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Abstract: This paper presents a Piezoelectric micromechanical ultrasonic transducer (PMUT) based on
a Pt/ScAlN/Mo/SiO2/Si/SiO2/Si multilayer structure with a circular suspension film of scandium
doped aluminum nitride (ScAlN). Multiphysics modeling using the finite element method and
analysis of the effect of different Sc doping concentrations on the resonant frequency, the effective
electromechanical coupling coefficient (k2

eff) and the station sensitivity of the PMUT cell are performed.
The calculation results show that the resonant frequency of the ScAlN-based PMUT can be above
20 MHz and its k2

eff monotonically rise with the increasing doping concentrations in ScAlN. In
comparison to the pure AlN thin film-based PMUT, the static receiving sensitivity of the PMUT
based on ScAlN thin film with 35% Sc doping concentration is up to 1.61 mV/kPa. Meanwhile, the
static transmitting sensitivity of the PMUT is improved by 152.95 pm/V. Furthermore, the relative
pulse-echo sensitivity level of the 2 × 2 PMUT array based on the Sc doping concentration of 35%
AlN film is improved by 16 dB compared with that of the cell with the same Sc concentration.
The investigation results demonstrate that the performance of PMUT on the proposed structure
can be tunable and enhanced by a reasonable choice of the Sc doping concentration in ScAlN
films and structure optimization, which provides important guidelines for the design of PMUT for
practical applications.

Keywords: PMUT; Sc-doped AlN; multiphysics modeling; finite element method

1. Introduction

Ultrasonic transducers have been widely used in medical imaging, nondestructive
testing, rangefinders, gesture recognition, fingerprint systems, etc. [1–4]. A well-established
technology in the medical imaging market is the conventional ultrasound transducer,
which uses body piezoelectric actuation. However, conventional ultrasound transducers
are large, poorly acoustically matched and unsuitable for two-dimension (2D) arrays [5].
With the increasing advancement in microelectromechanical system (MEMS) technology,
micromechanical ultrasonic transducers (MUTs) have gained more and more attention.
The piezoelectric micromachined ultrasonic transducers (PMUTs) are driven by applying
an excitation voltage between the top and bottom electrodes of the piezoelectric layer.
Compared with capacitive micromechanical ultrasonic transducers (CMUTs), PMUTs have
the advantages of a no dc bias, a higher frequency, improved impedance matching and
an easy array formation [6,7]. The PMUTs are widely used in industrial and biomedical
applications such as biomedical imaging and fingerprint sensing [8]. In addition, PMUTs
also have the advantages of miniaturization, low power consumption and complementary
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metal-oxide semiconductor (CMOS) compatibility. In particular, PMUTs are easy to form
arrays. Compared with single-element transducers, the convenience, high frame rate and
dynamic focusing capabilities of array transducers make them more widely applicable for
clinical diagnosis and treatment [9].

With the expanding interest in large PMUT arrays, there exists a need for practical
and accurate simulation tools to aid in the design process. Smyth et al. [10] adopted a
Green’s function approach to solve the axisymmetric vibration modes of the circular plate
and verified the modes with a PMUT having a radius of 400 µm. Dangi et al. [11] reported
a system-level approach based on analytical lumped models for PMUTs below 1 MHz.
The traditional plate theory is only suitable for low-frequency PMUT elements with a
large radius and pitch and requires a lot of computing power. On this basis, Lu et al. [12]
established a 2D axismetrical model to simulate the electromechanical acoustic behavior of
PMUT without substrate. Simplifying the 2D axisymmetric model of cylindrical PMUT
saves computational memory and time. Considering the resonant frequencies and modal
shapes changed by various geometric combinations, 2D numerical simulation cannot
accurately analyze complex structural units or arrays. The design of PMUT involves
acoustic, solid mechanics, electrical and other coupling fields, and the traditional model
is no longer applicable. In our previous work, we established a PMUT model based on
(1 − x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT) using the finite element method (FEM), and
analyzed the influence of the shape of the top electrode on the performance of PMUT [13]. It
is demonstrated that FEM can be used to analyze and optimize PMUT cells and arrays with
complex structures involving multi-field coupling. Therefore, the multiphysics coupled
PMUT is simulated by FEM in this paper to solve and study the transceiver sensitivity and
dynamic characteristics.

It is known that the performance of ultrasonic transducers is mostly determined
by the used piezoelectric materials. Typically, the fabrication of ultrasound transducers
calls for its piezoelectric materials possessing high piezoelectric coefficient, high effective
electromechanical coupling coefficients (k2

eff) and so on. Currently, the most commonly
used piezoelectric materials in the medical ultrasonic transducer market are lead zirconate
titanate (PZT) and aluminum nitride (AlN) [14]. The PZT has high dielectric constant,
however, its preparation process contains lead, so it is gradually being replaced in today’s
environmental protection. PZT also has the disadvantages of high processing tempera-
ture, low deposition rate and incompatibility with COMS. Compared to PZT, the lead-free
piezoelectric material AlN has the characteristics of low cost, a wide source of raw mate-
rials and compatibility with COMS, but also, weak piezoelectricity and small k2

eff [15,16].
The key material properties of PZT and AlN are shown in Table 1. Shelton et al. [17]
studied PMUT based on AlN thin films, and the results showed that the k2

eff was 0.056%.
Akiyama et al. [18] found that adding scandium (Sc) to AlN can improve its piezoelec-
tric properties. Yuan et al. [19] found that the piezoelectric constant of Sc0.41Al0.59N film
material can reach 31.6 pC/N. Many studies have shown that while maintaining the ad-
vantages of AlN, the piezoelectric response and k2

eff of ScAlN piezoelectric films have been
significantly improved, which provides a broad prospect for the application of ScAlN
piezoelectric films in PMUT devices. However, current research mainly focuses on the
material properties of ScAlN, and the performance of the devices based on AlN films with
different Sc doping concentrations are still insufficient. Therefore, in this paper, Sc doped
AlN film is selected as the piezoelectric layer material, and the multi-physics coupling
model of the ScAlN thin film-based PMUT is established and analyzed.

This paper proposed a PMUT based on a Pt/ScAlN/Mo/SiO2/Si/SiO2/Si multilayer
structure with a circular suspension film. Multiphysics modeling using the FEM software
COMSOL Multiphysics 5.5 and analysis of the effect of different Sc doping concentrations
on the resonant frequency, the k2

eff and the station sensitivity of the PMUT cell are performed.
It is found that when the Sc doping concentration is 35%, the static receiving sensitivity of
the PMUT cell reaches the peak value of 1.61 mV/kPa. Based on this, a 3D model of the
ScAlN-based thin film PMUT array was established, and the acoustic field characteristics
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of the array were calculated and simulated. It is found that the resonant frequency of the
array based on the same Sc doping concentration is higher than that of the cell, and the
relative pulse sensitivity level is significantly improved.

Table 1. Key material properties of PZT and AlN.

Material Coefficient PZT AlN

e31, f
(
C m−1) −8 to −12 −1.0

d33

(
pC N−1

)
200–400 ∼ 5.5

εS
33 ∼ 1500 ∼ 10

k33 ∼ 70% ∼ 39%

2. PMUT Modeling and Simulation
2.1. FEM Modeling of PMUT

The proposed 3D finite element model of a single PMUT element was created using
COMSOL Multiphysics 5.5. Based on the bending mode, the PMUT consists of a suspended
membrane and its supporting structure. Figure 1a shows a cross-section schematic of the
designed PMUT with the Pt/ScAlN/Mo/SiO2/Si/SiO2/Si structure. From top to bottom:
the top electrode Pt, the piezoelectric layer material ScAlN, the bottom electrode Mo, the
insulating layer SiO2, the device Si layer, the SiO2 barrier layer and the Si support layer.
In order to improve the sensitivity, the top electrode Pt is only partially covered with a
piezoelectric layer [20]. The SiO2 layer above the top layer of silicon acts as an insulating
and protective layer. The SOI wafer is isolated from the supporting silicon substrate by a
SiO2 barrier layer, thus reducing parasitic capacitance and power consumption. Figure 1b
shows the 3D finite element model (circular top electrode and circular bottom cavity)
based on the ScAlN thin film PMUT. Since the setup of the circular top electrode and the
circular bottom cavity is convenient for device preparation, the PMUT with the circular
top electrode and the circular bottom cavity is chosen for the study in this paper. As for a
PMUT with a ScAlN film thickness of 0.78 µm and a target resonance frequency around
20 MHz, its corresponding diameter should be ~50 µm according to the plate theory [21].
PMUTs typically have high aspect ratios, and the size of PMUTs needs to be reduced to
tens of microns in order to meet the resolution requirements of ultrasonic imaging [8]. The
geometric parameters of the 3D finite element model of the PMUT cell in this paper are
shown in Table 2, and the overall size of the PMUT model is 60 µm × 60 µm. One point
to note is that the neutral axis should be outside the piezoelectric layer to ensure that the
device has good sensitivity [22]. The material parameters of ScAlN, Si and SiO2 are taken
from refs [23,24].

As for the physics-field modeling, the built-in electrostatic module, and the acoustic
module as well as the multi-physics module are employed. In the solid mechanics module,
the bottom surface of the PMUT model is defined as a fixed constrained boundary condition.
In the electrostatic module, the terminal boundary conditions are set and defined by the
top electrode, and the ground boundary conditions are set and defined by the bottom
electrode. Figure 2 shows the meshing grid elements in each domain, and the maximum
size of the grid cells in a given material is specified as one-fifth of the wave-length in order
to accurately resolve the stress waves in the solid domain. The maximum size of the grid
cells in a given material is specified as one-fifth of the wavelength in order to accurately
resolve the stress waves in the solid domain. Unlike the 3D model with a tetrahedral mesh,
a thin plate requires at least three solid cells in the thickness direction. A 2 × 2 PMUT
array was constructed on the basis of PMUT element. According to the acoustic imaging
application, the spacing of the array elements usually needs to be between half to one
wavelength (λ) of the ultrasonic waves in the propagating medium [25]. In the array
design, a half-wavelength spacing of 70 µm was chosen to avoid imaging artifacts and the
generation of side flaps in the beam direction map.
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Parameter Value
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Radius of etching 20 µm
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2.2. Evaluation of PMUT Properties

The most affected index in ultrasonic transducers is the information of the center
frequency, sensitivity, directivity, and bandwidth of the transducer etc. In this paper, the
resonant frequency and modal vibration pattern of PMUT are calculated by eigenfrequency
analysis. The response near the eigenfrequency is simulated by frequency domain analysis
to obtain the conductivity characteristics. In order to assess the electromechanical coupling
without considering the geometric shape and excitation mode of PMUT, the k2

eff can be
defined as [26]:
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k2
eff = 1 − (

fr

fa
)

2
(1)

where fr is the resonance frequency and fa is the anti-resonance frequency.
In addition, the static sensitivity of the PMUT is studied in this paper using stationary

analysis. The static receiving sensitivity sr can be used as an indicator of the receiving
performance of the PMUT, while the static transmitting sensitivity ds is used to evaluate
the transmitting performance of the PMUT. When investigating the static transmitting
sensitivity, a voltage of 10 V µm−1 is applied across the upper and lower electrodes. To
study the static receiving sensitivity, a load pressure of 100 kPa is imposed on the surface
of the film. The values of the displacement and voltage produced at the center of the
membrane surface can be determined, respectively. Therefore, the ratio of displacement
to voltage at the center point of the membrane surface may be used to calculate the
transmitting sensitivity ds, and the ratio of voltage to pressure at the center point of the
membrane surface can be used to estimate the static receiving sensitivity sr [27]. The on-axis
directivity of the PMUT can be explained via the directivity index (DI):

DI = 10log
(

2πr2 p2/ ρcPtot) (2)

where r is the distance to the center of PMUT, p is the far field pressure at distance r, Ptot is
the total radiate power, ρ and c are the density and sound speed of water, respectively.

The dynamic characteristics of the PMUT with added water and water perfectly
matched layers were investigated by time domain analysis. When the top and bottom
electrodes of the PMUT are charged, a transverse stress is generated in the piezoelectric
layer due to the converse piezoelectric effect. The generated stress causes a bending
moment that forces the membrane to deflect out of plane and emits an acoustic pressure
wave. Similarly, due to the direct piezoelectric effect, the incident pressure wave causes
membrane deformation and charge on the electrodes. Therefore, the PMUT can act as both
a transmitter and a receiver. When a certain pulse signal is applied to the top electrode, this
signal is transmitted to the solid reflector. Then part of the signal is reflected and received
by the PMUT [28].

When a particular pulse signal is introduced into the upper electrode, it is transmitted
to the solid reflector. Subsequently, some of the signal is detected by the PMUT and some
of the signal is reflected by the PMUT. The relative pulse-echo sensitivity level M is an
indicator for evaluating the dynamic sensitivity performance of the PMUT. The relative
pulse-echo sensitivity level is expressed in M. Its mathematical formulation can be written
as follows:

M = 20lg
(

Umax

U0

)
(3)

where Umax is the maximum amplitude of the initial pulse-echo voltage reflected by a
reflector, U0 is the peak excitation voltage associated with the PMUT.

The center frequency and the corresponding −6 dB bandwidth (BW) of the pulse-echo
frequency spectrum are defined as follow:

fc = ( fh + fl)/2 (4)

BW =
fh − fl

fc
× 100% (5)

where fh and fl are the frequencies correspond to a 6 dB drop from the maximum amplitude
of the pulse-echo signal in the frequency domain [29].
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3. Results and Discussion
3.1. Effect of Sc Concentration on PMUT Cells

In order to investigate the effect of the Sc doping concentration on the resonant
frequency of PMUT, PMUT models based on ScAlN films with different Sc doping concen-
trations ranged from 0% to 40% were calculated. Figure 3 shows the variation in the PMUT
resonant frequency with the Sc doping concentration. The resonant mode is shown as
inset in Figure 3. As shown, the first-order resonant mode (0, 1) have concentrated energy
in the medium and are superior to other modes [30], and thus, we focus on the study of
this main mode in the following analysis. As seen from the figure, it can be seen that the
resonant frequencies of the PMUT can be above 20 MHz for all the PMUT models based
on different Sc doping concentrations. As the concentration of Sc doping increases, the
resonant frequency of the PMUT cell decreases from 22.454 MHz (Sc = 0%) to 20.92 MHz
(Sc = 40%).
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The effect of the Sc doping concentration on the k2
eff of the PMUT cell is shown

in Figure 4a. The results show that the k2
eff of the PMUT cells based on Sc-doped AlN

films gradually augments with the increasing in the Sc concentration until the Sc doping
concentration reaches 40%. When the Sc doping concentration is 40%, the k2

eff reaches
3.72 times higher than that without Sc doping (0.53%). This indicates that the Sc doping
concentration can have a large effect on the k2

eff of PMUTs.
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Figure 4b shows the variation in the static transmitting sensitivity and the static
receiving sensitivity of the PMUT cell with the concentration. The static transmitting
sensitivity shows an increasing trend with increasing the Sc doping concentration, and
the variation is significant. When varying the Sc doping concentration from 0% to 40%,
the static transmitting sensitivity increases to 285.06 pm/V. The results show that the
static receiving sensitivity increases and then decreases as the Sc doping concentration
increases, and the static receiver sensitivity is at the peak of 1.61 Mv/kPa when the Sc
doping concentration is 35%.

3.2. Design and Optimizing of PMUT Array
3.2.1. Static Analysis

The above study on the effect of the Sc doping concentration on the performance of
PMUT cells show that the Sc doping concentration has a profound effect on the resonant
frequency, k2

eff and sensitivity of PMUTs. Therefore, it is also important to investigate the
effect of the Sc doping concentration on the performance of PMUT arrays for designing
PMUTs. In Figures 3 and 4, the static receiving sensitivity of the PMUT cell is at its peak
at an Sc doping concentration of 35%, and the k2

eff and static transmitting sensitivity are
also at large values at this time. Therefore, in this paper, a 2 × 2 PMUT array based on 35%
Sc-doped AlN thin film is established on the basis of the PMUT cell, and the electroacoustic
characteristics of the array are investigated. The established 2 × 2 PMUT array model is
shown in Figure 2b. The transmission performance of the PMUT array in the acoustic field
and the water loading in the acoustic field are simulated. Simulations with arrays with
more cells were not performed due to computational volume limitations.

The resonant frequency of the PMUT is the factor that determines the resolution and
penetration depth. The conductance of PMUT cell and 2 × 2 array based on AlN with an
Sc doping concentration of 35% are shown in Figure 5. The resonant frequency of PMUT
array is 21.412 MHz, which is higher than the resonant frequency of PMUT cell with the
same concentration, and the k2

eff is 3.28%.
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Figure 5. The calculated admittances of ScAlN-based PMUT cell and array.

The directivity and on-axis pressure of the PMUT array were investigated and com-
pared with that of the cell. Figures 6 and 7 show the polar coordinate directivity and axial
pressure for PMUT cells and 2 × 2 arrays. The polar plots depicted in Figures 6 and 7 illus-
trate the radiation patterns within the yz-plane. It is evident that the proposed PMUT array
exhibit greater directivity along the z-axis compared to alternative directions. Compared
with the PMUT cell, the side lobes of the PMUT array increases and the axial pressure
increases. In addition, the decay of the sound pressure of the 2 × 2 PMUT array is slower
than that of the PMUT cell for the same excitation source.
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3.2.2. Dynamic Analysis

The dynamic transmission and reception characteristics of PMUTs based on Sc-doped
AlN films in water medium were investigated using time-domain analysis. Figure 8a shows
a model of an underwater PMUT with a circular top electrode and a circular bottom cavity.
The steel plate is placed on the central axis of the PMUT as a solid reflector. The solid me-
chanics module includes the PMUT and the solid reflector, while the piezoelectric material
is classified under the electrostatic module. The pressure acoustics module comprise the
water domain and the PML. In order to improve computational efficiency, this paper adopts
the method of using a free triangular mesh partition to handle reflecting surfaces, water
and the PML. When applying a sinusoidal pulse of the resonant frequency of PMUT for two
cycles on the top electrode, the PMUT switch to receiving mode. The sound field change
in water can be simulated, after the sound wave reaching the steel plate, a portion of the
sound wave is reflected back and detected by the PMUT, thereby establishing an infinite
cycle. Figure 8b illustrates the changes in underwater sound pressure. It is evident that the
sound waves produced by the PMUT in the water medium exhibit a consistent pattern.
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ation in sound pressure at different times.

Figure 9a demonstrates the charge of the PMUT at a distance of 250 µm. The image
within the orange dashed box is the first impulse response. From Equation (3), the relative
pulse-echo sensitivity level of the PMUT is about −27 dB. In addition, the variation in the
relative pulse-echo sensitivity level as a function of reflector position was investigated by
hanging steel plates as reflectors at different distances away from the PMUT. As shown in
Figure 9b, it is seen that the relative pulse-echo sensitivity level decreases as the distance
between the reflector and the PMUT increases.
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The frequency-amplitude spectrum of the pulse-echo was calculated using the fast
Fourier transform (FFT) based on the pulse-echo response. Figure 10 shows the pulse-echo
(black plot) and frequency response (red plot) of the cell and 2 × 2 PMUT array based on
an Sc doping concentration of 35% AlN film underwater when the reflector is at 250 µm. In
Figure 10a, the PMUT cell has a center frequency of 13.3 MHz and −6 dB upper and lower
frequencies of 11.2 and 15.4 MHz, respectively, yielding a bandwidth of about 31.6%. In
addition, the pulse-echo sensitivity of the 2 × 2 PMUT array model underwater was also
investigated. Figure 10b shows the 2 × 2 PMUT array with a center frequency of 14.2 MHz,
a bandwidth of about 28.2%, and −6 dB upper and lower frequencies of 12.2 MHz and
16.2 MHz, respectively. Table 3 compares the performance in terms of the relative pulse-
echo sensitivity levels, center frequencies, and bandwidths for the ScAlN-based PMUT
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cell and the 2 × 2 array with the Sc doping concentration of 35%. As seen from Table 3,
the center frequency of the PMUT 2 × 2 array is higher than the center frequency of the
cell. There exists a slight decrease in the bandwidth of the PMUT array compared to
the cell based on the same concentration. The relative pulse-echo sensitivity level of the
2 × 2 PMUT array based on the Sc-doped AlN film with 35% concentration is 16 dB higher
than that of the cell with the same concentration.
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Table 3. Center frequencies and bandwidths of cell and PMUT array models based ScAlN-based PMUT.

Parameter 35% Sc PMUT Cell 35% Sc 2 × 2 PMUT Array

Relative pulse-echo sensitivity level (dB) −43 −27
Lower/upper −6 dB (MHz) 11.2/15.4 12.2/16.2

Center frequency (MHz) 13.3 14.2
Bandwidth (−6 dB) 31.6% 28.2%

4. Conclusions

In this paper, PMUT cells and PMUT arrays based on Sc-doped AlN films with differ-
ent concentrations are modeled by the finite element method, and their electromechanical
and acoustic performances are calculated and analyzed. First, the influence of the Sc con-
centration on electromechanical characteristic of PMUT cells is studied. It is shown that the
resonant frequency of the ScAlN-based PMUT can be above 20 MHz and the Sc doping
concentration gives rise to significant enhancement. The k2

eff of the PMUT is enhanced by
seven times when the Sc doping concentration is 40% compared with that of the PMUT
based on pure AlN film, and the static transmitting sensitivity increases to 285.06 pm/V
when the Sc doping concentration changes from 0% to 40%.

Furthermore, the acoustic field properties of the PMUT cell and array were investi-
gated. The relative pulse-echo sensitivity level of the 2 × 2 PMUT array based on the Sc
doping concentration of 35% AlN film is improved by 16 dB compared to that of the cell
with the same Sc concentration. The investigation results demonstrate that the ScAlN-
based PMUT on the proposed structure enables high operating frequency and obvious
enhancement in performance by the properly chosen level of the Sc doping concentration,
which provides important design guidelines for the practical application in high-frequency
medical ultrasound imaging. Furthermore, the proposed FEM model can also provide the
possibility for design of high performance PMUT with arbitrary structures and materials
like other nitride films [31,32].
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