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Abstract: Quaking aspen is an important deciduous tree species across interior western U.S. forests.
Existing maps of aspen distribution are based on Landsat imagery and often miss small stands
(<0.09 ha or 30 m2), which rapidly regrow when managed or following disturbance. In this study,
we present methods for deriving a new regional map of aspen forests using one year of Sentinel-1
(S1) and Sentinel-2 (S2) imagery in Google Earth Engine. Using observed annual phenology of
aspen across the Southern Rockies and leveraging the frequent temporal resolution of S1 and S2,
ecologically relevant seasonal imagery composites were developed. We derived spectral indices and
radar textural features targeting the canopy structure, moisture, and chlorophyll content. Using
spatial block cross-validation and Random Forests, we assessed the accuracy of different scenarios
and selected the best-performing set of features for classification. Comparisons were then made
with existing landcover products across the study region. The resulting map improves on existing
products in both accuracy (0.93 average F1-score) and detection of smaller forest patches. These
methods enable accurate mapping at spatial and temporal scales relevant to forest management for
one of the most widely distributed tree species in North America.

Keywords: tree species classification; phenology; multi-temporal; random forest; Google Earth Engine

1. Introduction

Across the interior western United States, quaking aspen (Populus tremuloides Michx.) is
the dominant deciduous tree species in primarily mixed-conifer forests [1,2]. This important
forest type provides ecosystem services, including biodiversity, wildlife habitat, recreational
value, soil carbon sequestration, and vegetation recovery [1]. Aspens respond readily to
canopy opening events (e.g., wildfire), and their persistence on the landscape is closely
linked to disturbance type and periodicity [3–7]. Increasing synchronous disturbances (e.g.,
drought, bark beetle, and wildfire) may favor future dominance of quaking aspen in some
regions [5,8,9]. However, a drier climate and altered disturbance regimes are likely to have
varied impact on this foundational species across its range [10–13]. With growing focus
on aspen ecology and management in the context of climate change and forest resiliency,
production of high-resolution, accurate maps of its distribution at scales relevant to forest
management activities is necessary.

Current nationwide maps of quaking aspen forest cover are developed using Landsat
imagery at a 30 m spatial resolution, e.g., [14], and often fail to identify small stands, which
offer prolific root suckering and expansion when managed or following disturbance [15,16].
There are three relevant 30 m maps of aspen distribution widely available for land managers
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in the Southern Rockies and US: 1—the LANDFIRE Existing Vegetation Type (Landfire
EVT) [14], 2—the United States Forest Service (USFS) National Individual Tree Species
Parameter maps (USFS ITSP) [17], and 3—the USFS TreeMap [18]. Of these, only the
Landfire EVT is provided in more than one time stamp. The remaining databases provide
a snapshot in time as valuable baselines for managers. Collectively, these databases are
limited in accuracy, their ability to detect small patches of aspen, and in their temporal
range. For example, one of the more commonly used land cover maps in the US, the
Landfire EVT, has an accuracy of 60–63% within aspen classes across the southwest US
region for the 2016 remap product based on the product agreement assessment [19]. The
USFS ITSP (c. 2014) and TreeMap (c. 2016) uniquely provide additional information from
the USFS Forest Inventory and Analysis (FIA) plot data such as basal area and stem density
but provide only a snapshot in time and have similar moderate accuracy for the aspen class.
Developing new, higher-resolution maps will improve on these existing products at scales
relevant to quaking aspen management.

Remote-sensing science has benefited in recent years from increasingly available free
and open imagery and improved cloud-computing resources, facilitating the application
of large-scale analysis of the Earth’s surface [20,21]. In particular, the Sentinel missions,
developed to support the Copernicus Programme and administered by the European Space
Agency, have improved land use and landcover mapping efforts across broad geographic
regions [22]. The Sentinel missions consist of a constellation of satellites carrying a range
of sensors, including microwave (radar) and multispectral imaging. These data are made
free and open to the public through the Copernicus Programme’s free, full, and open
data policy. Importantly, Sentinel products are also hosted in the Google Earth Engine
(GEE) platform, which provides access to petabytes of earth systems data co-located with
powerful cloud-computing resources [21].

The combination of spatial, spectral, and temporal resolutions of the Sentinel-2 (S2)
Multispectral Instrument (MSI) is particularly useful for mapping vegetation with distinct
phenological patterns [22]. Since 2015, S2 has provided global multispectral imagery at
finer spatial (10–60 m), spectral (13-band), or temporal (5-day) resolutions compared to
similar satellite missions such as Landsat (30–90 m, 4–8 bands, and 16-day) or Satellite Pour
L’Observation de la Terre (1.5–6 m, 4-band, and 1–3 day). The four narrow red-edge bands
captured by S2 improve species-level mapping, estimation of canopy chlorophyll content,
and derivation of metrics such as gross primary productivity [23–26]. The 5-day temporal
resolution increases availability of cloud-free images and facilitates analysis of land surface
phenology and generation of seasonal cloud-free image composites [27]. Seasonal imagery
improves species discrimination in forested regions, especially for deciduous types with
distinct phenology [28–31].

However, as with any optical imagery, persistent cloud cover, haze, and snow cover
are common issues affecting data acquisition and quality, especially for large-area image
classification. In the case of vegetation mapping with multispectral imagery, multi-temporal
image gap-filling can help overcome this challenge while retaining seasonal characteristics
of the land surface [27]. Additionally, combining multispectral images with sensors less
affected by atmospheric and environmental conditions, such as radar and microwave, can
improve availability and quality of data.

Sentinel-1 (S1) collects cloud-penetrating synthetic-aperture radar (SAR) backscat-
ter imagery at the same spatial and temporal resolution as S2, providing an important
complementary data source for applications in land surface monitoring. As an active
remote-sensing system, SAR measures the amplitude and phase of the backscatter signal,
which corresponds to the physical properties (e.g., roughness) of the land surface [32]. In
forested systems, the wavelength of radar signal emitted from the sensor determines the
sensitivity and depth of penetration into the canopy [33]. S1 collects dual-polarized C-band
SAR backscatter at a nominal frequency range, from 4 to 8 GHz (3.75–7.5 cm wavelength) in
the microwave region of the electromagnetic spectrum. In this region, there is minimal pen-
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etration into the forest canopy, making it useful for characterizing tree canopy roughness
and texture [33,34].

Recent studies have shown potential for multi-temporal optical and radar (e.g., S1
and S2) imagery to improve vegetation mapping, especially in areas with persistent cloud
cover and heterogeneous vegetation types [35–37]. The common spatial and temporal
resolutions of S1 and S2 facilitate the use of these two data sources in tandem for classifying
vegetation type [38,39]. Radar imagery is particularly useful in characterizing deciduous
forest canopy structure during winter months when there is often persistent snow cover
and/or cloud cover [35,36]. In deciduous forests specifically, the canopy structure changes
at key phenological stages (e.g., onset of greenness increase, greenness maximum, onset of
senescence, and greenness minimum), which may be characterized by multi-temporal S1
textural data, improving forest species classifications [27]. Furthermore, because SAR is
sensitive to changes in the canopy roughness, textural features derived from backscatter
imagery have improved classification of forest type [34,40]. Given the advances in clas-
sification accuracy using the Sentinel suite in a variety of recent studies, the efficacy in
different ecosystems should be explored.

In this study, we have three primary objectives: (1) to develop methods for an open-
source, accurate, and high-resolution (10 m) map of aspen cover across the Southern Rockies
ecoregion (U.S. Environmental Protection Agency Level III) using combined S1 and S2
seasonal composite imagery with spectral indices and textural features; (2) to assess the
agreement of this Sentinel-based map with existing 30 m products; and (3) to analyze
and compare aspen patch size and total area across the Southern Rockies and within a
targeted Colorado geography where aspen is currently a management focus. Finally, we
provide results and data through a public interactive GEE application and make all code
and methodology available in public repositories. We anticipate that a higher-resolution
and more accurate map of aspen cover will facilitate targeted and effective management of
aspen forests to increase the valued ecosystem services provided by this forest type.

2. Materials and Methods

For the classification of aspen forest cover in the Southern Rockies, over 5000 Sentinel-1
and Sentinel-2 images were acquired over one year (ca. 2019) from the GEE data catalog [21].
The mapping follows four primary steps (Figure 1). First, presence and background
reference data were created using a combination of approaches (see Section 2.2). Second,
Sentinel-1 and Sentinel-2 imagery was pre-processed, and seasonal median composites
were generated based on key stages in the development of aspen forest canopies (see
Section 2.3). Third, Random Forests were implemented with the presence and background
reference data for the classification of Sentinel imagery composites (see Section 2.4). In this
step, scenario testing was performed to identify the optimal combination of input features,
and a spatial block cross-validation approach was used to assess model performance.
The output from the classification model, a probability surface of aspen presence, was
reclassified to aspen distribution based on an optimal probability threshold identified in
model assessment. Finally, this new map of aspen distribution was compared with three
existing products (see Section 2.5). This comparison included assessing accuracy of the
validation reference data held out in model training, a pixel-based agreement between the
products, and a comparison of landscape patch metrics.

2.1. Study Area

The Southern Rockies include portions of southern Wyoming, central and western
Colorado, and northern New Mexico (Figure 2). Extending nearly 130k km2, the elevation
of the region ranges from approximately 1128 to 4268 m above sea level and is character-
ized by two major mountain belts and intermontane valleys and parks. While there is a
mosaic of private and public protected lands, a large proportion of the region is federally
managed (87.5%) including ten National Forests, two National Parks, and 57 federally
listed wilderness areas [41]. There are a diverse array of ecosystem types including lower
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montane/foothills, wet meadows, upper montane, subalpine, and alpine [42]. Forests cover
approximately 64% (93.1k km2) of the landscape (Landfire EVT, ca. 2016; Figure 1), with
quaking aspen serving as the dominant deciduous tree species (14.6% of forest cover) [14].
Quaking aspen persists on the landscape in both pure (stable) and mixed-conifer–aspen
(seral) stands [4,43].
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(4) assessment of the agreement between the Sentinel-based map of aspen forest cover and three 
existing products. 

2.1. Study Area 
The Southern Rockies include portions of southern Wyoming, central and western 

Colorado, and northern New Mexico (Figure 2). Extending nearly 130k km2, the elevation 
of the region ranges from approximately 1128 to 4268 m above sea level and is character-
ized by two major mountain belts and intermontane valleys and parks. While there is a 
mosaic of private and public protected lands, a large proportion of the region is federally 
managed (87.5%) including ten National Forests, two National Parks, and 57 federally 
listed wilderness areas [41]. There are a diverse array of ecosystem types including lower 
montane/foothills, wet meadows, upper montane, subalpine, and alpine [42]. Forests 
cover approximately 64% (93.1k km2) of the landscape (Landfire EVT, ca. 2016; Figure 1), 
with quaking aspen serving as the dominant deciduous tree species (14.6% of forest cover) 
[14]. Quaking aspen persists on the landscape in both pure (stable) and mixed-conifer–
aspen (seral) stands [4,43]. 

The study further evaluates results within a targeted geography in Colorado, the 
White River National Forest (NF), where quaking aspen is actively managed for multiple 
uses including wildlife habitat and wildfire risk reduction. The White River NF covers 
over 10,000 km2 in central and western Colorado and is emblematic of the ecosystem types 

Figure 1. Workflow diagram of the data preparation and classification approach including four main
steps: (1) creation of aspen reference data (presence) and background reference data; (2) creating the
Sentinel-1 and Sentinel-2 seasonal imagery composites; (3) Random Forest classification including sce-
nario testing, spatial block cross-validation, and creation of the final map product; and (4) assessment
of the agreement between the Sentinel-based map of aspen forest cover and three existing products.

The study further evaluates results within a targeted geography in Colorado, the
White River National Forest (NF), where quaking aspen is actively managed for multiple
uses including wildlife habitat and wildfire risk reduction. The White River NF covers
over 10,000 km2 in central and western Colorado and is emblematic of the ecosystem
types in the Southern Rockies. The region is also recreationally important, with 11 ski
resorts, ten mountain peaks over 4267 m, and eight wilderness areas encompassing nearly
a third of the total area. Aspen is dominant in this region, accounting for approximately
28% of forested lands (Landfire EVT, ca. 2016) [14]. The USFS manages both stable and
seral stands of quaking aspen with aims to promote aspen regeneration in existing stands,
improve wildlife habitat, and increase forest resilience to disturbance. Managers are using
mechanical harvests (coppice silviculture) and prescribed fire to achieve these outcomes.

Large-area image classification presents unique challenges such as acquisition of
representative training and validation data, collection of satellite imagery, and assessment
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of model performance [20]. To overcome some of these challenges, we divided the Southern
Rockies into 129 equal-area (50 km2) spatial blocks (Figure 2). These blocks provide an
analytical unit to generate training and validation data (Section 2.2), imagery composites
(Sections 2.3.1 and 2.3.2), and perform spatial block cross-validation during model training
(Section 2.4).
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Figure 2. Map of the Southern Rockies showing the spatial block grid, case study landscape (White
River NF), quaking aspen reference data (see Section 2.2) and forest cover (LANDFIRE Forest Canopy
Cover, ca. 2016). Inset maps highlight (A) the location of the Southern Rockies in the western United
States (B) the White River NF and forest canopy cover and (C) a reference area near Crested Butte,
Colorado, showing aspen presence data with aerial imagery from the National Agricultural Imagery
Program (NAIP, ca. 2017).

2.2. Reference Data

To train and validate classification models, we generated presence and background
reference data. In binary classification, presence (i.e., positive class) represents the target
land cover type or species, and background (i.e., negative class) captures a representative
sample of all other cover types. This approach is particularly useful for applications where
the desired result is a single land cover type or species and is commonly used in applications
of habitat suitability modeling [44].
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2.2.1. Quaking Aspen Reference Data

Availability of field-based measurements of aspen presence in the region is limited,
particularly data aligned with Sentinel pixels. To overcome this challenge, aspen presence
was determined using photo interpretation of high-resolution (1 m) aerial imagery from the
United States Department of Agriculture (USDA) National Agricultural Imagery Program
(NAIP, ca. 2017). A sampling design was implemented within areas of potential aspen
presence (hereafter aspen mask), defined as pixels with a live aspen basal area greater
than 10 stems/ha based on the USFS TreeMap product (ca. 2016) [18]. This threshold
aligns with estimates for a potential minimum basal area in established aspen stands of
the Southern Rockies [2]. For each spatial block, 10 spatially balanced random points were
assigned inside the aspen mask and a 5 km buffer was applied as the spatial support to
aid interpretation. An interpreter was trained to identify aspen from NAIP imagery and
attempted to label a minimum of 10 pixels of aspen within the spatial support. If there were
no obvious stands of aspen, a new random point was generated in the block. A random
sample of was taken with a minimum distance of 100 m to limit effects of pseudoreplication.
The resulting database includes 12,609 points across 95 spatial blocks.

2.2.2. Background Reference Data

Background reference data are representative of other major land cover types across
the Southern Rockies and were derived from the Landfire EVT sub-class property (ca. 2016).
To account for regional variation in cover types, proportional stratified samples were
generated for each spatial block. The total number of samples in each block was set to ten
times the number of presence points and divided amongst classes proportional to their area.
A minimum sample size of 10 was set for each class in the block to ensure representation of
minority classes, resulting in 73,031 samples across sub-classes (Table 1).

Table 1. Distribution of background samples from the Landfire EVT sub-class (ca. 2016). The number
of samples represents the total across all spatial blocks with at least 100 presence points. We removed
any classes which included quaking aspen forests.

Landfire EVT Sub-Class Number of Samples

Evergreen closed tree canopy 23,957
Mixed evergreen–deciduous shrubland 13,421
Evergreen open tree canopy 12,991
Perennial graminoid grassland 7637
Annual graminoid/forb 3537
Evergreen shrubland 3273
Sparsely vegetated 2869
Mixed evergreen–deciduous open tree canopy 1016
Developed 896
Non-vegetated 808
Perennial graminoid 716
Evergreen dwarf-shrubland 669
Evergreen sparse tree canopy 624
Deciduous open tree canopy 617

Total 73,031

2.3. Satellite Imagery

One year (ca. 2019) of Sentinel-1 and Sentinel-2 imagery was collected in the GEE
data catalog [21]. The collection and preparation of seasonal radar composites is de-
scribed in Section 2.3.1, and optical imagery collection and compositing are described in
Sections 2.3.2 and 2.3.4, respectively. In addition, we calculated spectral vegetation indices
and radar textural features, which are described in Section 2.3.3.
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2.3.1. Sentinel-1

This study used winter (December–February) and summer (June–August) Sentinel-1
(S1) C-Band Ground Range Detected (GRD), which collects data in dual-polarization mode
(VV and VH). These seasonal periods capture two distinct development stages of the forest
canopy: peak greenness (summer) and dormancy (winter). The S1 collection was processed
to analysis-ready data involving border noise correction and speckle filtering [45]. We
combined both orbital passes (ascending and descending) for each polarization mode
and calculated the median backscatter coefficient for the seasonal windows. In total,
556 individual S1 images were used to generate the median composites (324 for summer
and 232 for winter).

2.3.2. Sentinel-2

All Sentinel-2 (S2) Multispectral Instrument (MSI) Level-2A surface reflectance scenes
for the entire year across the Southern Rockies were initially collected (5137 tiles). Each
surface reflectance tile includes four spectral bands at 10 m spatial resolution, six bands at
20 m, and three bands at 60 m. The 60 m bands (coastal aerosol, water vapor, SWIR-cirrus),
which are uninformative for vegetation analysis, were excluded from the collection, and the
remaining bands were resampled to a common 10 m spatial resolution (Table 2). Prior to
generating seasonal composites (see Section 2.3.3), the annual spectral response for aspen
presence was extracted from the full set of S2 tiles across the Southern Rockies for further
analysis. In total, over 3000 images intersected the study area over the course of one year.

Table 2. Sentinel-1 and Sentinel-2 input features. All bands were resampled to a common spatial
resolution of 10 m.

Satellite Abbrev. Name Center
Wavelength

Seasonal
Windows

Sentinel-1
VV Vertical–Vertical 5.5 cm Summer/

WinterVH Vertical–Horizontal 5.5 cm

Sentinel-2

B2 Blue 490 nm

Summer/
Autumn

B3 Green 560 nm
B4 Red 665 nm
B5 Red-edge 1 705 nm
B6 Red-edge 2 740 nm
B7 Red-edge 3 783 nm
B8 Near Infrared 842 nm

B8A Red-edge 4 865 nm
B11 Shortwave Infrared 1 1610 nm
B12 Shortwave Infrared 2 2190 nm

2.3.3. Additional Spectral and Textural Features

A suite of textural features and vegetation indices were derived from S1 and S2 imagery
(Table 3). Given that radar backscatter is sensitive to canopy roughness, texture features
may provide valuable information for discriminating forest types [34]. Specifically, the
Gray Level Co-Occurrence Matrix (GLCM) derives textural features by assessing patterns
of pixel intensities and spatial arrangement [40]. The derivatives of GLCM have been
shown to improve land cover classifications from radar data [34,40,46]. We derived GLCM
entropy, contrast, variance, and correlation using a 7 × 7 pixel neighborhood for winter
and summer VH and VV polarization modes.

Six vegetation indices targeting forest canopy productivity, moisture, and chlorophyl
content were derived from the S2 bands prior to generating seasonal composites. These
included the Chlorophyll Index Red-edge (CIRE), Modified Chlorophyll Absorption in
Reflectance Index (MCARI), Inverted Red-edge Chlorophyll Index (IRECI), Specific Leaf
Area Vegetation Index (SLAVI), Modified Normalized Difference Water Index (MNDWI),
and the Red-edge Normalized Difference Vegetation Index (NDVI705).
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Table 3. Spectral vegetation indices and radar textural features. The formula and associated reference
to calculate each index are provided where relevant. Indices and textural features were calculated for
each seasonal window.

Satellite Index Abbreviation Formula Seasonal
Windows Reference

Sentinel-1 GLCM Entropy VV_ent,
VH_ent GLCM Summer/

Winter [46]

Sentinel-1 GLCM Variance VV_var,
VH_var GLCM Summer/

Winter

Sentinel-1 GLCM Correlation VV_corr,
VH_corr GLCM Summer/

Winter

Sentinel-1 GLCM Contrast VV_contrast,
VH_contrast GLCM Summer/

Winter

Sentinel-2 Chlorophyll Index Red-edge CIRE (B8/B5) − 1 Summer/
Autumn [47]

Sentinel-2 Inverted Red-edge Chlorophyll Index IRECI (B8 − B4)/(B5/B6) Summer/
Autumn [48]

Sentinel-2 Specific Leaf Area Vegetation Index SLAVI B8/(B4 + B12) Summer/
Autumn [49]

Sentinel-2 Modified Chlorophyll Absorption in
Reflectance Index MCARI ((B5 − B4) − 0.2 ∗ (B5 − B3))

∗ (B5/B4)
Summer/
Autumn [35]

Sentinel-2 Red-edge Normalized Difference
Vegetation Index NDVI705 (B6 − B5)/(B6 + B5) Summer/

Autumn [50]

Sentinel-2 Modified Normalized Difference
Water Index MNDWI (B3 − B11)/(B3 + B11) Summer/

Autumn [51]

2.3.4. Seasonal Sentinel-2 Composites

To generate cloud-free seasonal multispectral composites which are ecologically rele-
vant for aspen forests, this study assessed (1) the annual spectral response of aspen reference
data (see Sections 2.2.1 and 2.3.2) and (2) the average phenology of aspen forests in the
study area. Using these assessments, ecologically relevant time periods were chosen to
create median cloud-free image composites.

The annual spectral response was derived using all S2 images available over the
study region (see Section 2.3.2). Occluded pixels (e.g., cloud or haze) were identified
using the Cloud Score Plus [52] with a threshold value of 0.60. To account for spatial and
temporal variations in spectral characteristics, the median bi-weekly surface reflectance
was calculated for the aspen presence data over the entire year.

Phenology metrics were summarized from the Visible Infrared Imaging Radiometer
Suite (VIIRS) Land Cover Dynamics data product (VNP22Q2), which provides global land
surface phenology (GLSP) metrics at yearly intervals [53]. Within the aspen mask (see
Section 2.2.1), the median day-of-year for each phenological metric was calculated for each
spatial block using the full VIIRS record (2013–2022). Metrics included the onset of green-
ness increase, onset of greenness decrease, mid-senescence phase, and onset of greenness
minimum (see Appendix A for a more detailed description of this data and analysis).

Based on these analyses, this study adopted two ecologically relevant time periods:
summer (onset of greenness increase to onset of greenness decrease, 25 May–13 August) and
autumn (mid-senescence phase to onset of greenness minimum, 2 September–14 November).
For each seasonal period, images with greater than 80% cloud cover and 10% snow cover
were excluded. Occluded pixels (e.g., cloud cover, haze) were then masked using the Cloud
Score Plus [52] with a threshold for occlusion of 0.60. Composites were created using
the median pixel value of all non-occluded pixels across each seasonal period. A total of
3956 S2 tiles were used with per-spatial block averages of 146 (±71) tiles for summer and
73 (±30) tiles for autumn.
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2.3.5. Topographic Data

Inclusion of topographic information is shown to improve the accuracy of forest type
classifications, especially in regions with complex elevation patterns [35]. Topography
was extracted using a digital elevation model (DEM) from the United States Geological
Service (USGS) 3-dimensional Elevation Program (3DEP) 1/3 arc-second (10 m) elevation
product. From the DEM, slope and aspect were calculated, both of which may influence
the distribution of aspen forest cover across the landscape [43].

2.4. Image Classification

In this study, a binary Random Forest (RF) was adopted for classification. RF is a
robust machine-learning method which is less sensitive to overfitting while minimizing
computational expense associated with large input data [44,54]. A spatial block cross-
validation strategy was implemented to account for spatial autocorrelation in the training
and validation data [55]. For each fold, a 70:30 ratio was used to randomly split spatial
blocks into training and validation sets, respectively. Only presence and background
reference data within these splits were used to train the model at each fold. Models
were trained with 1001 trees, and the number of random variables used at each split
was set to the square root of the number of input variables. To test the relative influence
of S1 and S2 data on classification accuracy, model performance was assessed across
different classification scenarios (e.g., combinations of season S1 and S2 inputs), and the
best-performing combination was selected for classification.

2.4.1. Model Selection and Accuracy Assessment

Model performance was assessed using a set of common metrics based on the con-
fusion matrix for each k-fold model and classification scenario, specifically, the precision,
recall, and F1-score. The F1-score was adopted because it typically performs better than
overall accuracy in imbalanced classifications [56]. The best-performing classification sce-
nario was selected based on the average F1-score across folds. A feature selection exercise
then identified the most parsimonious model for classification to limit multicollinearity.
While the predictive ability of RF is likely unaffected by multicollinearity, assessment of
feature importance is sensitive to its presence [54]. Tests for multicollinearity were based on
the ‘multi.collinear’ function in the rfUtilities [57] package in the R Statistical Programming
Language [58] with a permutated (N = 1001, p ≤ 0.05) leave-one-out method. Features
were removed based on the frequency that they were identified in the permutation tests
(frequency > 0). Collinear bands included Band 7, Band 8A, and NDVI705 for both summer
and autumn, summer Band 8, summer IRECI, and summer MCARI. The ‘rf.modelSel’
function was then used to identify the most parsimonious set of features based on the
out-of-bag error rate to use in the final classification model, thereby improving computation
time and minimizing noise [59].

The accuracy of the final model was assessed using the binary classification of the
probability surface generated by the RF. Typically, predicted classes are defined based on
a single probability threshold between 0 and 1 (e.g., probability > 0.5 belongs to class 1),
which may not relate to the optimum classification threshold [55]. The sensitivity to
this threshold was tested by calculating the confusion matrix and associated metrics for
100 values between 0 and 1 for each fold. At each threshold in the sequence, the validation
data were classified into aspen or non-aspen, and the precision, recall, and F1-score were
calculated. We identified the optimal threshold for classification based on the average
maximum F1-score across folds (see Appendix B).

2.4.2. Feature Importance

Feature importance was retrieved from the final model, calculated in GEE as the sum
of decrease in Gini impurity index over all trees in the forest [60]. Feature importance
values for each fold were calculated, and the median values with confidence intervals
were extracted.
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2.5. Agreement with Existing Products

Agreement was assessed between the Sentinel-based aspen map and three existing
30 m products: the Landfire EVT (ca. 2016), USFS ITSP (ca. 2014), and USFS TreeMap
(ca. 2016). There were two objectives for this assessment: 1—investigate the accuracy of
the validation reference data, and 2—test the pixel-based agreement with the Sentinel-
based map across the Southern Rockies and the White River NF. Each product was first
reclassified into aspen and non-aspen and resampled to a common 10 m spatial resolution
to match the Sentinel-based map. For the USFS ITSP and TreeMap, aspen presence was
defined using the basal area metric (>10 stems/ha, see Section 2.2.1). For both objectives,
the confusion matrix was used to assess agreement using the same metrics (precision, recall,
and F1-score). In the case of objective (1), the confusion matrix was based on validation
reference data. For objective (2), the confusion matrix is based on all pixels in the study
areas with the Sentinel-based map as the reference.

2.6. Case Study: Landscape Patch Dynamics

To highlight the utility of the Sentinel-based map for management activities, this study
calculated patch- and class-level landscape metrics across the Southern Rockies and the
White River NF. These metrics included landscape (e.g., total area, patch density) and
patch (e.g., patch size, perimeter-to-area ratio) statistics. Comparisons of landscape patch
dynamics were also made between the existing products. Metrics were calculated using
the pylandstats Python package [61].

3. Results
3.1. Annual Spectral Response of Quaking Aspen Forests

The annual surface reflectance of quaking aspen forests highlights the patterns of phe-
nology, canopy development, and environmental conditions in the study region (Figure 3A).
During winter (December–March), surface reflectance is highly variable as the canopy is
in dormancy and stands are often covered in snow, especially at higher elevations. As
the canopy develops, a peak in the near-infrared (NIR) and red-edge wavelength occurs
around the first week or two of July and corresponds with a mature forest canopy. As the
canopy transitions to early autumn, there is a drop in NIR reflectance and an increase in
both the visible and shortwave infrared (SWIR), which corresponds to a decrease in green
vegetation. A similar pattern is observed for the S2 spectral indices (Figure 3B). The largest
difference in reflectance between summer and autumn occurs in the NIR and red-edge
regions of the spectrum, although there are significant spectral changes across all S2 bands
(Figure 3C) and spectral indices (Figure 3D).
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3.2. Model Selection and Accuracy Assessment

The best-performing classification scenario included all features from both S1 and
S2 and topographic data with an average F1-score of 0.91 (±0.01, Figure 4). The worst
classification scenarios were those in which only S1 data were used (F1-score 0.46–0.62).
There was a significant increase in classification accuracy for single-season S2 data (i.e.,
summer or autumn alone) compared to classifications which used only S1. However,
for models which only used S1 as inputs, the addition of GLCM texture features did
improve model performance. Combining both seasonal S2 composites and spectral indices
increased the average F1-score by 0.3 compared to models which used only one seasonal
spectral composite (e.g., only summer or only autumn). The addition of both S1 seasonal
composites and texture features only improved the F1-score by 0.1 compared to the model
using combined spectral composites. Across all scenarios, there was little variability in
accuracy among folds. That is, the classifications were insensitive to different sets of
training and validation data used in the spatial block cross-validation.
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across folds for each scenario. Topographic data (elevation, slope, and aspect) were included in
all scenarios.

For the best-performing classification scenario (“Combined_S1_S2”, Figure 4), which
included both S1 and S2 and all texture and spectral indices, a set of 17 bands were selected
which minimized the out-of-bag error rate for the most parsimonious classification. Across
folds, the final model achieved an average F1-score of 0.931 (±0.008).

Feature Importance

While there were 17 features in the final model, only the top 10 most important are
presented (Figure 5). The Modified Normalized Difference Water Index (MNDWI) from the
autumn S2 composite was the top predictor across all folds. Elevation was the second most
important feature followed by summer Chlorophyll Index Red-edge (CIRE), autumn Band
3 (green), and the VV polarization band from the summer S1 composite. Just outside of the
top five features is the summer Specific Leaf Area Vegetation Index (SLAVI). The remaining
features in the top 10 are the red bands for both summer and autumn S2, summer Band 5
(red-edge), and autumn CIRE. Of the 17 bands in the final model, radar textural features
were the least important in classifying aspen forests.
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3.3. Quaking Aspen Forest Map

The resulting high-resolution (10 m) Sentinel-based map of quaking aspen forest
cover represents the average probability across folds for the final model (Figure 6D).
The optimum probability threshold for classification of 0.42 was identified based on the
maximum F1-score achieved across the range of values tested for each fold (Figure A2B).
This threshold was used to reclassify the probability map into aspen and non-aspen pixels
(Figure 6E). A more detailed description of the threshold and model performance can
be found in Appendix B. Across the Southern Rockies, aspen forests cover an estimated
9482 km2 (~10.2% of forested area defined by Landfire EVT ca. 2016). In the White River NF
(Figure 6B), the Sentinel-based map estimates aspen forest cover extending across 1658 km2

(~23.0% of forested area).
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3.4. Agreement with Existing Products

For the first objective (agreement based on validation data), there was strong overall
agreement between products with the average F1-score ranging from 0.829 to 0.865 com-
pared to 0.931 for the Sentinel-based map (Table 4). However, a notable pattern emerges
regarding precision and recall. The Sentinel-based map demonstrates higher precision
(0.9516) relative to recall (0.9116). This suggests that while the map is correctly predicting
aspen presence 95% of the time, it may be more restrictive, missing about 9% of true aspen
presence. Conversely, all three reference products exhibit lower precision than recall. For
example, the USFS TreeMap correctly predicts aspen presence just 80% of the time but
identifies 93% of all true aspen presence. This indicates that while existing products are
relatively accurate, they may be more likely to include non-aspen areas in their predictions
based on the validation reference data.

Table 4. Precision, recall, and F1-score for validation data across three existing products and the
Sentinel-based map across the Southern Rockies.

Data Source Precision Recall F1-Score

Sentinel-based map 0.9516 0.9116 0.9311
USFS TreeMap 0.8087 0.9302 0.8652
Landfire EVT 0.8168 0.8995 0.8562
USFS ITSP 0.7959 0.8669 0.8299

For the second objective (pixel-based agreement), there was significant spatial vari-
ability in agreement across spatial blocks, with some regions performing significantly
better than others (Figure 7). Notably, an opposite relationship emerged between preci-
sion and recall in this approach, where precision is consistently higher than recall when
comparing existing products to the Sentinel-based map. Given the higher accuracy of
the Sentinel-based map based on validation data (Table 4), this supports the finding that
existing products may over-predict areas of aspen presence in comparison. Of the three
products, the USFS ITSP has the lowest precision and recall based on validation data and
the highest precision in pixel-based agreement. This suggests that while there is generally
good agreement between aspen presence in the ITSP and the Sentinel-based map (e.g., high
pixel-based precision), this product likely overestimates aspen presence on the landscape
to a greater degree than the other two products and may also more commonly fail to
identify true aspen presence. Additionally, the White River NF exhibits significantly higher
precision, recall, and F1-score for all existing products than the median across spatial blocks
(Figure 7). This region is characterized by extensive aspen, suggesting that the agreement
may be higher in areas with more consistent aspen cover. Still, the higher precision than
recall in the pixel-based assessment indicates that there may be overestimation of aspen
presence for the three reference products.
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Landscape and Patch Dynamics

The Sentinel-based map estimates 43–118% less total aspen area across the Southern
Rockies and 21–64% less in the White River NF compared to existing products (Figure 8A).
The average patch size varies greatly across the Southern Rockies, highlighting the regional
difference in stand characteristics. For the Sentinel-based map, the average patch size
is 0.53 ha (±23 ha) in the Southern Rockies and 0.74 ha (±22 ha) in the White River
NF, significantly smaller than existing products (Table 5, Figure 8B). Some regions are
dominated by large stands of pure aspen (>22 ha), whereas others are defined by many
small, more dispersed stands (Figure 8B,C). Notably, the Sentinel-based map identifies
28–93% more individual patches across the Southern Rockies and White River NF. Given
the higher accuracy of the Sentinel-based map and the trend in over-prediction of aspen
areas from existing products, these results suggest that the higher-resolution map is better
able to characterize the actual landscape configuration of aspen forests.
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Figure 8. Comparison of patch metrics for the Southern Rockies and the White River NF for the
Sentinel-based map and the three existing products. The White River NF is dominated by large, often
pure stands of quaking aspen, which is highlighted in the much larger average patch density and
patch size when compared to the Southern Rockies (A–C).

Table 5. Landscape patch dynamics summarized across spatial blocks for the Southern Rockies. We
report the total area, number of patches, average patch density, average patch size, and average
perimeter-to-area ratio.

Data Source Total Area (km2) Number of Patches Patch Density Average Patch
Size (ha)

Average Perimeter/
Area Ratio

Sentinel-based Map 9384.41 1,760,386 35.73 0.53 2745.57
Landfire EVT 13,441.59 728,370 14.22 1.85 1060.98
USFS TreeMap 13,931.85 1,268,131 24.82 1.10 1145.88
USFS ITSP 20,477.69 266,762 4.82 7.68 941.75

4. Discussion

This overall effort provides a new high-resolution (10 m), accurate (0.93 mean F1-score)
aspen forest cover map for the Southern Rockies (ca. 2019) and reproducible methods
for extending this analysis in other regions, over time, or for other species of interest.
Leveraging GEE for data acquisition and analysis, aspen forests were mapped across a
large geographic region (~130k km2) using over 5000 images from Sentinel-1 and Sentinel-2.
Aspen forests were found to cover 9482 km2 (~10.2% of forested area) in the Southern
Rockies and 1658 km2 (~23.0% of forested area) in the White River NF. This new map offers
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improvements over existing products both in terms of accuracy (0.07–0.17 higher F1-score
based on comparison with the validation reference data) and identification of smaller
forest patches (1.3–7.2 ha smaller average patch size). Furthermore, this study importantly
demonstrates the utility of two methodological choices for forest species identification
using satellite data. First, integrating species- and location-specific phenology metrics help
create ecologically relevant multispectral image composites over large and environmentally
diverse regions. Classification performance was greatly enhanced when combining at
least two seasonal composites and spectral indices compared to models which used only
radar and derived textural features. Second, binary RF and spatial block cross-validation
provide efficient tools for training and assessing classification tasks using remote-sensing
imagery, especially across large geographic areas. Future large-area and species-specific
image classification research may benefit from the methods described in the present study.

Previous studies have shown the effectiveness of multi-temporal S2 imagery for im-
proving classification accuracy of forest species, especially in heterogeneous environments,
e.g., [29–31,62]. For example, Persson et al. [31] demonstrated that the successive addition
of S2 image dates increased the overall accuracy of forest type identification in Sweden.
Similarly, Grabska et al. [63] showed the improved classification accuracy when at least
two S2 image dates were used in classification of forest species in Poland. Consistent with
these findings, the present study achieves higher classification accuracy when combining
multiple seasonal composites compared to just a single season. Furthermore, incorporat-
ing phenology difference in species identification tasks using S2 may improve accuracy.
The study by Li et al. [29] demonstrated that incorporating species phenology and multi-
temporal S2 imagery produced accurate maps of Populus euphratica distribution. However,
this study, like many referenced here, used a single S2 tile for classification. Large-area
image classification, especially in heterogenous landscapes, introduces challenges for in-
corporating phenology. Our study demonstrates that using landscape-scale phenology
from coarse-resolution satellite data (e.g., VIIRS) can help identify temporal periods that
relate to key phenological stages for a deciduous forest species. Given the availability of
VIIRS data globally, these methods could be used in other parts of the world for species
with distinct phenological patterns. In addition, the finding that classification using only
S1 features poorly identifies aspen forests compared to classifications which use S2 or
a combination of S1 and S2 is also consistent with previous research. For example, Do-
brinić et al. [35] found that using only S1 features in the classification of vegetation type
in northern Croatia yielded a 75% overall accuracy compared to 92% when combining
S1 and S2. While some previous research indicates the effectiveness of GLCM texture for
vegetation mapping, e.g., [34,35], our results indicate minimal influence of these features on
classification accuracy of aspen presence. Despite these results, there is some evidence of a
correlation between radar backscatter and aspen forest cover as indicated by the presence
of the summer VV band in the top five most influential features in the final model. Future
research should explore this relationship more and may benefit from investigating different
pixel neighborhood sizes for GLCM texture features or other indices derived from radar
data at different times of the year.

In the western United States, quaking aspen is the dominant deciduous forest type in
an otherwise conifer-dominated landscape. Aspen forests contain higher levels of canopy
moisture content compared to their conifer neighbors [63]. This study demonstrated
that spectral indices derived from S2 which leverage the red-edge and SWIR bands to
estimate canopy moisture and chlorophyl content are important features for classification.
For example, two of the most important features in the final model were the Modified
Normalized Water Index (MNDWI) and the Chlorophyl Red-edge Index (CIRE) for the
summer image composite. Leveraging unique canopy characteristics to create targeted
spectral indices may improve forest species mapping, particularly deciduous species.
However, more work is needed to understand if this relationship is maintained in other
regions of the world and in different environmental conditions, especially in areas with
more diversity of deciduous forest species.
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While the present study achieved high classification accuracy at a finer spatial reso-
lution than existing products, several limitations and areas for future research exist. First,
the relatively short observational record precludes mapping efforts prior to 2015 using
S1 or S2. Second, although the spatial resolution of Sentinel is better than other similar
multispectral satellite imagery (e.g., Landsat), the map produced in the present study may
still miss detections of small stands or where aspen is intermixed with conifer species in
the canopy (e.g., seral aspen). As the availability of very-high-resolution satellite imagery
increases (e.g., the CBERS-4 mission), efforts should be made to improve on the detection
of small stands. Analysis techniques such as spectral unmixing may also prove useful
for mapping intermixed conifer–aspen stands with very-high-spatial-resolution imagery.
Third, the lack of field-based training and validation data in the current study is a major
limitation. Although this challenge was partially overcome by using photo interpretation,
future efforts should focus on integrating field measurements to improve the reliability
and assessment of model performance. By investigating accuracy and agreement with
other products across space, the present study identifies areas where performance may
be low. In these areas, development of more precise training and validation data may
improve the overall ability of the model to distinguish aspen forests from other cover types.
Collecting data from existing field studies, citizen science databases (e.g., iNaturalist),
or species occurrence databases (e.g., the Global Biodiversity Information Facility) may
provide additional accuracy assessment and model improvements while limiting the need
for time-intensive photo interpretation efforts and extensive field campaigns. Future efforts
may also include more state-of-the-art classification techniques such as neural networks and
object-oriented classification, which would take advantage of the spatial characteristics of
aspen stands. Moreover, the use of upcoming hyperspectral imaging campaigns (e.g., EMIT)
or satellite-based LiDAR (e.g., GEDI) will undoubtedly offer continued improvements to
forest species mapping.

Despite these limitations, this study provides a crucial tool for land managers in
determining where to prioritize active management of aspen forests. Quaking aspen
is a shade-intolerant species capable of vegetation regeneration from root suckers; as
such, it readily occupies canopy openings [7,15]. These characteristics have been used
to regenerate and even expand aspen patches using coppice silviculture techniques or
prescribed fire, where appropriate [15]. Furthermore, the landscape dynamics of aspen vary
across the Southern Rockies, with some areas dominated by pure or stable stands and others
characterized by mid–late successional seral stands [4,13]. These different functional types
respond to different management practices. The improved capability to map aspen forest
patches at finer spatial resolution and high accuracy is useful for forest managers who are
planning silvicultural management activities which maximize the potential for expansion of
aspen into new areas. Combined with other datasets including habitat suitability, wildfire
or other disturbance risk, and others, these new maps have the potential to assist forest
management at both temporal and spatial scales relevant to the ecology of the species.

5. Conclusions

This study contributes to the broader challenges of forest species identification from
remotely sensed imagery across large geographic areas. Using broad-scale temporal and
spatial data, quaking aspen was identified, and a finer-resolution aspen distribution map
was created across the Southern Rockies. By leveraging species-specific phenology based
on observational data, our study provides a method for generating ecologically relevant
seasonal imagery composites for a species of interest. This is particularly useful for ap-
plications using multispectral imagery in which scenes are often occluded by cloud or
atmospheric haze, especially in regions of the world with persistent cloud cover or complex
topography. These methods can be applied globally for various species of interest with
distinct phenology. Furthermore, the application of spatial block cross-validation and
Random Forests in GEE demonstrates an effective and accurate method for handling large
data analysis in a cloud-computing environment. The methods are fully open, providing
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the research community with important references to replicate this study in other regions
of the world.

As human- and climate-related impacts to forested areas continue to grow, the devel-
opment of new high-resolution and accurate maps of forest species is critical to effective
management activities which improve resilience, reduce hazard for communities, and main-
tain important ecosystem service benefits. Given the uncertainty around aspen growth
dynamics in a changing climate, this product is an important source of information for
forest managers and will benefit management of one of the most widely distributed tree
species in North America.
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Appendix A. Phenology of Quaking Aspen across the Southern Rockies

The Southern Rockies study region is an ecologically diverse landscape with complex
topography. In complex systems, exploring the phenological patterns of vegetation devel-
opment is useful when generating seasonal satellite image composites [27]. For quaking
aspen forests in particular, the timing of canopy growth differs by elevation, slope, and cli-
mate [64]. These differences across a large and diverse region can influence the generation
of satellite image composites which are representative of specific phenological stages for
this deciduous forest species.

To examine the seasonal variation of canopy development within aspen forests across
the Southern Rockies, we summarized phenological metrics from the Visible Infrared
Imaging Radiometer Suite (VIIRS) Land Cover Dynamics data product (VNP22Q2), which
provides global land surface phenology metrics at yearly intervals since 2013 [53]. These
include day-of-year (DOY) for the onset of greenness increase, mid-greenup phase, onset of
greenness maximum, onset of greenness decrease, mid-senescence phase, and the onset of
greenness minimum. For each spatial block, we calculated the median day-of-year for each
metric within aspen forest area based on the USFS TreeMap product (see Section 2.2.1 of
the main text). Analysis was carried out in the Google Earth Engine (GEE) Code Editor [21].
We examined the variation in the average DOY across spatial blocks (Figure A1) for each
metric and calculated the average and standard deviation across blocks and years for the
Southern Rockies. The variation in quaking aspen phenology is well-explained by elevation
as demonstrated by the inset plots in Figure A1. To capture this variation when selecting
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temporal windows for creating seasonal image composites, we subtracted the standard
deviation (in days) from the metric average (day-of-year) and used these values as start and
end dates. Specifically, we defined two temporal windows: summer, or the mid-greenup
phase to the onset of greenness decrease; and autumn, or the mid-senescence phase to the
onset of greenness minimum.
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Figure A1. Quaking aspen phenology derived from the VNP22Q1 in the Southern Rockies and
relationship with elevation. Day-of-year estimates represent the median across all years (2013–2022).
(A) Mid-greenup phase (late May to late June) and (B) the onset of greenness decrease (early August
to early September) defines the summer temporal window, and both show a strong positive linear
relationship with elevation. (C) Mid-senescence phase (mid-September to early October) and (D) the
onset of greenness minimum (late October to mid-November) define the autumn temporal window.
Senescence phase indicates a strong relationship with elevation while the onset of greenness minimum
is less influenced by elevation.

Appendix B. Accuracy Assessment and Optimal Threshold for Classification

To assess model performance and to calculate the optimum threshold for classification
based on the probability grids from the Random Forest classifier, we calculated a confusion
matrix for 100 different classification threshold values between 0 and 1 based on the training
data in each of the 10 model iterations. From this, we calculated an AUC-ROC curve which
represents the true positive rate against the false positive rate (Figure A2A). To calculate the
optimum threshold, we found the maximum F1-score of the average across all 10 model
iterations (Figure A2B). We used this optimum threshold on the average probability of
aspen forest grid to calculate the aspen distribution map (aspen and no aspen).
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Figure A2. Model performance metrics from the final classification. (A) AUC-ROC or the true-posi-
tive rate against the false-positive rate with colors representing the 10 model iterations; (B) the F1-
score across threshold values. The black line is the average across model iterations, and the black 
point represents the location of the maximum F1 from the average across folds. This point is our 
optimum threshold for classification (0.42). 

References 
1. Rogers, P.C.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, G.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu, 

H.; et al. A Global View of Aspen: Conservation Science for Widespread Keystone Systems. Glob. Ecol. Conserv. 2020, 21, e00828. 
https://doi.org/10.1016/j.gecco.2019.e00828. 

2. Debyle, N.V.; Winokur, R.P. Aspen: Ecology and Management in the Western United States. General Technical Report RM-119, 
USDA Forest Service. 1985. Available online: https://www.academia.edu/34572963/Aspen_ecology_and_manage-
ment_in_the_western_United_States (accessed on 31 March 2024). 

3. Bartos, D.L. Landscape dynamics of aspen and conifer forests. In Sustaining Aspen in Western Landscapes: Symposium Proceedings; 
Shepperd, W.D., Binkley, D., Bartos, D.L., Stohlgren, T.J., Eskew, L.G., Eds.; Proceedings RMRS-P-18; U.S. Department of Agri-
culture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001. 

4. Rogers, P.C.; Landhäusser, S.M.; Pinno, B.D.; Ryel, R.J. A Functional Framework for Improved Management of Western North 
American Aspen (Populus Tremuloides Michx.). For. Sci. 2014, 60, 345–359. 

5. Landhäusser, S.M.; Deshaies, D.; Lieffers, V.J. Disturbance Facilitates Rapid Range Expansion of Aspen into Higher Elevations 
of the Rocky Mountains under a Warming Climate. J. Biogeogr. 2010, 37, 68–76. https://doi.org/10.1111/j.1365-2699.2009.02182.x. 

6. Gill, N.S.; Sangermano, F.; Buma, B.; Kulakowski, D. Populus Tremuloides Seedling Establishment: An Underexplored Vector 
for Forest Type Conversion after Multiple Disturbances. For. Ecol. Manag. 2017, 404, 156–164. 
https://doi.org/10.1016/j.foreco.2017.08.008. 

7. Long, J.N.; Mock, K. Changing Perspectives on Regeneration Ecology and Genetic Diversity in Western Quaking Aspen: Impli-
cations for Silviculture. Can. J. For. Res. 2012, 42, 2011–2021. https://doi.org/10.1139/x2012-143. 

8. Andrus, R.A.; Hart, S.J.; Tutland, N.; Veblen, T.T. Future Dominance by Quaking Aspen Expected Following Short-Interval, 
Compounded Disturbance Interaction. Ecosphere 2021, 12, e03345. https://doi.org/10.1002/ecs2.3345. 

9. Nigro, K.M.; Rocca, M.E.; Battaglia, M.A.; Coop, J.D.; Redmond, M.D. Wildfire Catalyzes Upward Range Expansion of Trem-
bling Aspen in Southern Rocky Mountain Beetle-Killed Forests. J. Biogeogr. 2022, 49, 201–214. https://doi.org/10.1111/jbi.14302. 

10. Worrall, J.J.; Rehfeldt, G.E.; Hamann, A.; Hogg, E.H.; Marchetti, S.B.; Michaelian, M.; Gray, L.K. Recent Declines of Populus 
Tremuloides in North America Linked to Climate. For. Ecol. Manag. 2013, 299, 35–51. https://doi.org/10.1016/j.foreco.2012.12.033. 

11. Rosenblum, A. Altered Fire Regimes and the Persistence of Quaking Aspen in the Rocky Mountains: A Literature Review. Open 
J. For. 2015, 5, 563–567. https://doi.org/10.4236/ojf.2015.55050. 

12. Krasnow, K.D.; Stephens, S.L. Evolving Paradigms of Aspen Ecology and Management: Impacts of Stand Condition and Fire 
Severity on Vegetation Dynamics. Ecosphere 2015, 6, 1–16. https://doi.org/10.1890/ES14-00354.1. 

13. Shinneman, D.J.; McIlroy, S.K. Climate and Disturbance Influence Self-Sustaining Stand Dynamics of Aspen (Populus Tremu-
loides) near Its Range Margin. Ecol. Appl. 2019, 29, e01948. https://doi.org/10.1002/eap.1948. 

14. Picotte, J.J.; Dockter, D.; Long, J.; Tolk, B.; Davidson, A.; Peterson, B. LANDFIRE Remap Prototype Mapping Effort: Developing 
a New Framework for Mapping Vegetation Classification, Change, and Structure. Fire 2019, 2, 35. 
https://doi.org/10.3390/fire2020035. 

15. Shepperd, W.D.; Smith, F.W.; Pelz, K.A. Group Clearfell Harvest Can Promote Regeneration of Aspen Forests Affected by Sud-
den Aspen Decline in Western Colorado. For. Sci. 2015, 61, 932–937. 

16. Landhäusser, S.M.; Pinno, B.D.; Mock, K.E. Tamm Review: Seedling-Based Ecology, Management, and Restoration in Aspen 
(Populus Tremuloides). For. Ecol. Manag. 2019, 432, 231–245. https://doi.org/10.1016/j.foreco.2018.09.024. 

Figure A2. Model performance metrics from the final classification. (A) AUC-ROC or the true-positive
rate against the false-positive rate with colors representing the 10 model iterations; (B) the F1-score
across threshold values. The black line is the average across model iterations, and the black point
represents the location of the maximum F1 from the average across folds. This point is our optimum
threshold for classification (0.42).

References
1. Rogers, P.C.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, G.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu,

H.; et al. A Global View of Aspen: Conservation Science for Widespread Keystone Systems. Glob. Ecol. Conserv. 2020, 21, e00828.
[CrossRef]

2. Debyle, N.V.; Winokur, R.P. Aspen: Ecology and Management in the Western United States. General Technical Report RM-119,
USDA Forest Service. 1985. Available online: https://www.academia.edu/34572963/Aspen_ecology_and_management_in_the_
western_United_States (accessed on 31 March 2024).

3. Bartos, D.L. Landscape dynamics of aspen and conifer forests. In Sustaining Aspen in Western Landscapes: Symposium Proceedings;
Shepperd, W.D., Binkley, D., Bartos, D.L., Stohlgren, T.J., Eskew, L.G., Eds.; Proceedings RMRS-P-18; U.S. Department of
Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001.

4. Rogers, P.C.; Landhäusser, S.M.; Pinno, B.D.; Ryel, R.J. A Functional Framework for Improved Management of Western North
American Aspen (Populus Tremuloides Michx.). For. Sci. 2014, 60, 345–359. [CrossRef]

5. Landhäusser, S.M.; Deshaies, D.; Lieffers, V.J. Disturbance Facilitates Rapid Range Expansion of Aspen into Higher Elevations of
the Rocky Mountains under a Warming Climate. J. Biogeogr. 2010, 37, 68–76. [CrossRef]

6. Gill, N.S.; Sangermano, F.; Buma, B.; Kulakowski, D. Populus Tremuloides Seedling Establishment: An Underexplored Vector for
Forest Type Conversion after Multiple Disturbances. For. Ecol. Manag. 2017, 404, 156–164. [CrossRef]

7. Long, J.N.; Mock, K. Changing Perspectives on Regeneration Ecology and Genetic Diversity in Western Quaking Aspen:
Implications for Silviculture. Can. J. For. Res. 2012, 42, 2011–2021. [CrossRef]

8. Andrus, R.A.; Hart, S.J.; Tutland, N.; Veblen, T.T. Future Dominance by Quaking Aspen Expected Following Short-Interval,
Compounded Disturbance Interaction. Ecosphere 2021, 12, e03345. [CrossRef]

9. Nigro, K.M.; Rocca, M.E.; Battaglia, M.A.; Coop, J.D.; Redmond, M.D. Wildfire Catalyzes Upward Range Expansion of Trembling
Aspen in Southern Rocky Mountain Beetle-Killed Forests. J. Biogeogr. 2022, 49, 201–214. [CrossRef]

10. Worrall, J.J.; Rehfeldt, G.E.; Hamann, A.; Hogg, E.H.; Marchetti, S.B.; Michaelian, M.; Gray, L.K. Recent Declines of Populus
Tremuloides in North America Linked to Climate. For. Ecol. Manag. 2013, 299, 35–51. [CrossRef]

11. Rosenblum, A. Altered Fire Regimes and the Persistence of Quaking Aspen in the Rocky Mountains: A Literature Review. Open J.
For. 2015, 5, 563–567. [CrossRef]

12. Krasnow, K.D.; Stephens, S.L. Evolving Paradigms of Aspen Ecology and Management: Impacts of Stand Condition and Fire
Severity on Vegetation Dynamics. Ecosphere 2015, 6, 1–16. [CrossRef]

13. Shinneman, D.J.; McIlroy, S.K. Climate and Disturbance Influence Self-Sustaining Stand Dynamics of Aspen (Populus Tremuloides)
near Its Range Margin. Ecol. Appl. 2019, 29, e01948. [CrossRef] [PubMed]

14. Picotte, J.J.; Dockter, D.; Long, J.; Tolk, B.; Davidson, A.; Peterson, B. LANDFIRE Remap Prototype Mapping Effort: Developing a
New Framework for Mapping Vegetation Classification, Change, and Structure. Fire 2019, 2, 35. [CrossRef]

15. Shepperd, W.D.; Smith, F.W.; Pelz, K.A. Group Clearfell Harvest Can Promote Regeneration of Aspen Forests Affected by Sudden
Aspen Decline in Western Colorado. For. Sci. 2015, 61, 932–937. [CrossRef]

16. Landhäusser, S.M.; Pinno, B.D.; Mock, K.E. Tamm Review: Seedling-Based Ecology, Management, and Restoration in Aspen
(Populus Tremuloides). For. Ecol. Manag. 2019, 432, 231–245. [CrossRef]

17. Ellenwood, J.R.; Krist, F.J.; Romero, S.A. National Individual Tree Species Atlas; FHTET-15–01; USDA Forest Service, Forest Health
Technology Enterprise Team: Fort Collins, CO, USA, 2015. Available online: https://www.fs.usda.gov/foresthealth/applied-
sciences/mapping-reporting/indiv-tree-parameter-maps.shtml (accessed on 31 March 2024).

https://doi.org/10.1016/j.gecco.2019.e00828
https://www.academia.edu/34572963/Aspen_ecology_and_management_in_the_western_United_States
https://www.academia.edu/34572963/Aspen_ecology_and_management_in_the_western_United_States
https://doi.org/10.5849/forsci.12-156
https://doi.org/10.1111/j.1365-2699.2009.02182.x
https://doi.org/10.1016/j.foreco.2017.08.008
https://doi.org/10.1139/x2012-143
https://doi.org/10.1002/ecs2.3345
https://doi.org/10.1111/jbi.14302
https://doi.org/10.1016/j.foreco.2012.12.033
https://doi.org/10.4236/ojf.2015.55050
https://doi.org/10.1890/ES14-00354.1
https://doi.org/10.1002/eap.1948
https://www.ncbi.nlm.nih.gov/pubmed/31188492
https://doi.org/10.3390/fire2020035
https://doi.org/10.5849/forsci.14-101
https://doi.org/10.1016/j.foreco.2018.09.024
https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/indiv-tree-parameter-maps.shtml
https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/indiv-tree-parameter-maps.shtml


Remote Sens. 2024, 16, 1619 20 of 21

18. Riley, K.L.; Grenfell, I.C.; Shaw, J.D.; Finney, M.A. TreeMap 2016 Dataset Generates CONUS-Wide Maps of Forest Characteristics
Including Live Basal Area, Aboveground Carbon, and Number of Trees per Acre. J. For. 2022, 120, 607–632. [CrossRef]

19. Landfire. Landfire (LF) 2016 Remap EVT Agreement Assessment. Available online: https://landfire.gov/remapevt_assessment.
php (accessed on 31 March 2024).

20. Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land Cover Classification in an Era of Big and Open Data: Optimizing
Localized Implementation and Training Data Selection to Improve Mapping Outcomes. Remote Sens. Environ. 2022, 268, 112780.
[CrossRef]

21. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial
Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

22. Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping:
A Review. Remote Sens. 2020, 12, 2291. [CrossRef]

23. Bayle, A.; Carlson, B.Z.; Thierion, V.; Isenmann, M.; Choler, P. Improved Mapping of Mountain Shrublands Using the Sentinel-2
Red-Edge Band. Remote Sens. 2019, 11, 2807. [CrossRef]

24. Clevers, J.G.P.W.; Gitelson, A. Using the Red-Edge Bands on Sentinel-2 for Retrieving Canopy Chlorophyll and Nitrogen Content.
In Proceedings of the European Space Agency, Frascati, Italy, 23–27 April 2012. (Special Publication) 2012; Volume ESA SP 707.

25. Lin, S.; Li, J.; Liu, Q.; Li, L.; Zhao, J.; Yu, W. Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge
Reflectance from Sentinel-2 to Estimate Gross Primary Productivity. Remote Sens. 2019, 11, 1303. [CrossRef]

26. Wong, C.Y.S.; D’Odorico, P.; Bhathena, Y.; Arain, M.A.; Ensminger, I. Carotenoid Based Vegetation Indices for Accurate Monitoring
of the Phenology of Photosynthesis at the Leaf-Scale in Deciduous and Evergreen Trees. Remote Sens. Environ. 2019, 233, 111407.
[CrossRef]

27. Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. Exploring the Potential of Land Surface Phenology and Seasonal Cloud Free
Composites of One Year of Sentinel-2 Imagery for Tree Species Mapping in a Mountainous Region. Int. J. Appl. Earth Obs. Geoinf.
2021, 94, 102208. [CrossRef]

28. Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification
in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [CrossRef]

29. Li, H.; Shi, Q.; Wan, Y.; Shi, H.; Imin, B. Using Sentinel-2 Images to Map the Populus Euphratica Distribution Based on the
Spectral Difference Acquired at the Key Phenological Stage. Forests 2021, 12, 147. [CrossRef]

30. Macintyre, P.; van Niekerk, A.; Mucina, L. Efficacy of Multi-Season Sentinel-2 Imagery for Compositional Vegetation Classification.
Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101980. [CrossRef]

31. Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794.
[CrossRef]

32. Barber, B.C. Review Article. Theory of Digital Imaging from Orbital Synthetic-Aperture Radar. Int. J. Remote Sens. 1985, 6,
1009–1057. [CrossRef]

33. Udali, A.; Lingua, E.; Persson, H.J. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in
Southern Sweden. Remote Sens. 2021, 13, 3237. [CrossRef]

34. Numbisi, F.N.; Numbisi, F.N.; Coillie, F.V.; Wulf, R.D. Multi-date sentinel1 sar image textures discriminate perennial agroforests
in a tropical forest-savannah transition landscape. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–1, 339–346.
[CrossRef]
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