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Abstract: With the rapid development of semiconductor technology, the reduction in device oper-
ating voltage and threshold voltage has made integrated circuits more susceptible to the effects of
particle radiation. Moreover, as process sizes decrease, the impact of charge sharing effects becomes
increasingly severe, with soft errors caused by single event effects becoming one of the main causes
of circuit failures. Therefore, the study of sensitivity evaluation methods for integrated circuits is
of great significance for promoting the optimization of integrated circuit design, improving single
event effect experimental methods, and enhancing the irradiation reliability of integrated circuits. In
this paper, we first established a device model for the charge sharing effect and simulated it under
reasonable conditions. Based on the simulation results, we then built a neural network model to
predict the charge amounts in primary and secondary devices. We also propose a comprehensive
automated method for calculating soft errors in unit circuits and validated it through TCAD simula-
tions, achieving an error margin of 2.8–4.3%. This demonstrated the accuracy and effectiveness of the
method we propose.

Keywords: reliability; single event effect; soft error; TCAD

1. Introduction

Radiation particles from the space radiation environment have a severe impact on
aerospace integrated circuits, with the radiation effects they receive primarily being single
event effects (SEE) [1–3] and total ionizing dose effects (TID) [4–6]. The single event effects
are illustrated in Figure 1. When high-energy particles penetrate semiconductor devices,
they generate free charges along their path of incidence. As the penetration depth increases,
the energy carried by the particles gradually decreases until it is depleted entirely, stopping
within the semiconductor device. The charges generated by ionization are absorbed by
the sensitive drain region, thereby forming a pulse current that leads to circuit functional
disorder. With the continual reduction in device size and increase in layout density, the
range of energy deposited by high-energy particles can cover multiple devices, significantly
increasing the probability of multi-node charge collection between adjacent units (i.e.,
charge sharing effect), leading to single particle multiple transient phenomena. Further-
more, the reduction in device size also causes a decrease in critical charge and threshold
for flipping, meaning that particles not directly hitting the sensitive areas of devices can
also cause operational errors. Therefore, single event effects are becoming to be increasingly
serious impacts on aerospace integrated circuits [7]. Studies have shown that single event
effects are the main cause of failures in spacecraft today [8,9]. Hence, the evaluation of the
radiation-induced vulnerability of integrated circuits is of great importance for promoting
the design optimization of aerospace integrated circuits, improving experimental methods
for single event effects, and enhancing the comprehensiveness of aerospace integrated
circuit evaluations.
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improving experimental methods for single event effects, and enhancing the comprehen-
siveness of aerospace integrated circuit evaluations. 
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Figure 1. Schematic diagram of deposited charge generation through direct ionization by single 
particle incidence. The charge generated by ionization distributes along the trajectory of the particle. 

When evaluating large-scale processes, it is sufficient to consider only the netlist of 
the circuit. The netlist can only reflect the connection relationship of transistors, namely 
the topological structure of the unit circuit. However, as the process size continues to de-
crease, transistors become closer together and the probability of multiple transistors col-
lecting charge at the same time increases, so, it is necessary to consider the actual physical 
layout to identify the adjacent transistor of the attacked transistor. The method of consid-
ering layout has become the mainstream trend of evaluation of the radiation-induced vul-
nerability of integrated circuits [10,11]. Among the currently proposed methods for as-
sessing the single event effects in circuits, many are based on the Monte Carlo method 
[11–14]. However, it requires complex modeling and simulation, and greatly increases the 
consumption of computing resources to achieve good accuracy [15,16]. Therefore, devel-
oping more efficient methods for evaluating the sensitivity of integrated circuits is of sig-
nificant importance. 

This paper presents a method for automatically predicting the radiation-induced vul-
nerability of circuits. Initially, device modeling was performed using TCAD software 
(2018) to simulate the charge sharing effect. Based on simulation data, a relevant neural 
network model was established. Then, the Python (3.9) programming language was used 
to extract and parse relevant layout files and netlist information. This was followed by 
calling a SPICE simulator to perform fault injection simulation on each sensitive node un-
der different input states. The soft errors of the unit integrated circuit were calculated 
through the flipping cross-section and the heavy ion differential LET spectrum, achieving 
a fully automated process. Finally, the results were validated, thereby demonstrating the 
accuracy of the proposed method for assessing the radiation-induced vulnerability of in-
tegrated circuits. Additionally, Python was used because it is a widely utilized program-
ming language at present. Python has a vast user base, with many code developers 
providing excellent software packages for open access. The method proposed in this paper 
is built on Python and its numerous libraries. 

The structure of this paper is as follows. Section 2 describes the process of device 
modeling and simulation using TCAD software. Section 3 establishes a neural network 
model to predict charge quantities based on simulation results. Section 4 describes our 
fully automated computation method, and finally, validation work is conducted in Section 
5. Section 6 provides a summary of the paper. 

Figure 1. Schematic diagram of deposited charge generation through direct ionization by single
particle incidence. The charge generated by ionization distributes along the trajectory of the particle.

When evaluating large-scale processes, it is sufficient to consider only the netlist of the
circuit. The netlist can only reflect the connection relationship of transistors, namely the
topological structure of the unit circuit. However, as the process size continues to decrease,
transistors become closer together and the probability of multiple transistors collecting
charge at the same time increases, so, it is necessary to consider the actual physical layout to
identify the adjacent transistor of the attacked transistor. The method of considering layout
has become the mainstream trend of evaluation of the radiation-induced vulnerability of
integrated circuits [10,11]. Among the currently proposed methods for assessing the single
event effects in circuits, many are based on the Monte Carlo method [11–14]. However,
it requires complex modeling and simulation, and greatly increases the consumption of
computing resources to achieve good accuracy [15,16]. Therefore, developing more efficient
methods for evaluating the sensitivity of integrated circuits is of significant importance.

This paper presents a method for automatically predicting the radiation-induced
vulnerability of circuits. Initially, device modeling was performed using TCAD software
(2018) to simulate the charge sharing effect. Based on simulation data, a relevant neural
network model was established. Then, the Python (3.9) programming language was used
to extract and parse relevant layout files and netlist information. This was followed by
calling a SPICE simulator to perform fault injection simulation on each sensitive node under
different input states. The soft errors of the unit integrated circuit were calculated through
the flipping cross-section and the heavy ion differential LET spectrum, achieving a fully
automated process. Finally, the results were validated, thereby demonstrating the accuracy
of the proposed method for assessing the radiation-induced vulnerability of integrated
circuits. Additionally, Python was used because it is a widely utilized programming
language at present. Python has a vast user base, with many code developers providing
excellent software packages for open access. The method proposed in this paper is built on
Python and its numerous libraries.

The structure of this paper is as follows. Section 2 describes the process of device
modeling and simulation using TCAD software. Section 3 establishes a neural network
model to predict charge quantities based on simulation results. Section 4 describes our fully
automated computation method, and finally, validation work is conducted in Section 5.
Section 6 provides a summary of the paper.

2. Device Modeling and Simulation of Charge Sharing Effect

TCAD simulation is an advanced semiconductor device and process simulation soft-
ware that utilizes finite element methods to solve semiconductor device characteristics and
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process-related issues. We utilized this software to conduct device characteristic simulations
and radiation particle simulations for the processes under study.

A simulation model of a 28 nm bulk silicon CMOS process device was established
using TCAD software. Considering that the charge sharing effect mainly occurs between
two devices within the same well [17], taking NMOS as an example (the same applies to
PMOS), the simulation schematic of the established three-dimensional device proximity
arrangement model can be established as in Figure 2. It contains two NMOS devices. The
black arrows represent the trajectory of the incoming particles. To mitigate the issue of
increased gate leakage current due to reduced feature sizes, the device’s gate oxide layer
employs a high dielectric constant material composed of HfO2 and SiO2. Furthermore, to
further enhance the device’s performance, technologies such as lightly doped drain (LDD)
and shallow trench isolation (STI) were utilized. The physical dimensions of the device are
defined according to the minimum width-to-length ratio rule provided by the SPICE model,
that is, a channel length of 30 nm, a channel width of 100 nm, and source and drain region
lengths of 75 nm. When establishing the physical model of the device, various factors
affecting the internal carrier distribution and mobility within the device must be considered.
Based on the characteristics and structure of the 28 nm bulk silicon CMOS device, when
the gate oxide thickness is small, quantum effects can cause changes in the gate capacitance
and threshold voltage. Therefore, it is necessary to consider this influence when modeling.
Additionally, the use of high-K materials at the HfO2 and SiO2 dioxide interface may
lead to mobility degradation, thereby affecting the device’s conductive current. These
influencing factors need to be considered during simulation to ensure the accuracy and
reliability of the model. Based on the above principles, the following physical models were
set: Fermi–Dirac statistics, high field saturation model, bandgap narrowing effect model,
gate oxide quantum effect model, Shockley-Read-Hall (SRH) recombination, and Auger
recombination model. The centroid of grid partitioning near the channel region can be
densified by setting the minimum step size to 2 µm, and non-critical regions are partitioned
using a less dense grid, enhancing the precision and convergence ease of the computational
results. Models and grid partitioning strategy are applied to all TCAD simulations.
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Figure 2. Single particle incidence simulation for primary and secondary devices. The left side rep-
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Figure 2. Single particle incidence simulation for primary and secondary devices. The left side
represents the primary device, while the right side represents the secondary device. The black arrows
represent the direction of particle incidence, with vertical indicating 0◦.

To ensure the accuracy of the developed device model, simulations of the current-
voltage characteristics were conducted on the constructed device model. These simulations
were compared with the current–voltage characteristic curves in the 28 nm SPICE model.
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Based on the comparison results, the structural parameters of the device, such as doping
concentration and junction depth, were continuously adjusted. Simulations were iteratively
performed until the current–voltage curves of the device model closely matched those
simulated by the SPICE model, thereby ensuring their electrical characteristics remained
closely aligned. The results of this matching process are illustrated in Figure 3, which
includes 20 simulation data points extracted from 0 to 0.9 V. It should be noted that the
circuit-level simulation work in this paper was carried out by invoking the simulation
software, which is a widely used circuit simulation tool in the industry, capable of accurately
simulating the behavior of complex circuits.
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Figure 3. NMOS transfer characteristic curve calibration results. Twenty data points were selected
from the range of 0 to 0.9 V.

We selected heavy ions as the type of incident particles for simulation. The device
directly hit by the heavy ion is referred to as the primary device (the device on the left side
corresponds to Figure 2), while the one passively collecting charges is called the secondary
device (the device on the right side corresponds to Figure 2). Both are located in the same
well and isolated by the STI layer, with two adjacent electrode regions being the devices’
drain regions. The initial state is set with the PN junctions of the two transistors reverse-
biased, thus both transistors are in the off state, making their drain regions sensitive areas.
The heavy ion’s incident point is centered in the transistor’s drain region. The penetration
depth is set to 2 µm, and the track radius is 30 nm. During the simulation, the device
spacing (D) was set to 30, 50, 100, 200, 300, 400, 500 nm, and the linear energy transfer (LET)
of heavy ions was set to 0.1, 1, 10, 20, 40, 60, 80, 100 MeV·cm2/mg. The incidence angles
of heavy ions were set to 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ (with 0◦ being perpendicular incidence
on the main device, and the angle increasing as the incidence direction gradually shifts
towards the secondary device, as shown in Figure 2). Simulations were conducted at these
336 ‘simulation points’ to obtain the charge absorbed in the drain region of the primary
and secondary devices.

3. Establishment of the Single-Event Transient Pulse Source Model

The previous section provided a foundation by obtaining data through device-level
simulations, which guided the establishment of a fault pulse model. In this section, a back
propagation (BP) neural network model was constructed based on the simulation data to
predict the charge amounts of primary and secondary devices. Thus, even for points falling
between simulation points, it is possible to obtain the charge amounts of primary and
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secondary devices under complex conditions, which can then be used for pulse injection in
subsequent automated evaluation processes.

The BP neural network is a type of multilayer feedforward neural network, character-
ized by signal forward propagation and error back propagation [18]. Its structure mainly
consists of input layers, hidden layers, and output layers. The network performance is
significantly influenced by the number of neurons and layers: too many neurons and layers
can increase computational complexity, thereby slowing down the training speed; while
too few neurons and layers may lead to insufficient network learning, affecting prediction
accuracy. Therefore, selecting an appropriate number of neurons and layers is crucial.

To evaluate the accuracy of the BP neural network predictions, this paper selects R2 and
RMSE as model evaluation metrics: (1) R2: Also known as the coefficient of determination,
it reflects the model’s ability to explain the variability of the data. The closer its value is
to 1, the higher the model’s fit to the data. (2) RMSE: Root mean square error measures
the magnitude of differences between predicted values and actual values, quantifying the
accuracy of predictions. The smaller its value, the higher the accuracy.

After continuous optimization and adjustment, the neural network’s hidden layers are
set to 2, with the first layer including 8 neurons and using the tanh activation function, and
the second layer including 18 neurons with the sigmoid activation function. The iteration
number is set to 1000, with a learning rate of 0.005. The R2 value is an important measure for
determining the quality of a neural network, also known as the coefficient of determination.
It is a key indicator of the performance of a regression model. The closer it is to 1, the better
the model’s predictive ability. The R2 values for the training and testing sets of the primary
device charge prediction model are 0.99982 and 0.99936, respectively. For the secondary
device charge prediction model, the R2 values for the training and testing sets are 0.99377
and 0.98924, respectively. The neural network prediction results are shown in Figure 4a–d
and represent the comparison of predictions for the training and testing sets of the primary
and secondary device, respectively. The horizontal axis represents different samples, while
the vertical axis corresponds to the charge amount predicted by the neural network model.

From an overall perspective, our model exhibits high accuracy in predicting charge
quantities, with R2 approaching 1 and RMSE being below 2, as shown in Figure 4. This indi-
cates that our neural network model effectively captures the complex relationship between
input features and outputs, providing a reliable tool for predicting charge quantities.
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The single-event current source model used in this paper is the double-exponential
current source model [19], which can accurately simulate the bombardment of sensitive
nodes in circuits by high-energy particles, making it suitable for circuit-level simulation
methods [20]. Many outstanding works in the field of single-particle research are based on
this model. It features a steep rising edge and a gentle falling edge (as shown in Figure 5).
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Different amounts of charge collection correspond to pulse waveforms of varying
sizes, but the basic shape and trend remain largely unchanged. The analytical formula is
as follows:

I(t) = Io(e−
t
α − e−

t
β ) (1)
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Io =
Qtot

α − β
(2)

where Io is the peak transient current pulse, also a function of carrier mobility and the
particle’s linear energy transfer (LET). α is the time constant for the circuit’s charge col-
lection, β is the initial time of charge generation, and both α and β mainly depend on
the device’s process characteristics such as electron mobility and donor density [21,22],
obtained through simulation data of models established in the process library extracted
from TCAD. This was conducted to improve the efficiency of modeling and subsequent
calculations. Qtot is the charge ionized by high-energy particles incident on the device,
which is the main factor determining the double-exponential pulse. We predicted it under
different incident conditions using the neural network model established earlier.

4. Automated Prediction Process for Radiation-Induced Vulnerability

The framework of the integrated circuit sensitivity automatic evaluation method
proposed in this paper is shown in Figure 6. Inside the larger dashed box in Figure 6 is
the main part of the automated program, while outside this dashed box are the specific
technical files and model files required by the process.
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represents the files or models that need to be called.

When evaluating the 28-nm standard cell circuit, the gds and lef layout files are first
processed to extract layers such as the active area, metal, N-well, contact, and polysilicon
based on the layout’s coordinate and hierarchical information. This allows for the extraction
of all their geometric information. Next, the input and output pins of the circuit are matched.
Finally, by combining and matching different layers, we identify the positions and node
names of the source, gate, and drain in the active area. Based on this, the transistor
connection relations of the circuit can be extracted, further obtaining the netlist file used for
normal state characteristic simulation. After calling the SPICE simulator for circuit-level
steady-state characteristic simulation, the simulation results enable the extraction of the
drain regions of off-state sensitive transistors under different input conditions. Figure 7
shows the layout schematic extracted by our method (taking NOR as an example); blue
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represents the gate, green represents the source region, yellow represents the metal layer,
and orange represents the contact hole. According to the cross-checking of the netlist, circuit,
and layout, it is evident that our developed tool can effectively extract the hierarchical
structure of the layout and process it accordingly to further obtain relevant information.
Figure 8 illustrates the sensitive area extracted by our method (also using NOR as an
example), which is mainly the drain region. The units for the scales in both figures are
in micrometers.
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Next, transistors near the sensitive transistor are searched for, and the previously
trained neural network used to predict the charge quantity of the primary and secondary
devices at specific angles and device spacings under different LETs, where angles are pre-
set, and device spacings are based on extracted layout information. Subsequently, the pulse
source file Va (a transient current source model written in Verilog-a language) is called,
and by inputting the predicted charge quantity into the double-exponential function, fault
pulse injection can be simultaneously performed on both primary and secondary devices,
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reflecting the charge sharing effect at the circuit level. This allows for the generation of a
netlist file for fault injection simulation, conducting fault injection simulation to determine
whether the output value of the unit circuit crosses the critical value VDD/2 (using VDD/2
as a uniform criterion for the evaluation method and subsequent result validation). Then,
dichotomy search is used to continuously perform fault injection simulations until the
critical condition is reached, where the LET value under that condition is the critical LET
value for specific transistors connected to specific sensitive nodes under specific input
states. With the critical LET value, the corresponding flipping cross-section can be obtained,
and then automatic fitting of the LET value-flipping cross-section pairs with the Weibull
curve is performed. The effect is as shown in the following Figure 9. Simulation yields
several sets of data points, which are fitted to generate the orange curve.
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The expression for the Weibull curve fitting is as follows:

σ(LET) = σsat

{
1 − exp

[
−
(

LET − LETth
a

)b
]}

(3)

where σ(LET) is the saturation flipping cross-section, i.e., the value in the Weibull curve
where the flipping cross-section no longer increases with LET, LETth is the LET threshold,
and a and b are shape fitting parameters.

The saturation cross-section values calculated in this paper are roughly on the order
of 10−10 to 10−8 cm2, which is consistent with the research results from the relevant
literature [23]. This, to some extent, confirms the accuracy of the method proposed in this
paper. Our method initially obtains several sets of LET value-flipping cross-section pairs,
which are then fitted to a Weibull curve to derive the final curve results. Obtaining the
final results typically requires several tens of seconds. In contrast, referencing Monte Carlo
methods, their extensive random simulations and computational complexity limit CPU
time, which may persist for several hours or even days [16]. Therefore, in comparison,
our method offers faster computational speed, enabling rapid assessment of the circuit
under test.

A reasonable heavy ion differential LET spectrum is selected, with this paper adopting
the relationship between the heavy ion differential flux and the LET value in the Si material
during the minimum solar activity year in geosynchronous orbit given by CRÈME [24],
shown in Figure 10.
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Multiplying the heavy ion differential LET spectrum curve by its expression, selecting
a reasonable upper and lower limit, and integrating, the corresponding SER value can be
obtained, with the following integration expression:

SER =
∫ LETmax

LETmin

ϕ(LET)σ(LET)dLET (4)

where ϕ(LET) is the heavy ion differential LET spectrum, σ(LET) is the flipping cross-
section curve expression, and SER is the soft error rate value of the sensitive tube connected
to a specific sensitive node under a specific state, in units of FIT.

The smaller dashed box on the right side of Figure 6 indicates that the internal process
needs to be repeated. For each unit, there will be multiple different input states, traversing
each sensitive node under each input state and each sensitive transistor connected to that
node. Summing the SER for each case yields the total SER value for the corresponding
unit circuit.

5. Result Verification

In this section, we validate the method proposed in this paper. The validation in this
section is based on the 3D-TCAD modeling and heavy ion irradiation simulation of the unit
circuit implemented in the previous modeling process, aiming to simulate the response
of the real unit circuit under radiation. This provides an important reference standard for
validating the results of the method proposed in this paper.

The steps involve constructing the corresponding circuit in TCAD software, taking
NOR as an example. The constructed model is as shown in Figure 11 and includes two
NMOS and two PMOS with dimensions and location information derived from the gds
file of the corresponding standard cell circuit. Then, we perform steady-state characteristic
simulation on it and apply appropriate bias voltages to the input ports to ensure correct
outputs under all conditions (as shown in Figure 12, which displays the TCAD simulation
curves of an NOR with about 2000 simulation points). In Figure 12, A1 and A2 are the
input pins of the NOR gate, and ZN is the output pin. The input pins have undergone
several logic value changes, and the output pin can correspondingly output the correct
results. This process demonstrates that the established unit circuit model can be used for
subsequent single-particle incidence simulations.
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Figure 12. Waveform diagram of the NOR gate’s node signals. A1 and A2 are the input pins of the
NOR gate, and ZN is the output pin.

As shown in Figure 13, the output voltage curve is obtained by continuously changing
the LET value of a single particle incident on the PMOS transistor connected to the NOR
gate’s ZN node under the 01 state. With input terminals A1A2 set to 01, the output voltage
should remain unchanged at 0. However, the injection of heavy ions will generate a single-
event pulse at this time. From Figure 13, the output voltage, originally at 0, will increase
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momentarily at a certain instant, then return to a low voltage state. As the LET increases,
the peak of the pulse increases, and the pulse width also increases. The red dashed line
represents the threshold voltage, which is typically half of the power supply voltage, i.e.,
0.45 V. It can be observed that the critical LET value is 1.6 MeV·cm2/mg under the input
condition of 01, with subsequent calculations being the same as in the previous section.
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Figure 13. The output node voltage for a circuit unit subjected to single particle incidence in TCAD.
The red dashed line represents the threshold voltage.

Due to the high computational resources and time consumption of TCAD simulations,
in this section, we only validate the scenario of particles incident vertically on the primary
device. We also select the output results under vertical conditions and then compare these
results to calculate the error. The related results are as follows in Table 1. It should be noted
that in Table 1, “TCAD (golden)” refers to the results obtained from TCAD simulations,
serving as the reference standard. All the SER values are expressed in FIT. It can be seen
that the error in the SER values, calculated based on the results obtained from TCAD, is
very small, essentially ranging between 2.8% and 4.3%. This demonstrates the effectiveness
and accuracy of the method proposed in this paper.

Table 1. Comparison of SER calculated by the method of this paper and the results from TCAD.

Logical Circuit Unit TCAD (Golden)
(FIT)

Method of This Paper
(FIT) Error

NAND 10.0 9.7 2.8%
NOR 12.8 12.3 4.3%
INV 3.8 3.7 3.1%
AND 21.2 20.5 3.6%
OR 19.6 18.9 3.4%

6. Conclusions

In this paper, we first established a device model for the charge sharing effect, sim-
ulated it under reasonable conditions, and then built a neural network model to predict
the charge amount in primary and secondary devices based on the simulation results. We
propose a comprehensive automated method for calculating soft errors in unit circuits and
validated it through TCAD simulations, achieving an error margin of 2.8–4.3%. This proved
the accuracy and effectiveness of the method we propose.
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