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Abstract: Accurate and punctual precipitation data are fundamental to understanding regional
hydrology and are a critical reference point for regional flood control. The aims of this study are to
evaluate the performance of three widely used precipitation datasets—CRU TS, ERA5, and NCEP—as
potential alternatives for hydrological applications in the Bahr el Ghazal River Basin in South Sudan,
Africa. This includes examining the spatial and temporal evolution of regional precipitation using
relatively accurate precipitation datasets. The findings indicate that CRU TS is the best precipitation
dataset in the Bahr el Ghazal Basin. The spatial and temporal distributions of precipitation from CRU
TS reveal that precipitation in the Bahr el Ghazal Basin has a clear wet season, with June–August
accounting for half of the annual precipitation and peaking in July and August. The long-term
annual total precipitation exhibits a gradual increasing trend from the north to the south, with the
southwestern part of the Basin having the largest percentage of wet season precipitation. Notably,
the Bahr el Ghazal Basin witnessed a significant precipitation shift in 1967, followed by an increasing
trend. Moreover, the spatial and temporal precipitation evolutions reveal an ongoing risk of flooding
in the lower part of the Basin; therefore, increased engineering counter-measures might be needed for
effective flood prevention.

Keywords: remotely sensed precipitation; evaluation; spatial and temporal variability

1. Introduction

Precipitation assumes a pivotal role in the intricate dynamics of the near-surface water
cycle system, exerting a profound influence on regional water resources [1,2]. A thorough
comprehension of the spatial and temporal distribution of precipitation is imperative
for diverse applications, spanning flood and drought control, agricultural management,
production and livelihood, and ecological monitoring [3–7], among others. Amid the esca-
lating impacts of contemporary climate change, the African continent confronts heightened
vulnerability to its adverse effects. Heatwaves, intense rainfall, floods, tropical cyclones,
and prolonged droughts exact a devastating toll on Africa’s economic development and
the well-being of its inhabitants [8]. Therefore, acquiring precise and timely precipita-
tion information with elevated spatial and temporal resolution in this region is of utmost
importance. Reliable precipitation data can effectively underpin flood prediction and
control endeavors [9–11]. Nonetheless, the accurate estimation of precipitation remains
a formidable challenge due to its discontinuity and high variability in both time and
space [12,13].

The principal and most direct modality for quantifying precipitation involves es-
tablishing a network of ground-based observations utilizing rain gauges, renowned for
their generally precise readings. However, the accuracy of these observations remains
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susceptible to diverse natural and perceived factors, encompassing wind, evaporation,
human interference, and instrument degradation [14,15]. Moreover, the dearth of ef-
ficacious precipitation observation networks in African nations presents a formidable
challenge, adding complexity to the acquisition of spatially continuous precipitation
information [16].

With advancements in Earth observation, data transmission, and computational tech-
nologies, remotely sensed precipitation data have emerged as a pivotal data source for
hydrological studies, distinguished by their advantages in expansive coverage and ele-
vated temporal and spatial resolution [17]. This genre of precipitation estimation primarily
emanates from the ground-based Global Positioning System (GPS), ground-based weather
radar, and satellites. While ground-based radar observation is encumbered by the scarcity
of stations and topographical conditions, rendering uniform precipitation observation
across extensive areas challenging, the satellite inversion of precipitation adeptly mitigates
this constraint. Satellite precipitation inversion relies on various principles, including
visible light [18–20], infrared [21,22], microwave [23–25], and a confluence of multiple
sensors [26,27]. Through these satellite precipitation inversion algorithms, continuous
precipitation data can be derived. This methodology augments the capacity to discern pre-
cipitation patterns across a vast geographical expanse, surmounting constraints associated
with ground-based observations.

Nonetheless, the precision of satellite precipitation inversion encounters impediments
stemming from constraints in physical principles and algorithms, necessitating endeav-
ors to augment accuracy. The amalgamation of precipitation products from diverse data
sources emerges as a judicious strategy for refining precision. Consequently, a multi-
source precipitation data fusion model is formulated within the theoretical framework
of machine learning algorithms and geostatistics, employing auxiliary variables such as
topography, latitude, and longitude to enhance the precision of remotely sensed precipi-
tation. Reanalysis data, integrating ground station observations, satellite remote sensing,
and numerical model simulations, serve as an amalgamated dataset. Presently, several
reanalysis precipitation products find widespread use, encompassing the National Centers
for Environmental Prediction’s reanalysis (NCEP) in the U.S. [28], the Japan Reanalysis
for 55 Years (JRA-55) [29], the U.K.‘s National Center for Atmospheric Science Center
reanalysis [30], and the European Center for Medium-Range Weather Forecasts reanaly-
sis (ERA-Interim) [31], among others. The incorporation of such reanalysis data further
contributes to refining the precision of precipitation estimates through comprehensive
data integration.

Reanalysis data, while considered optimal, may not precisely mirror atmospheric
conditions, necessitating a thorough comprehension of their performance prior to practi-
cal application. Researchers frequently employ rain gauge data from diverse regions to
scrutinize the performance of precipitation products and guide their practical implementa-
tion. For instance, Jiao et al. [32] assessed the spatial and temporal performance of ERA5
precipitation data from 1979 to 2018, utilizing observations from gridded surface weather
stations across China. Their findings indicated that ERA5 adeptly captured interannual
and seasonal precipitation patterns, manifesting correlation coefficients ranging from 0.796
to 0.945. However, ERA5 marginally overestimated summer precipitation. The study
underscored the impact of topographic distribution and climatic zonation on the accu-
racy of precipitation products. In a comparative analysis of MERRA, JRA-25, CFSR, and
ERA-Interim performance in India, Kishore et al. [33] discerned that ERA-Interim exhibited
commendable comparability, followed by CFSR, NASA-MERRA, and JRA-25. Similarly,
Huang et al. [34] comprehensively evaluated five reanalysis datasets in reproducing East
Asian summer monsoon precipitation, revealing MERRA and ERA-Interim as generally the
most reproducible. While the five reanalysis datasets proficiently replicated climatic and
interannual variability, they tended to overestimate the frequency of nonrainfall, with JRA-
25 and NCEP2 overestimating storm frequency. ERA-Interim and MERRA were lauded
for better characterizing interdecadal variability around the mid-1990s. Concerning linear
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trends in precipitation, only MERRA reasonably reproduced the trend of escalating pre-
cipitation in southern China and the western Pacific, alongside diminishing precipitation
in the central and southern peninsulas. Analogous studies evaluating the applicability of
MERRA data have been conducted across diverse regions, including Iran, India, Turkey,
Australia, and North America [35–41]. Analyzing these studies underscores the variability
in the applicability of different datasets across diverse regions.

Nonetheless, extant assessment studies of reanalysis datasets lack sufficient compre-
hensiveness. The majority of these inquiries concentrate on regions abundant in precip-
itation data, with fewer assessments undertaken in areas characterized by data scarcity.
Paradoxically, these regions already grapple with floods and urgently require substan-
tial precipitation information to effectively address natural disasters such as floods and
droughts induced by climate change. Consequently, there exists a compelling need to
ascertain the performance of reanalyzed datasets in these critical areas. South Sudan has
surfaced as one of the most vulnerable countries globally. United Nations reports under-
score that extreme weather events in South Sudan engender natural resource degradation,
diminished agricultural yields, food insecurity, and livelihood losses. Climate change has
exacerbated weather variability, subjecting the country to heavy rains, seasonal floods,
and droughts. Consecutive years of flooding have submerged two-thirds of South Sudan,
with the northern city of Bentiu in the Bahr el Ghazal River Basin being the worst affected.
This renders the acquisition of high-quality precipitation information pivotal. Hence, this
paper focuses on appraising the performance of CRU TS, ERA5, and NCEP data in the
Bahr el Ghazal River Basin in Africa. The primary objective is to assess and juxtapose the
overall efficacy of CRU TS, ERA5, and NCEP in estimating precipitation across regional
and multiple time scales (annual, seasonal, and monthly) and to scrutinize the spatial and
temporal trends of precipitation in the Bahr el Ghazal River Basin utilizing the most adept
datasets. To the best of our knowledge, this paper constitutes the inaugural study evaluat-
ing reanalysis data in the Bahr el Ghazal River Basin, concurrently exploring precipitation
trends in the region. This study furnishes invaluable insights for the discerning utilization
of reanalyzed precipitation data in the Bahr el Ghazal River Basin, offering pivotal support
for flood control in the northern part of South Sudan.

2. Materials and Methods
2.1. Study Area

The study area encompasses the Bahr el Ghazal River Basin, whose geographical
location is illustrated in Figure 1a. The Bahr el Ghazal serves as a tributary to the left bank
of the White Nile River, spanning a length of 716 km and embracing a watershed area
of 520,000 km2. Originating from the northern slopes of the Azande Plateau, the Jur and
Tonj Rivers commence their course in southwestern Sudan, meandering northward into
Lake Ambadi before assuming the nomenclature Bahr el Ghazal. The river persists in its
northeasterly trajectory, merging with the Bahr el-Arab River and ultimately joining the
White Nile River, contributing to the replenishment of Lake Noor. Despite the prevalence
of rainfall in the Basin, the river imparts a relatively modest water volume to the White
Nile, a consequence of significant water losses en route attributed to evaporation and
swamp injection.

Figure 1b delineates the climatic types within the Bahr el Ghazal Basin. The northern
segment experiences a tropical desert climate with minimal precipitation, giving rise to the
Shatt al-Arab River, characterized by a notably low flow rate. The central part manifests a
tropical semi-arid climate distinguished by perennially high temperatures and droughts,
receiving less than 700 mm of annual rainfall, predominantly during the wet season, with
an average daily temperature ranging from 24 to 30 ◦C. In contrast, the southern part
features a savannah climate with an average annual temperature of approximately 25 ◦C,
marked by elevated temperatures throughout the year and distinct dry and wet seasons,
with annual precipitation typically ranging from 700 to 1000 mm. In South Sudan, the
Bahr el Ghazal Basin predominantly experiences a savannah climate characterized by
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high humidity and substantial rainfall. Over the past four years, intensified rainfall has
resulted in the inundation of all oil fields and residences located in the lower Bahr el
Ghazal region.
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Figure 1. (a) Geographic location of the Bahr el Ghazal Basin; (b) spatial distribution of climate types
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2.2. Datasets
2.2.1. Observational Data

The study area pertains to a classification of regions marked by an acute paucity of
data, distinguished by a dearth of observational records. The research team acquired the
sole accessible measured precipitation data for the cities of WAU and MALAKAL from
the Civil Aviation Authority of South Sudan. They were measured by the South Sudan
Civil Aviation Authority, but due to the timing of the construction of the airports and
a war, this resulted in different periods of data. Precisely, WAU’s dataset encompasses
monthly precipitation data from 1961 to 2017, while MALAKAL’s dataset spans 1961 to
2013, each affording valuable insights into the documented precipitation patterns within
these locales.

2.2.2. CRU TS

CRU TS stands as one of the most extensively utilized climate datasets, meticulously
curated by the National Centre for Atmospheric Science (NCAS) in the United Kingdom.
This dataset provides monthly data at a 0.25◦ resolution, encompassing global land surfaces
from 1901 to 2022. The dataset encompasses 10 variables derived from near-surface mea-
surements, including temperature (mean, minimum, maximum, and diurnal temperature
range), precipitation (total amount and rainy days), humidity (e.g., vapor pressure), frost
days, cloud cover, and potential evapotranspiration. In this study, the CRU TS v4.07 data
version was utilized (https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on 15 Septem-
ber 2022)).

https://crudata.uea.ac.uk/cru/data/hrg/
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2.2.3. ERA5

ERA5 stands as the fifth-generation atmospheric reanalysis dataset of global cli-
mate, meticulously crafted by the European Centre for Medium-Range Weather Forecasts
(ECMWF), spanning the temporal expanse of January 1950 to the present day. ERA5
boasts a horizontal resolution of 0.1◦ × 0.1◦. Developed by ECMWF’s Copernicus Climate
Change Service (C3S), ERA5 furnishes hourly estimates for a spectrum of atmospheric,
land, and ocean climate variables. These estimations encapsulate the entire Earth’s surface
on a 30 km grid, leveraging 137 height levels from the surface up to 80 km to compre-
hensively capture atmospheric conditions. Uncertainty information for all variables is
incorporated when adjusting spatial and temporal resolutions. ERA5 seamlessly inte-
grates model data with global observations, fashioning a dataset that is globally compre-
hensive and coherent, outperforming its predecessor, the ERA-Interim reanalysis (https:
//cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means (ac-
cessed on 15 September 2022)).

2.2.4. NCEP

The NCEP/NCAR Reanalysis dataset (referred to as NCEP henceforth) is collabora-
tively produced by the National Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR) in the United States. Employing state-
of-the-art global data assimilation systems and a comprehensive database, they execute
quality control and assimilation processing on observations sourced from various channels,
including surface, ships, radiosondes, wind profilers, aircraft, and satellites, among others.
This meticulous process yields a comprehensive reanalysis dataset encompassing a diverse
array of variables, featuring extensive spatial coverage and extending over a prolonged
period (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 15
September 2022)).

2.3. Methods
2.3.1. Data Preprocessing

Initially, a preliminary analysis was executed on the two acquired datasets, encom-
passing the standardization of coordinate systems and time systems.

Subsequently, spatial matching comparisons were performed on the CRU TS, ERA5,
and NCEP data. A common method is to compare the grid values with the average of
the measurements within the grid [42,43]. However, due to the limited number of actual
measurement points (only two) and their considerable distance apart, this study employed
interpolation methods for the comparison between grid values and actual measurements.

For spatial interpolation of precipitation, the inverse distance squared weighting
method took precedence [44]. In this method, the value at the interpolated location is
derived through a weighted average of neighboring points, with the weights determined by
a distance function. Common distance metrics include Euclidean distance and Manhattan
distance, among others. In this study, the reciprocal of the square of the Euclidean distance
was selected as the weighting factor, and the calculation method is as follows:

Calculate the distances between the interpolation point and the four reference points:

di =

√
(x − xi)

2 + (y − yi)
2 (1)

Calculate the weights:

wi =
1/di

2

∑i=4
i=1 1/di

2 (2)

Calculate the value of the interpolation point:

P(x,y) =
i=4

∑
i=1

wi ∗ P(xi, yi) (3)

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html


Remote Sens. 2024, 16, 1638 6 of 17

where x, y are the coordinates of the interpolated point, and xi, yi are the reference coordi-
nate points. P is the value of the coordinate point.

2.3.2. Evaluation Metrics

We employed the linear correlation coefficient for a comparative analysis of the simu-
lation accuracy of reanalysis data to observational data and utilized relative bias, root mean
square error, and mean absolute deviation to assess the level of deviation of reanalysis
data from observational data [45,46]. The formula for calculating the correlation coefficient
between observed and reanalyzed data for a specific variable is

R =
∑n

i=1 (pi − p)(oi − o)√
∑n

i=1 (pi − p)2(oi − o)2
(4)

Relative bias is calculated as

BIAS =
∑n

i=1
pi−oi

n

∑n
i=1

oi
n

× 100 (5)

Root Mean Square Error (RMSE) is calculated as

RMSE =

√
∑n

i=1[(pi − p)(oi − o)]2

n
(6)

Mean Absolute Error (MAE) is calculated as

MAE = ∑n
i=1|pi − oi|/n (7)

where n is the effective sample size; p and o represent reanalysis data and observational
data, respectively (mm).

The Taylor diagram succinctly encapsulates the degree of concordance between statis-
tical reanalysis data and observed values. Rooted in the law of cosines, the Taylor diagram
delineates three key statistical parameters—correlation coefficient, root mean square error,
and standard deviation—on a singular graph. The observed values are positioned as points
along the x-axis, one unit away from the origin. The radial length from the origin signifies
the variance ratio between reanalysis data and observed values, portraying the likeness
in dispersion between reanalysis and observed values. The cosine of the azimuth denotes
the correlation coefficient, while the distance from the reanalysis point to the observa-
tional point signifies the root mean square error between reanalysis and observation. A
shorter distance from the observational point indicates that the reanalysis data are in closer
proximity to the observed values.

3. Results
3.1. Comparative Assessment of the Three Datasets with Observed Data on Time Scales

We assessed the overall performance of CRU TS, ERA5, and NCEP by synthesizing
and comparing the congruence of CRU TS, ERA5, and NCEP data with the observed
precipitation data of WAU and MALAKAL.

Figure 2 illustrates the total monthly precipitation for WAU and MALAKAL. It is
evident that all three datasets proficiently replicate the dry and wet precipitation trends
in the study area. CRU TS precipitation exhibits a peak in WAU from January to August
and a decline from September to December. It is slightly lower than observed values in
MALAKAL from January to June and in November and December, while it is slightly
higher than observed values from July to October. ERA5 precipitation is notable during
the dry season in WAU and decreases from June to September. Overall, it is larger in
the wet season, with the most pronounced increase in October; simulated precipitation
exceeds observations in all months of the year at MALAKAL. NCEP shows a smaller
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amount than observations in January–March and September–December at WAU and
larger amounts than observations in April–August. In MALAKAL, NCEP is smaller than
observations from January to June and October to December and larger than observations
in July–September. By comparing and analyzing the fitted curves of monthly precipitation
for the three datasets with the observations, we can see that the CRU TS precipitation
data demonstrate a more realistic representation and superior estimation ability at the
monthly scale.
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The detailed evaluation results for the three datasets at the two locations are listed
in Table 1, and the standard deviation, correlation coefficient, and RMSE are placed in a
Taylor diagram (Figure 3) to provide a more intuitive comparison of the three datasets with
the observations.

Table 1. Assessment results for the three reanalyzed datasets.

Dataset Evaluation
Metrics

WAU MALAKAL

Monthly Dry
Season

Wet
Season Annual Monthly Dry

Season
Wet

Season Annual

CRU TS

R 0.953 0.829 0.912 0.907 0.934 0.816 0.882 0.893
BIAS (%) 3.02 15.86 1.69 3.02 −0.64 −23.08 0.62 −0.64

RMSE (mm) 29.195 40.399 100.118 112.213 27.033 27.094 86.966 91.853
MAE (mm) 17.386 31.732 74.047 82.829 15.238 19.271 66.084 71.834

ERA5

R 0.908 0.462 0.772 0.700 0.870 0.260 0.552 0.535
BIAS (%) 5.07 42.58 1.19 5.07 17.94 88.84 13.95 17.94

RMSE (mm) 40.369 76.263 148.018 187.398 41.287 66.500 194.838 226.811
MAE (mm) 26.498 60.216 118.591 149.966 26.452 51.473 164.816 197.543

NCEP

R 0.929 0.775 0.849 0.850 0.904 0.793 0.843 0.864
BIAS (%) 3.36 1.20 3.59 3.36 −2.10 −28.53 −0.61 −2.10

RMSE (mm) 35.712 43.099 131.007 139.406 32.411 29.162 99.912 104.840
MAE (mm) 22.051 34.279 101.780 110.039 18.508 20.378 79.112 82.479

On the monthly scale, both CRU TS and NCEP offer accurate estimates of precip-
itation for the two locations, with CRU TS demonstrating superiority. On the seasonal
scale, only CRU TS performs satisfactorily, with correlation coefficients between sim-
ulated and observed values in the dry and wet seasons above 0.8, particularly in the
wet season, where the correlation coefficients are around 0.9. In terms of bias, CRU TS
shows a bias of 15.86% in precipitation in the dry season of WAU, a bias of 1.69% in
the wet season, and a bias of −23.08% in precipitation in the dry season of MALAKAL.
The deviation is −23.08% in the dry season and 0.62% in the wet season. A higher
deviation in the dry season can be attributed to less precipitation. The deviation also
indicates that CRU TS overestimates precipitation in both the dry and wet seasons at
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WAU and underestimates it in the dry season while overestimating it in the wet season
at MALAKAL.
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On the annual scale, again, CRU TS and NCEP exhibit superior modeling capabilities
at both locations, with correlation coefficients exceeding 0.8 and relative deviations within
±3%. The Taylor diagrams underscore that CRU TS has a better estimation ability than
ERA5 and NCEP, making it more suitable for the study.

In conclusion, given the availability of only local monthly scale data and only two
points of precipitation data, comparisons are limited to the monthly scale and two points.
Based on these comparisons, CRU TS is deemed more applicable in WAU and MALAKAL.
Consequently, it is extended to the Bahr el Ghazal Basin to study the characteristics of the
spatial and temporal distribution of precipitation in the Bahr el Ghazal Basin.

3.2. Comparative Assessment of Three Datasets with Observations at Spatial Scales

CRU TS provides precipitation data with a spatial resolution of 0.25◦ × 0.25◦. In this
study, the Kriging interpolation algorithm was utilized to interpolate the spatial resolution
to 0.1◦ × 0.1◦. Figure 4a,b display the spatial distribution of the multi-year average
precipitation in the Bahr el Ghazal River Basin from CRU TS for the years 1961–2022 at
resolutions of 0.25◦ × 0.25◦ and 0.1◦ × 0.1◦.

The spatial distribution maps reveal a decrease in precipitation from north to south.
The northern region, characterized by a desert climate, experiences multi-year average
precipitation of less than 400 mm. The central region, with a tropical monsoon climate,
exhibits multi-year average precipitation ranging from 400 to 800 mm. The southern
region, featuring a tropical grassland climate, shows precipitation levels between 800 and
1800 mm. Figure 4c,d illustrate the multi-year average precipitation during the dry season
and wet season in the Bahr el Ghazal River Basin from CRU TS for the years 1961–2022. A
comparison highlights that precipitation is more concentrated during the wet season. In the
dry season, precipitation is concentrated in the southern part of the Bahr el Ghazal River
Basin, ranging from 100 to 400 mm, while in the wet season, precipitation is concentrated
in the southeast, ranging from 900 to 1300 mm.
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Figure 5 illustrates the spatial distribution of monthly average precipitation in the
Bahr el Ghazal River Basin from CRU TS for the years 1961–2022. According to the spatial
distribution map, during the dry season (November to April of the following year), the
northern region of the Bahr el Ghazal River Basin receives almost no precipitation, and
even during the rainy season, the monthly average precipitation in the northern region
remains within 125 mm. In the central region, there is minimal precipitation during the dry
season, and during the rainy season, the monthly average precipitation ranges between
75 and 175 mm. The southern region experiences scarce precipitation during the dry
season, averaging around 30 mm, with precipitation concentrating during the rainy season,
averaging between 175 and 260 mm. Based on the spatial distribution of precipitation, it
can be observed that precipitation follows a three-segment distribution according to climate
zones. Therefore, for the analysis of area-averaged precipitation in the Bahr el Ghazal River
Basin, the region is divided into three zones—arid desert (AD), tropical monsoon (AS), and
tropical savannah (TS)—based on climate distribution. Trend analyses are then conducted
for the area-averaged precipitation in each zone.
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3.3. Bahr el Ghazal River Basin Precipitation Trend Analysis

In this section, the precipitation trends in the Bahr el Ghazal River Basin are analyzed
using CRU TS precipitation data. Figure 6 displays the annual precipitation series for
different climatic zones in the Bahr el Ghazal River Basin from 1901 to 2022. The precipita-
tion increases gradually from north to south in all three climatic zones, and they exhibit
similar trends. Pettitt’s test combined with the Mann–Kendall change point test [47,48]
is employed to examine the significant change points in the precipitation series for the
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three climatic zones. The results indicate that all three precipitation series experienced a
significant (α = 0.05) change in 1967.
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Figure 6. The annual precipitation series for different climatic zones in the Bahr el Ghazal River Basin
from 1901 to 2022.

Further trend analyses are conducted using the Cox–Stuart test and the Mann–Kendall
test [49–51] for the precipitation series in the three climatic zones from 1967 to 2022. The
results reveal a significant (α = 0.05) increasing trend in all three precipitation time series,
with an annual increase of 1.51 mm in arid desert (AD), 2.53 mm in tropical monsoon (AS),
and 1.48 mm in tropical savannah (TS). The climatic zone with a tropical monsoon climate
exhibits the most pronounced increase.

Figure 7 shows the monthly and seasonal precipitation processes for the three climate
zones, and it is clear from the monthly precipitation processes that the savannah receives
more precipitation than the tropical monsoon and the tropical desert. The seasonal pre-
cipitation of the three climate zones was then analyzed, and it can be found that, in the
dry season, the precipitation of AD and AS showed a non-significant (α = 0.05) increasing
trend, and the precipitation of the TS region showed no changing trend. In the wet season,
all three climatic zones showed a significant (α = 0.05) decreasing trend.
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Figure 8 exhibits the spatial distribution of the decade-average annual precipitation
from 1967 to 2022. It can be observed that the 800 mm precipitation line gradually shifts
northward, indicating an increase in precipitation in the northern region and a trend toward
wetter conditions.
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4. Discussion
4.1. Applicability of Reanalysis Datasets

Accurate precipitation data are essential for understanding spatial and temporal vari-
ability and for implementing effective flood control measures. In regions with limited
precipitation data, precipitation reanalysis data are extensively utilized. Previous stud-
ies have critically examined the performance of diverse datasets in varied geographical
contexts. Salvacion et al. [52] noted satisfactory outcomes for both original CRU and
downscaled CRU in replicating monthly precipitation patterns in the Philippines. Shi
et al. [53] assessed the efficacy of gridded CRU TS precipitation data in elucidating the
spatiotemporal characteristics of precipitation in the Three Rivers Source Region (TRHR)
from 1961 to 2014. Their findings suggested that CRU TS yielded lower estimates for annual
precipitation compared with point rainfall records from 29 meteorological stations but
exhibited comparable variability.

Jiang et al. [54] highlighted notable relative biases in ERA5 estimates of precipitation
over mainland China compared with satellite precipitation products. Steinkopf et al. [55]
conducted a meticulous comparison of ERA5 and ERA-Interim precipitation in Africa, reveal-
ing substantial correlations between ERA5, and observed results in interannual variability
spatial patterns across all seasons. Zhan et al. [56] evaluated NCEP in sub-Saharan Africa
from 1979 to 2012, demonstrating that the reanalysis precipitation dataset could effectively
capture the long-term statistical characteristics of drought spatiotemporal patterns.

While these researchers have explored the applicability of CRU TS, ERA5, and NCEP
in various regions, our study contributes by comparing their performance in simulating
rainfall in the Bahr el Ghazal River Basin in Africa. Given the scarcity of precipitation
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data in this region and the occurrence of downstream flooding, simulating precipitation is
imperative. Our study, building on prior research, utilizes several statistical indicators to
compare the simulation performance of CRU TS, ERA5, and NCEP reanalysis precipitation
with limited data from two local stations.

The results indicate that CRU TS demonstrates robust applicability in the Bahr el
Ghazal River Basin. For instance, at the WAU station, monthly, wet season, and annual
precipitation deviations are approximately 3%, with simulated values slightly exceeding
observed values. At the MALAKAL station, monthly, wet season, and annual precipitation
deviations are within 1%, with simulated values slightly lower than observed values. A
study by Assamnew et al. [57] evaluating the performance of ERA5 in simulating East
African rainfall used CRU TS as a reference, signifying its representativeness in East Africa.
Akinsanola et al. [58] assessed five different precipitation products for their ability to
characterize African rainfall, considering GPCC, CRU, and TRMM the most outstanding
datasets suitable for African precipitation assessment.

In summary, our study, alongside prior research, suggests that CRU TS is well suited
for simulating precipitation in the Bahr el Ghazal River Basin.

4.2. Characterization of the Spatial and Temporal Evolution of Precipitation in the Bahr el
Ghazal Basin

Research on precipitation in the Bahr el Ghazal River Basin is limited, yet precipitation
data for this Basin hold significant (α = 0.05) importance for flood control, drainage, and
secure oil field operations in South Sudan. In the current context of African precipita-
tion research, Ongoma et al. [59] analyzed the spatiotemporal variability of East African
precipitation from 1951 to 2010 using the Climate Research Unit (CRU) monthly rainfall
and Global Precipitation Climatology Centre (GPCC) rainfall datasets. They found both
decreasing and increasing trends, with substantial declines in rainfall from March to May.
The 1960s showed the highest annual rainfall change rate, reaching −21.76 mm/year. Omoj
et al. [60] studied the distribution of precipitation in South Sudan using data from five sta-
tions, including WAU, MALAKAL, and JUBA. Their findings indicated that South Sudan’s
rainfall is unimodal, with peaks in July and August. June to August (JJA) constitutes the
main rainy season, contributing over 50% of annual rainfall. This aligns with our study’s
results, where Bahr el Ghazal River Basin precipitation primarily concentrates in the wet
season from May to October, with the highest peak in July and August. Precipitation from
June to August accounts for half of the annual precipitation.

In our study, the Bahr el Ghazal River Basin was divided into three regions based on
climatic differences: tropical desert (AD), tropical monsoon (AS), and tropical savannah
(TS). We analyzed their temporal trends and found that, after a breakpoint in 1967, all
regions exhibited an increasing trend. The Tropical Monsoon region showed the most
pronounced growth at 2.53 mm/year. Hamadalnel et al. [61] assessed the historical trend
of Sudan’s monthly rainfall from 1960 to 2019 using data from 22 locations. The results
showed a growth rate of 0.0403 mm/season during 1990–2019. Since the northern part
of the Bahr el Ghazal River is located in Sudan, the results of Hamadalnel et al. [61] are
somewhat relevant to our study, confirming an increasing trend. In terms of spatial change
trends, the northward shift of the 800 mm precipitation line indicates a moistening trend in
the northern region. In the context of global climate change, increased extreme weather
events alter climate characteristics in some regions. Our study suggests that the impact of
climate change on the Bahr el Ghazal River Basin manifests in increased precipitation in
the tropical monsoon region.

5. Conclusions

Precipitation stands as a fundamental facet of the hydrological cycle, and alterations
in precipitation patterns wield a profound influence on the distribution of surface water.
Consequently, obtaining precise and timely information regarding precipitation is imper-
ative for comprehending hydrological processes and averting water-related calamities.



Remote Sens. 2024, 16, 1638 14 of 17

In data-scarce regions like the Bahr el Ghazal River Basin in Africa, fine spatiotemporal
resolution and enhanced reanalysis data via numerical simulations emerge as indispensable
tools for deciphering local precipitation patterns. Thus, the evaluation of the applicability
of reanalysis data in the Bahr el Ghazal River Basin assumes paramount importance.

This study meticulously scrutinized the performance of the CRU TS, ERA5, and NCEP
reanalysis datasets, leveraging observed precipitation data from WAU and MALAKAL.
The assessment unfolded across four evaluation metrics and various temporal scales en-
compassing monthly, seasonal, and annual dimensions. Additionally, an in-depth analysis
of the spatiotemporal distribution characteristics of precipitation in the Bahr el Ghazal
River Basin was conducted, leading to the following conclusions:

1. Comparative analysis unveiled that the CRU TS dataset excels in simulating precipita-
tion characteristics in the Bahr el Ghazal River Basin, particularly at monthly, seasonal,
and annual scales.

2. Temporal distribution analysis of precipitation in the Bahr el Ghazal River Basin high-
lighted a concentration during the wet season from May to October, with the zenith
of precipitation occurring in July and August. Contributions to annual precipitation
are notably prominent from June to August.

3. Spatial distribution analysis delineated spatial variability in precipitation across the
Bahr el Ghazal River Basin. During the dry season, precipitation is virtually absent
throughout the entire Basin. In the wet season, precipitation gradually intensifies
from north to south, with scarcity in the northern region and concentration in the
southwestern part of the Basin.

4. Based on climate zones, the Bahr el Ghazal River Basin was stratified into three regions.
Each of these regions experienced a significant breakpoint in precipitation in 1967,
followed by a discernible upward trajectory in precipitation from 1967 to 2022.

5. Spatial trend analysis showcased a northward shift in the 800 mm precipitation line,
signifying a moistening trend in the northern part of the Bahr el Ghazal River Basin.

In summation, CRU TS exhibits commendable applicability for simulating precip-
itation in the Bahr el Ghazal River Basin, rendering it well suited for unraveling the
spatiotemporal distribution of precipitation. Nevertheless, it is worth acknowledging
that other datasets not included in this comparative analysis may potentially offer more
nuanced depictions of precipitation in the Bahr el Ghazal River Basin. To the best of our
knowledge, this study stands as the inaugural endeavor to compare the applicability of
reanalysis precipitation data in the Bahr el Ghazal River Basin and scrutinize its spatiotem-
poral distribution. It adeptly addresses a research void in precipitation studies within the
Bahr el Ghazal River Basin, supplying invaluable guidance for flood control initiatives in
the region and providing pertinent references for downstream South Sudan in the realms
of flood prevention, drainage, and efficient oilfield exploitation.
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