensional data structure, hyperspectral images derive significant advantages from
the widespread use of 1D [11], 2D [12], and 3D [13] convolutional neural networks. 1D
CNNs specialize in extracting spectral features and analyzing variations in data across one
dimension. 2D CNNs are aimed at extracting spatial features and interpreting patterns
and textures in two-dimensional data. 3D CNNs enable simultaneous spatial and spectral
information processing at the cost of increased computational demand. Ahmad et al. [14]
designed a compact 3D convolutional network that employs three-dimensional kernels
across multiple adjacent spectral bands to reduce computational demand. Utilizing 3D
convolution with variable kernel sizes and residual connections, Zhong et al. [15] efficiently
extracted spectral and spatial features from HSI volumes. The combination of 3D CNNs
and 2D CNNs in a sequential arrangement adeptly leverages the complementary strengths
of both architectures [16,17]. Additionally, the integration of attention mechanisms with
multi-branch convolutional network architectures efficiently extracts discriminative spatial
and spectral features [18,19]. Nevertheless, the inherent limitations of localized receptive
fields and invariant convolution kernel dimensions in CNN-based architectures hinder their
ability to apprehend global features spanning long distances across both spatial dimensions
and broad spectral bands.

Recently, the Vision Transformer (ViT) [20], along with its derivative models [21–23],
has achieved remarkable advancements in the realm of image processing. By employing
multi-head self-attention mechanisms, transformer-based models, such as ViT, have demon-
strated proficiency in identifying long-range feature correlations. Furthermore, ViT has
swiftly expanded its application scope, notably in hyperspectral classification [24–26], indi-
cating its significant utility and adaptability in diverse imaging contexts. Hong et al. [27]
successfully integrated the transformer encoder into hyperspectral classification without
convolutional operations. However, pure transformer-based methods face challenges in
effectively capturing local detail features within both spectral and spatial dimensions.
Therefore, the naive idea is to combine the advantages of CNN structures with those of
transformer structures. Sun et al. [28] observed a significant enhancement in classification
performance through the pre-implementation of 3D and 2D CNN structures ahead of
the transformer encoder. Qi et al. [4] combined 3D CNN and transformer structures to
simultaneously extract global and local features of hyperspectral images. Through the incor-
poration of convolution operations in multi-head attention mechanisms, Zhang et al. [29]
achieved a profound integration of CNN and transformer architectures, resulting in im-
pressive classification performance. Yang et al. [30] developed a novel parallel multi-level
feature fusion structure for integrating global and local features. Merging the benefits of
CNN and transformer architectures results in improved classification performance, yet
their inherent static receptive fields—from the local domain of convolution kernels to
the global scope of self-attention mechanisms—pose challenges. Such fixed fields may
constrain enhancements in performance, particularly with irregular and fragmented object
contours, indicating opportunities for further advancements.

Through the analysis of the aforementioned work, we designed a novel dual-branch
network structure that combines convolution and transformer architectures with adaptive
receptive fields, namely, the dual-branch adaptive convolutional transformer (DBACT). The
DBACT network is delineated into three primary components: the three-branch parallel
hybrid stem module (TBPH), the local residual convolutional module (LRC), and the global
adaptive transformer encoder module (GATE). Employing convolution operations with
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various kernel sizes and spectral pooling, the TBPH module is designed for the extraction
of shallow features and the reduction of spectral dimensionality. The LRC module with
skip connection focuses on bolstering the expression of local features. The GATE module,
equipped with adaptive receptive fields, serves the purpose of adaptive global context
encoding. A compact module known as the cross-attention interaction module (CAI) is
implemented to enhance the interaction between global features and local features within
the GATE and LRC modules. The main achievements are delineated as follows:

1. Our study introduces a novel dual-branch adaptive convolutional transformer net-
work that merges the localized feature extraction capabilities of CNNs with the global
modeling advantages of transformers. This parallel dual-branch adeptly captures and
fuses discriminative features across spatial and spectral dimensions, preserving the
inherent structural properties of HSIs.

2. The GATE module, distinctively equipped with adaptive multi-head self-attention
mechanism (AMSA), is capable of extracting global context features. It also incor-
porates depth wise convolution to enhance its local feature capabilities and offers
implicit inference of positional information. The AMSA mechanism, armed with
adaptive receptive fields, adeptly adjusts to irregular object geometries and accurately
captures nuanced edge details.

3. The LRC module, tasked with capturing local information, functions in conjunction
with the CAI module to augment the global information assimilated by the GATE
module. The CAI module utilizes a cross-attention mechanism effectively integrating
global and local features.

4. Assessments on the Salinas Valley, Pavia University, and Indian Pines datasets have
established that the DBACT model exhibits superior performance relative to existing
state-of-the-art models, whether CNN-based or transformer-based.

The subsequent sections of this paper are structured as follows: Section 2 describes the
related works concerning the DBACT model. Section 3 presents the details of our proposed
model along with its essential components. In Section 4, both qualitative and quantitative
analyses were performed. Section 5 delves into the influence of hyperparameters on model
performance and conducts ablation experiments to dissect the role of pivotal modules
within the model. Finally, Section 6 furnishes a thorough summary of the entire paper.

2. Related Works
2.1. CNN and Transformer-Based Frameworks

Due to the advantageous properties of convolution operations, such as locality and
translation equivariance, a multitude of CNN-based methodologies have been extensively
explored for hyperspectral image (HSI) classification. Unlike convolutional neural networks
(CNNs) with static filters, transformer-based architectures prioritize capturing long-distance
relationships. To leverage the strengths of both approaches and enhance the classification
performance of hyperspectral images, many researchers are dedicated to designing hybrid
architectures that combine CNNs and transformers. Yang et al. [25] integrated convolution
operations into the transformer framework, aiming to capture nuanced spatial-spectral dis-
crepancies. In [31], convolution and transformer architectures were combined in a hybrid
manner, utilizing both sequential and parallel processing approaches. Zhong et al. [32]
designed a factorized architecture search (FAS) framework to highlight the interaction across
both spatial and spectral dimensions. A dual-branch structure, utilized for separately extract-
ing spatial and spectral features or for distinguishing between global and local characteristics,
represents a significant form of hybrid structural design [33–35]. Cui et al. [36] proposed a
dual-branch model that extracts spatial and spectral local context features and adaptively
merges context information from various levels. In [37], two distinct branches were utilized
to extract global spectral and spatial attributes from HSI, efficiently integrating these features
at various scales through a dedicated feature fusion layer.
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2.2. Deformable Architectures and Their Application in HSI Classification

Convolution operations employing fixed kernel sizes, while adept at extracting local
features, can obscure the precise boundaries of objects, potentially diminishing classifica-
tion efficacy [38]. To mitigate this issue, Zhu et al. [39] demonstrated that the integration of
deformable convolution downsampling and deformable convolutions enhances adaptabil-
ity to the geometric features of intricate structures. Nie et al. [40] employed a synergistic
approach by combining the k-means clustering algorithm with deformable convolutions, a
strategy aimed at reducing the effects of intra-cluster variance, consequently elevating the
accuracy of classification tasks. Zhao et al. [38] developed a sophisticated filter mechanism
for integrating superpixel regions to enhance homogeneity and applied deformable convo-
lutions for the nuanced extraction of spatial features across diverse scales. The concept of
deformable convolution was first introduced in [41]. It can be mathematically represented
as follows: given an input feature map I, and a convolution kernel K, the deformable
convolution at a location p0 on the output feature map can be mathematically represented
as follows:

Y(p0) = ∑
pn∈R

K(pn)I(p0 + pn + ∆pn) (1)

where Y(p0) represents the output feature at the position p0, K(pn) is the weight of the
convolution kernel at the position pn, within a regular grid R, ∆pn is the learned offset for
the position pn.

Reflecting deformable convolution principles, recent studies [42,43] have incorporated
the dynamic receptive field concept into the computational frameworks of attention mecha-
nisms in computer vision (CV). However, the deployment of architectures that synergize
adaptive dynamic receptive fields with self-attention mechanisms remains relatively rare
in the domain of hyperspectral classification.

3. Methodology
3.1. Overview of the Proposed Network

This study designs a novel DBACT method tailored for hyperspectral image classi-
fication tasks. As depicted in Figure 1, DBACT primarily consists of four modules: the
Three-Branch Parallel Hybrid module (TBPH), the Cross-Attention Interaction module
(CAI), the Local Residual Convolutional module (LRC), and the Global Adaptive Trans-
former Encoder module (GATE). The TBPH module, utilizing a tri-parallel branch, initially
extracts shallow spectral features to diminish redundant spectral data. Following this,
feature maps are segregated into two categories: a local feature maps group and a global
feature maps group. The LRC module enhances local spatial feature extraction through two
residual convolutional layers, while the GATE module focuses on global spectral-spatial in-
formation, incorporating a depthwise convolutional layer, an adaptive self-attention block,
and an inverted residual block. The adaptive self-attention block is designed to capture
multi-scale discriminative spatial features in pivotal areas through its dynamic receptive
fields. Furthermore, local features and global features, derived by the LRC module and the
GATE module, respectively, are synergized within the Cross-Attention Interaction module.
This fusion process utilizes a multi-head cross-attention mechanism, complemented by
convolutional projection and regulated via layer normalization (LayerNorm). Following the
fusion, the features undergo an overlapping convolutional downsampling, which reduces
the spatial resolution by half, facilitating the extraction of multi-scale feature information.
Subsequent processing through the LRC and GATE modules extracts high-level seman-
tic features. The global and local features are then merged along their dimensions and
processed through a global average pooling (GAP) layer. Ultimately, the classification of
hyperspectral images is accomplished using a linear classifier.
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Figure 1. Overview of the Dual-Branch Adaptive Convolutional Transformer network.

Specifically, assumed X ∈ RH×W×B represents an input original hyperspectral image,
where H, W, and B refers to the height, width, and spectral dimension, respectively. X is
cropped into n patches X = [X1, X2, · · · Xn], where Xi ∈ Rp×p×B and p is the patch size.
X is randomly partitioned into subsets for training and testing. The training patches are
utilized to train the DBACT network to obtain the optimal parameters while the testing
patches to validate the performance of the network. TBPH module is employed to transform
patch size from Xi ∈ Rp×p×B to Mi ∈ Rp×p×c to compress the spectral dimension. The
LRC and GATE modules extract local features and global features from M, respectively,
while preserving the original spatial and spectral dimensions. The Cross-Attention module
fuses information of these two branches and an overlapping convolutional downsampling
module is applied to convert the Mi ∈ Rp×p×c to Mi ∈ Rp/2×p/2×c. The output feature
maps of the second LRC and GATE module are concatenated in spectral dimension. A
GAP layer and a linear classifier are finally applied to predict the classification map.

3.2. Three-Branch Parallel Hybrid Module

In order to extract valuable spectral bands from redundant spectral information, a
triple parallel branch module is proposed. As shown in Figure 2, the TBPH module com-
prises two 1× 1 convolutional layers, two 3× 3 convolutional layers, and a spectral pooling
layer. The 1 × 1 convolutional layers and spectral pooling layer focus on information
compression in spectral dimension while 3 × 3 convolutional layers take spatial context
information into account. The results from the three branches are subjected to a point-wise
addition along the spatial dimension. Specifically, for an input HSI patch Xi ∈ Rp×p×B, the
output XTPBH of the TBPH module can be expressed as:

Xc = Conv1×1(g(Conv1×1(Xi)))
Xpool = SePool(Xi)
Xa = Conv3×3(g(Conv3×3(Xi)))

(2)

XTPBH = Xc + Xpool + Xa (3)

where Conv1×1 and Conv3×3 denote the convolutional layer with 1 × 1 kernel size and
3 × 3 kernel size, respectively. g(x) denotes the activation function. SePool(x) denotes the
average pooling operation along the spectral dimension.
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Figure 2. Three-Branch Parallel Hybrid Module.

3.3. Local Residual Convolutional Module and Cross-Attention Interaction Module

The Local Residual Convolution (LRC) module, engineered to elucidate local geo-
metric positional relationships within the data, is depicted in Figure 3. The LRC module
adopts a dual-layer convolutional framework, with each layer utilizing a 3 × 3 kernel size
augmented by the skip connection. This architecture is specifically designed to emphasize
spatial local characteristics, acting as a complement to the global information processed by
the GATE. Formally, given an input HSI patch Xi ∈ Rp×p×B, an output XLRC ∈ Rp×p×B

can be calculated as follows:

XLRC = g(Conv3×3(g(Conv3×3(Xi)) + Xi)) (4)

where Conv3×3 denotes the convolutional layer with 3 × 3 kernel size. g(x) denotes the
ReLU activation function.
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As illustrated in Figure 3, the Cross-Attention Interaction module (CAI) block adeptly
synthesizes local and global semantic information through an advanced multi-head cross-
attention mechanism, complemented by a convolutional projection. This fusion leverages
the strengths of both local feature delineation and global context integration for an all-
encompassing analysis of the data. Formally, a local feature map Xl ∈ Rp×p×B and a
global feature map Xg ∈ Rp×p×B, possessing identical dimensions, undergo convolutional
projection before being fed into the multi-head cross-attention mechanism. The process is
mathematically outlined below: 

Q = Conv3×3(Xl)
K = Conv3×3(Xg)
V = Conv3×3(Xg)

(5)

Atten = softmax
(

QKT
√

n

)
V (6)

where the term softmax denotes the softmax function applied in the spectral dimension, n
is the spectral dimension.

To effectively harness complex information across various subspaces, the model uti-
lizes concatenated multi-head attention blocks.

CAB(Q, K, V) = concat(Atten1, Atten2 · · · , Attenh)W (7)

where h is the head number, W is a matrix with trainable parameters.

3.4. Global Adaptive Transformer Encoder Module

We propose a novel global adaptive transformer encoder module (GATE) to accurately
discern the geometric positional relationships of irregular objects along spatial dimensions.
Notably, the GATE incorporates an adaptive multi-head self-attention (AMSA) mechanism,
enabling a dynamic and potent receptive field tailored for hyperspectral image classification
endeavors. As illustrated in Figure 4, the GATE is principally constructed of an adaptive
multi-head self-attention block and an inverted residual block. The design of the GATE
with global dynamic receptive fields is strategically engineered to foster the learning of
robust representations.

The structure of the adaptive multi-head self-attention mechanism is illustrated in
Figure 4a. It employs rectangular grid reference points, uniformly sampled and evenly
spaced based on the input image’s dimensions. Convolutional projection is used to generate
query tokens from the input image. To obtain altered grid reference points, a streamlined,
lightweight offset prediction network processes these query tokens to predict offsets. Bi-
linear interpolation, guided by these adjusted grid reference points, is then applied to
reconstruct the input feature maps. Typically, the indices of these sampled points are
fractional. For feature extraction at specific coordinates, bilinear interpolation is utilized
as follows:

M(px, py) = ∑
(qx ,qy)

g(px, qx)g(py, qy)M(qx, qy) (8)

where g(a, b) = max(0, 1−|a − b|) is the bilinear interpolation function across all spatial
locations and M(qx, qy) denotes the locations of the input feature maps M ∈ RH×W×C.

The convolutional projection is performed on the deformed feature maps M′ to obtain
the matrix K′ and matrix V′, respectively. To achieve adaptive multi-head self-attention,
the attention matrix A obtained by matrix Q and matrix K′ are used to obtain similarity
relationships between original tokens and deformed tokens. Adaptive insights are garnered
by extracting keys and values from the deformed input features, whereas the queries are
obtained from the original input features. Values are then aggregated in alignment with
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the specifications of the attention map. This sequence of operations can be mathematically
represented as follows:

M′ = G(M; r + ∆r), ∆r = ϕo f f set(r) (9)

Q = Convq(M), K′ =Convk(M′), V′ =Convv(M′) (10)

z = softmax

(
Q(K′)T
√

n

)
V′ (11)

Z = Concat(z1, z2, · · · , zn)Wo (12)

where M refers to the original input features, M′ signifies the deformed features, G is the
bilinear interpolation operation, r and ∆r denote the reference points and the offsets, n
represents the head number, and Z means the output feature maps Z ∈ RH×W×C.
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The overall architecture of GATE, which integrates the adaptive multi-head self-
attention mechanism and an inverted residual block, is shown in Figure 4b. Depthwise
convolution is applied to reinforce local feature extraction ability and impart implicit
location information. The adaptive self-attention module is the pivotal component to
acquire dynamic receptive fields and discriminative spatial signatures. The inverted
residual block with skip connection complements the adaptive self-attention block with
spatial and spectral modeling ability. The process of the l-th layer is mathematically
articulated as follows:

Zl
′ = DWConv(Zl−1) + Zl−1 (13)

Zl
′′ = AMSA(Zl

′) + Zl
′ (14)

Zl = IR(Zl
′′ ) + Zl

′′ (15)
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where the DWConv denotes the depthwise convolution, the AMSA means the adaptive
self-attention block and IR stands for the inverted residual block.

4. Results

In this section, to validate the performance of the proposed model DBACT, three
well-known hyperspectral datasets were applied in related experiments. Comprehensive
details about the experimental setup and the datasets utilized were furnished, which set the
stage for both qualitative and quantitative comparative analyses with leading-edge models.

4.1. Description of Datasets

Indian Pines (IP): The scene was captured by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines test site in northwestern Indiana in
1992, consisting of 145 × 145 pixels and 224 spectral reflectance bands. The Indian Pines
landscape includes two-thirds agriculture and one-third forest or other natural perennial
vegetation, featuring two major dual-lane highways, a railway line, as well as some low-
density housing, other buildings, and more minor roads. The existing ground truth is
divided into 16 categories, which are not all mutually exclusive. After excluding spectral
bands affected by noise and water absorption, the study utilized the remaining 200 spectral
bands at 10 nm intervals, spanning from 400 to 2500 nm.

Pavia University (PU): The University of Pavia dataset, widely recognized and utilized
within the hyperspectral image classification domain, was captured by the satellite-based
ROSIS-03 sensor over Pavia, Italy’s agricultural zones in 2003. This dataset is notable for its
high spatial resolution and broad spectral range, providing essential data for diverse land
cover and land use analyses. After abandoning 12 spectral bands compromised by noise
and water absorption, the dataset comprises 103 spectral channels with spatial dimensions
of 610 × 340 pixels. These channels cover a wavelength range from 430 to 860 nm and offer
a spatial resolution (SR) of up to 1.3 m. The dataset is organized into 9 distinct classes, each
representing a different category of land cover for classification.

Salinas Valley (SV): The Salinas dataset, derived from the Salinas Valley in California,
features high-resolution hyperspectral images obtained via AVIRIS sensor in 1998. This
dataset offers comprehensive spectral and spatial data pertinent to the region’s agriculture.
It comprises images with dimensions of 512 × 217 pixels and includes 224 spectral bands
that span wavelengths from 360 to 2500 nm, with a spatial resolution (SR) of 3.7 m. The
dataset categorizes the land cover into 16 distinct classes for classification purposes.

The distribution of false color maps, ground truth maps, and dataset categories for the
three datasets we used, IP, PU, and SV, are illustrated in Figures 5–7, respectively. Ground
truth maps are images annotated with accurate classification labels, which represent the
actual categorization of the land cover. In the IP and SV datasets, the distribution of features
is comparatively regular, whereas in the PU dataset, the distribution of features tends to be
more scattered.
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These three datasets are randomly divided into training and testing sets with the
distribution of categories detailed in Table 1. We allocate about 8%, 5%, and 3% of the IP,
PU, and SV dataset samples for training, respectively, with the remainder designated as the
test set. Classification performance across all models is evaluated using three prevalent
quantitative metrics: Overall Accuracy (OA), Average Accuracy (AA), and the Kappa
Coefficient (K).

Table 1. Categories and the number of training/total samples of IP, PU, and SV.

NO.
Indian Pines Pavia University Salinas Valley

Class Training/Total Class Training/Total Class Training/Total

1 Alfalfa 4/46 Asphalt 332/6631 Broccoli_green_weeds_1 60/2009
2 CornN 114/1428 Meadows 932/18,649 Broccoli_green_weeds_2 112/3726
3 CornM 66/830 Gravel 105/2099 Fallow 59/1976
4 Corn 19/237 Trees 153/3064 Fallow_rough_plow 42/1394
5 GrassP 39/483 Metal Sheets 67/1345 Fallow_smooth 80/2678
6 GrassT 58/730 Bare soil 251/5029 Stubble 119/3959
7 GrassM 2/28 Bitumen 67/1330 Celery 107/3579
8 HayW 38/478 Bricks 184/3682 Grapes_untrained 338/11,271
9 Oats 2/20 Shadows 47/947 Soil_vinyard_develop 186/6203
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Table 1. Cont.

NO.
Indian Pines Pavia University Salinas Valley

Class Training/Total Class Training/Total Class Training/Total

10 SoybeanN 78/972 Corn_senesced_green_weeds 98/3278
11 SoybeanM 196/2455 Lettuce_romaine_4wk 32/1068
12 SoybeanC 47/593 Lettuce_romaine_5wk 58/1927
13 Wheat 16/205 Lettuce_romaine_6wk 28/916
14 Woods 101/1265 Lettuce_romaine_7wk 32/1070
15 Buildings 31/386 Vinyard_untrained 218/7268
16 Stone 8/93 Vinyard_vertical_trellis 54/1807

Total Numbers 819/10,249 2138/42,776 1623/54,129

4.2. Experimental Setup

Experimental setups were executed on a hardware configuration consisting of an
Intel(R) Core(TM) i7-9700 CPU at 3.00 GHz, 48 GB RAM, and a GeForce RTX 3080 GPU
(10 GB VRAM) server. The software framework included Pytorch 1.8, Python 3.8, and
CUDA 11.1, running on a Windows 10 operating system. Min-max scaling was applied to
normalize the original HSI datasets, adjusting values to fall within the [0, 1] range. Models
were trained with a batch size of 64 and a learning rate of 1 × 10−3. The DBACT model
was optimized using the AdamW optimizer, which incorporated a weight decay factor
of 0.03. CosineLRScheduler is applied to dynamically adjust the learning rate. For a fair
comparison, the compared models were configured according to the hyperparameters
recommended in their respective publications. The epoch number is set to 100 in all
experiments. All experiments were repeated 10 times under the same conditions except for
random seeds, and the average value was taken as the final value.

4.3. Classification Results of Different Models

Through extensive experiments with other state-of-the-art networks, we validate the
effectiveness of the proposed model. To thoroughly assess the DBACT model against
leading-edge counterparts, we employ quantitative analysis and visual evaluation. Our
comparative analysis involved two types of architectures to highlight the superior perfor-
mance of the proposed method. Specifically, the CNN based models, including SSRN [15],
DBDA [19], SPRN [18], and DCRN [44] and Transformer architecture based networks,
including SSTN [32], SpectralFormer [27], SSFTT [28], and CTMixer [29], are considered.

4.3.1. Quantitative Analysis

The classification performance of these models on the three public HSI datasets is
shown in Tables 2–4. These tables include a comprehensive summary of the OA, AA, and
Kappa coefficients, along with their standard deviations and per-class accuracy metrics.
The highest classification accuracy achieved in each category is distinguished by bold
formatting in the corresponding rows. A comparison of the Overall Accuracy (OA) of
different models across three distinct datasets is shown in Figure 8. CNN-based techniques
exhibit a modest advantage compared to Transformer-based methods.

The results demonstrate that the DBACT model surpasses competing methods across
all three datasets. For the IP dataset, characterized by its highly imbalanced and rare
samples, the DBACT model achieves the highest accuracy in 7 out of 16 categories. For
crops with dispersed locations, such as CornN, GrassP, GrassT, and SoybeanM, the model
achieves superior classification accuracy. The DBACT model outperforms alternatives by at
least 0.24% on AA, 0.21% on OA, and 0.27% on Kappa, highlighting its superior capability
in extracting representative features under conditions of sample imbalance and scarcity.
CNN-based models with powerful local feature-capturing abilities marginally outperform
those based on Transformers. The DBDA model achieves highly competitive classification
accuracy, which highlights the effectiveness of the fusion by a dual-branch structure and
attention mechanisms. The pure transformer architecture, such as SpectralFormer, exhibits
inadequate performance due to constrained local feature extraction capabilities. However,
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merging convolutional and transformer structures in a sequential combination alone sig-
nificantly enhances classification performance, such as SSFTT. Embedding convolutional
operations deeply within the self-attention calculations, exemplified by the CTMixer model,
significantly contributes to enhancements in ground object classification. The DBACT
model, which introduces a spatial-spectral dual-branch framework, integrating convolu-
tion with self-attention, excels in capturing discriminative features on both global and
local scales.

Table 2. Classification performance of different models on the IP dataset.

Class
CNNs Based Transformer Based

OursSSRN DBDA SPRN DCRN SSTN SF SSFTT CTMixer
(2018) (2020) (2021) (2021) (2021) (2022) (2022) (2022)

1 96.1 97.86 98.1 94.63 95.95 76.67 97.62 94.15 97.38
2 97.65 98.18 98.17 98.18 98.07 81 98.03 98.24 98.53
3 97.91 98.74 98.36 99.01 98.7 80.04 97.45 98.29 98.52
4 98.07 99.04 97.89 98.03 98.26 70.69 97.06 98.53 98.99
5 96.91 97.82 96.78 97.55 97.39 90.63 97.09 96.89 97.97
6 99.64 99.46 98.88 99.49 98.97 92.9 98.42 99.29 99.72
7 97.2 99.62 86.92 99.6 100 52.31 98.46 98.8 99.62
8 99.82 100 99.95 100 100 97.02 99.95 99.98 100
9 100 98.33 75.56 98.82 96.67 66.11 96.11 98.82 98.33

10 96.67 97.76 98.02 97.94 97.33 82.73 97.27 97.85 98.27
11 98.99 99.11 99.08 99.09 99.03 90.35 99.08 99.02 99.39
12 98.39 99.27 98.08 98.96 98.63 70.71 96.74 97.75 99.07
13 99.42 99.05 97.99 99.1 99.47 98.31 99.47 99.58 99.37
14 99.61 99.7 99.86 99.67 99.69 95.12 99.79 99.85 99.87
15 95.04 97.21 99.49 97.3 96.59 73.35 99.24 98.7 98.48
16 99.65 98.35 94.82 98.35 98.82 89.29 96.59 98.59 99.41

OA (%) 98.35
(0.30)

98.82
(0.22)

98.60
(0.20)

98.79
(0.17)

98.61
(0.26)

86.29
(0.90)

98.41
(0.26)

98.70
(0.13)

99.06
(0.15)

AA (%) 98.19
(0.39)

98.72
(0.38)

96.12
(1.71)

98.48
(0.45)

98.35
(0.42)

81.70
(1.74)

98.02
(0.65)

98.40
(0.36)

98.93
(0.34)

K (%) 98.12
(0.35)

98.66
(0.25)

98.40
(0.22)

98.62
(0.19)

98.42
(0.30)

84.34
(1.05)

98.19
(0.30)

98.51
(0.15)

98.93
(0.18)

Note: Bold values in the table indicate the highest values.

Table 3. Classification performance of different models on the PU dataset.

Class
CNNs Based Transformer Based

OursSSRN DBDA SPRN DCRN SSTN SF SSFTT CTMixer
(2018) (2020) (2021) (2021) (2021) (2022) (2022) (2022)

1 100 99.84 99.97 99.99 99.28 94.48 99.72 99.95 99.89
2 99.99 99.9 99.99 99.99 99.97 98.22 99.99 99.98 100
3 99.8 99.22 99.64 99.76 92.14 89.29 98.03 98.76 99.43
4 97.18 98.65 97.92 98.12 97.61 97.43 98.53 98.19 99.13
5 99.69 99.95 99.51 99.55 99.98 99.88 99.82 99.74 99.94
6 99.97 99.91 100 100 97.31 92.71 100 99.98 99.92
7 99.96 99.88 100 100 99.82 85.36 99.94 99.99 99.94
8 99.48 99.65 99.41 99.51 97.29 91.05 98.62 99.34 99.46
9 97.12 99.58 97.9 98.33 99.27 99.02 98.64 98.81 99.79

OA (%) 99.66
(0.03)

99.74
(0.07)

99.71
(0.05)

99.75
(0.04)

98.75
(0.21)

95.55
(0.45)

99.60
(0.10)

99.70
(0.09)

99.83
(0.04)

AA (%) 99.24
(0.08)

99.62
(0.07)

99.37
(0.10)

99.47
(0.10)

98.07
(0.27)

94.16
(0.41)

99.25
(0.23)

99.42
(0.20)

99.72
(0.09)

K (%) 99.55
(0.04)

99.66
(0.09)

99.62
(0.06)

99.67
(0.05)

98.34
(0.28)

94.10
(0.60)

99.46
(0.14)

99.60
(0.12)

99.77
(0.06)

Note: Bold values in the table indicate the highest values.
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Table 4. Classification performance of different models on the SV dataset.

Class
CNNs Based Transformer Based

OursSSRN DBDA SPRN DCRN SSTN SF SSFTT CTMixer
(2018) (2020) (2021) (2021) (2021) (2022) (2022) (2022)

1 100 100 100 100 99.97 98.88 100 100 99.99
2 100 99.98 100 100 99.98 99.1 100 100 100
3 99.87 99.75 100 99.99 99.99 99.21 100 99.93 100
4 99.8 99.47 99.69 99.63 99.05 98.39 99.63 99.13 99.46
5 99.85 99.73 99.75 99.68 99.42 99.47 99.55 99.63 99.57
6 100 99.99 100 100 100 99.97 99.99 100 99.99
7 99.97 99.95 99.99 99.99 99.99 99.4 99.98 100 99.99
8 96.49 93.55 98.26 95.52 91.37 84.61 99.14 98.75 99.34
9 99.98 99.97 100 99.93 99.99 99.51 100 100 100

10 99.37 98.24 99.73 99.43 97.45 95.73 99.81 99.84 99.96
11 99.51 99.03 99.86 99.82 98.88 96.77 99.98 99.97 99.97
12 100 99.99 100 100 99.98 99.99 99.99 99.95 99.99
13 99.98 99.95 99.64 99.92 99.77 99.74 99.98 99.7 99.93
14 99.39 99.42 99.74 99.5 98.82 98.82 99.78 99.67 99.74
15 97.35 91.67 99.35 97.6 92.84 82.95 98.66 99.53 99.3
16 99.06 99.26 99.7 99.49 99.2 97.37 99.33 99.88 99.4

OA (%) 98.80
(0.16)

97.33
(0.38)

99.49
(0.15)

98.64
(0.23)

96.95
(0.29)

93.77
(0.62)

99.57
(0.11)

99.61
(0.09)

99.70
(0.10)

AA (%) 99.41
(0.06)

98.75
(0.17)

99.73
(0.10)

99.41
(0.10)

98.54
(0.10)

96.87
(0.26)

99.74
(0.09)

99.75
(0.07)

99.79
(0.06)

K (%) 98.66
(0.18)

97.03
(0.42)

99.43
(0.17)

98.49
(0.25)

96.61
(0.32)

93.07
(0.68)

99.52
(0.13)

99.56
(0.10)

99.67
(0.11)

Note: Bold values in the table indicate the highest values.
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CTMixer, and our model, respectively.

Integrating adaptive multi-head self-attention with convolution in our proposed
model aids in capturing diagnostic features and subtle discrepancies. As demonstrated
in Table 3, the fragmented distribution of ground objects, such as Trees and Bricks, can
be effectively captured by the DBACT model. The DBACT model secures the highest
classification accuracy in 3 out of 9 ground object classes and surpasses competing models
by minimum advantages of 0.08% on AA, 0.1% on OA, and 0.1% on Kappa metrics. Similar
to the IP dataset, models relying solely on attention architectures, such as SF and SSTN,
exhibit relatively inferior performance. Integrating the attention mechanism with CNN’s
local feature extraction capabilities significantly enhances the model’s ability to learn
discriminative features. The DBACT model integrates an adaptive attention mechanism
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that facilitates minor shape adjustments based on local information, thereby enhancing
feature extraction from specific areas and more effectively capturing subtle features.

The DBACT model features an interactive architecture that combines branches for
global and local feature information extraction, allowing for the concurrent extraction of
both types of features. Such a design proves effective even for datasets with extensive
and comparatively regular spatial distributions. As shown Table 4, the SV dataset is
characterized by its relatively concentrated distribution of geographical features and their
regular shapes. The DBACT model excels at capturing the boundary information between
these regularly distributed features.

In the context of the SV dataset, where land features are notably concentrated and
exhibit regular shapes, the DBACT model adeptly identifies boundary information between
these systematically distributed features. As illustrated in Table 4, the SV dataset is notable
for its tightly clustered geographical features and consistent patterns. The DBACT model
excels in delineating the boundaries among these consistently distributed features. The
DBACT model demonstrates superior classification accuracy, leading in 5 out of 16 ground
object categories and exceeding other models by margins of at least 0.09% on AA, 0.04% on
OA, and 0.11% on Kappa.

4.3.2. Qualitative Analysis

Alongside quantitative analysis, qualitative assessments depicted in Figures 9–11 were
conducted to ensure a comprehensive evaluation. Visual analysis reveals that the DBACT
model precisely delineates the boundaries between different types of ground objects, gener-
ating significantly less intra-category noise compared to competing models. For instance,
in the SV dataset, distinguishing Grapes untrained from Vinyard_untrained categories
is rendered difficult by their similar attributes. However, the DBACT model addresses
this challenge by integrating adaptive receptive fields with the global self-attention mech-
anism. This combination, which adeptly captures subtle features, facilitates an effective
differentiation between the two categories.
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Overall, the distribution of classification maps across the three datasets is consistent
with the results of quantitative analysis. The DBACT model excels in a variety of chal-
lenging scenarios: from datasets with unevenly distributed ground objects and those with
small, imbalanced sample sizes (e.g., the IP dataset) to ones characterized by a fragmented
distribution of geographical features (e.g., the PU dataset). It also performs well in datasets
where crops are distributed orderly with distinct boundary lines (e.g., the SV dataset).
The DBACT model achieves the highest classification accuracy in all cases, proving its
effectiveness in identifying diverse object types.

5. Discussion

In this section, we analyze model structure parameters and ablation experiments.
The parameter analysis primarily encompasses batch size, patch size, and the number of
heads in self-attention. The ablation experiments aim to analyze the roles played by key
components within the model.

5.1. Parameters Analysis

In this section, we investigate the effects of hyperparameters on Overall Accuracy (OA),
including batch size, patch size, and head number in adaptive self-attention mechanism.
Our objective is to determine the optimal network structure parameters. Optimal batch
and patch sizes facilitate neural network convergence and performance enhancement. As
illustrated in Figure 12, for the three datasets, patch size varies from 8 × 8 to 20 × 20,
with an increment of 2, and batch size ranges from 32 to 256, doubling at each step. The
relationship between patch size and classification accuracy demonstrates a non-linear
pattern. OA improves with an increase in patch size (from 8 × 8 to 16 × 16) but begins
to decrease (from 16 × 16 to 20 × 20) once the patch size crosses a certain threshold, with
batch size remaining constant. Relative to patch size, batch size has a comparatively minor
effect on OA. Nonetheless, setting the batch size to 64 yields the optimal classification
performance. Consequently, the patch size and batch size are optimally set at 16 and 64,
respectively.
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In the global adaptive transformer encoder branch, two self-attention blocks are
employed, with the number of heads in the first and second blocks designated as head1
and head2, respectively. Figure 13 depicts the impact of head1 and head2 counts on OA,
as the number of heads varies from 2 to 8. Compared to patch size, the effect of head
number on classification effectiveness is relatively minor. Classification performance is
enhanced with a rising number of heads, achieving optimal results when head1 and head2
numbers are adjusted to 8 on the three datasets. Multiple heads mean the ability to extract
representative features from various subspaces of HSI. Therefore, the optimal settings for
head1 and head2 numbers are both established at 8.
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5.2. Ablation Study

To elucidate the contribution of each component within the model to its performance,
we conducted ablation experiments on these three datasets (IP, PU, and SV). Key compo-
nents of our model for ablation studies include LRC (Local Residual Convolution module),
GATE (Global Adaptive Transformer Encoder module), AMSA (Adaptive Multi-head
Self-Attention Mechanism), and CAI (Cross-Attention Interaction module).

In summary, each of the four critical components in the DBACT model plays a role
in enhancing classification performance to some extent, with the GATE module making
the most substantial contribution, as shown in Tables 5–7. Removing the GATE module
results in the most significant decrease in Overall Accuracy (OA) by 0.59%, demonstrating
the critical role that GATE’s global feature extraction capability plays in classification tasks.
The slight degradation in performance due to the removal of the AMSA module indicates
that our dual-branch structure inherently possesses a high capability for feature learning,
while the AMSA module serves to raise the upper limit of performance. The omission
of the LRC and CAI modules led to a noticeable reduction in performance, highlighting
the essential supportive function that local features serve in augmenting global features.
The results of these ablation experiments confirm the effectiveness and robustness of the
DBACT model.

Table 5. Ablation study on the IP dataset.

Component IP Dataset

LRC GATE AMSA CAI OA (%) AA (%) K (%)

×
√ √

× 98.64 98.54 98.45√
×

√
× 98.47 98.44 98.26√ √

×
√

98.78 98.26 98.61√ √ √
× 98.63 98.66 98.44√ √ √ √

99.06 98.93 98.93
Note: Bold values in the table indicate the highest values.

Table 6. Ablation study on the PU dataset.

Component PU Dataset

LRC GATE AMSA CAI OA (%) AA (%) K (%)

×
√ √

× 99.59 99.18 99.46√
×

√
× 99.32 98.48 99.1√ √

×
√

99.34 98.64 99.12√ √ √
× 99.37 98.52 99.16√ √ √ √

99.83 99.72 99.77
Note: Bold values in the table indicate the highest values.
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Table 7. Ablation study on the SV dataset.

Component SV Dataset

LRC GATE AMSA CAI OA (%) AA (%) K (%)

×
√ √

× 99.63 99.58 99.62√
×

√
× 99.49 99.46 99.46√ √

×
√

99.63 99.59 99.62√ √ √
× 99.64 99.61 99.64√ √ √ √

99.70 99.79 99.67
Note: Bold values in the table indicate the highest values.

In summary, the Global Adaptive Transformer Encoder module (GATE) branch, in-
corporating an adaptive multi-head self-attention mechanism, efficiently extracts features
from arbitrarily shaped objects. Meanwhile, leveraging residual connections, the Local
Residual Convolution (LRC) module adeptly captures local representations. Combining
the GATE and the LRC with cross attention, the DBACT model possesses robust feature
extraction capabilities, effectively merging spatial and spectral data to extract representative
high-level semantic information from hyperspectral images.

6. Conclusions

This study presents a dual-branch adaptive convolutional transformer (DBACT) net-
work that integrates both global and local features for HSI classification. In our global
feature extraction branch, we incorporated an adaptive multi-head self-attention mecha-
nism capable of obtaining a dynamic global receptive field, thus accommodating a variety
of irregular objects. The local feature extraction branch, equipped with residual connections,
supplements the global feature extraction branch. The cross-attention mechanism acts as a
fusion bridge between global and local features, enhancing the model’s overall classification
performance. By integrating the characteristics of the structures above, the DBACT model
is adept at capturing global and local spatial and spectral features of hyperspectral imaging
(HSI) across multiple scales. This comprehensive approach enables a nuanced understand-
ing and representation of HSI data, facilitating superior classification performance even
in complex scenarios involving diverse spatial and spectral variations. Across the three
commonly used hyperspectral datasets—the IP, PU, and SV datasets—the DBACT model
demonstrated superior performance in the Overall Accuracy, Average Accuracy, and Kappa
Coefficient metrics compared to other state-of-the-art models, confirming its effectiveness.

In the future, we aim to investigate the implementation of dynamic receptive fields
within the tri-dimensional architecture of data structures. Moreover, to tackle the challenge
of limited labeled data availability, we propose developing generative models for creating
synthetic hyperspectral data, thereby enriching the dataset diversity.
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