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Abstract: We studied the effects of vertical vibrations on a water drop that was pinned to the sharp
edges of a rectangular post. By varying the frequency and amplitude of the vertical displacement,
distinct resonance peaks were observed using a simple optical technique. The vibrational spectra
of the first two modes exhibited two closely spaced peaks, which corresponded to standing waves
that exist along the major and minor contour lengths of the drops. The values of the resonance
frequencies can be explained rather well by a simple model, which was originally proposed for axially
symmetric drops.
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1. Introduction

The wetting of a surface by a liquid is an everyday phenomenon that depends on both
surface chemistry and surface morphology [1]. The presence of surface microstructures can
enhance or inhibit the inhomogeneous distribution of a liquid in certain directions [2–5],
giving rise to anisotropic droplet shapes [6] and interfacial instabilities [7]. In this case,
anisotropy is due to the pinning of the contact line to the sharp edges of the asperities.
Anisotropic wetting behavior is exhibited by many natural and synthetic surfaces. For
example, the surfaces of many plants and animals are patterned by linear microstructures
that can guide the motion of water droplets in well-defined directions [8]. Inspired by
this rich phenomenology, many studies of anisotropic wetting have been conducted using
biomimetic surfaces [9–14]. Particular attention has been devoted to the evolution of the
shape of a liquid drop confined to the upper face of a rectangular post as its volume Ω
increases. It is found that for small Ω, the liquid assumes a shape with a uniform cross
section, while for large Ω, the liquid shows a central bulge [15]. Increasing the volume
of the water drop leads to a morphological transition between the two shapes, which is
observed for different geometries of the post [16–19].

The morphology transition from a flat channel into a localized bulge can also be
induced by vertical vibrations of suitable amplitude [20]. Vibrations have been successfully
used to actuate drops on surfaces regardless of the liquid properties [21–23], even against
the action of gravity [24,25]. Vibrations can also induce the excitation of normal modes of
the droplet, which can be used as a tool to measure the surface tension and viscosity of
small droplets [26,27] or to micro-nebulize a liquid sample for biochemical analysis [28].

In general, the determination of the normal modes of a drop subject to vertical vibra-
tions is studied in the two opposite limits of a fixed contact line and of a freely moving
contact line: the former modes occur at a low amplitude of vibrations, whereas the latter
modes appear above a threshold amplitude [29]. In the case of vibrated drops deposited
on a homogeneous surface, axisymmetric surface waves of discrete frequencies are ob-
served [30]. The different modes are stationary surface waves that exhibit a complicated
three-dimensional wave pattern. Extensive numerical simulations are required to address
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the problem with gravity [31], and no analytical expressions are available to determine the
resonance spectrum. To simplify the problem, Noblin et al. [30] considered the waves as one
dimensional. In general, the drop contour can present m nodes (m = 2, 3, 4 . . .), that is, char-
acteristic points that do not move during periodic vibrations. The mean distance between
two consecutive nodes along the drop contour is the corresponding pseudo wavelength
λm. If the drop contact line is fixed, one obtains the geometric relation (m − 1)λm/2 = ℓ,
where ℓ represents the length of the drop contour at equilibrium [30]. In other words, these
authors suggested that the resonant vibrational states of drops with pinned contact lines
could be described by assuming that an integer number n = m − 1 of half vibrational
wavelengths fits along the contour length of the drops, where n = 1, 2, 3 . . . can be
identified as the mode number [32]. Examples of the drop shapes expected for the lowest
frequency modes are shown in Figure 1a–d. The n = 1 mode implies a volume change, and
is then not allowed for an incompressible liquid. The mode n = 2 is the lowest vibration
mode that conserves volume for sessile drops when the contact line remains pinned and
can be excited by a lateral vibration due to the substrate (“rocking” motion) [33]. The
remaining panels represent the first two frequency modes (n = 3 and n = 4) that can be
excited by vertical vibrations.
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and n = 5 (d). The dashed lines indicate the static contour. The nodes are highlighted with red circles.
(e) Sketch of the rectangular post attached to the shaft of the shaker. The vertical displacement of the
shaft was measured with the infrared photodetector (IR PD). (f) Geometry of the rectangular post.
Water was infused into the drop through the central hole. The post top face in contact with water was
covered with a hydrophilic gold layer, whereas the vertical walls were hydrophobic.

The pseudo wave vector values qn(Ω), which correspond to the mode of order n and
to a drop of a given volume Ω, can be calculated from

qn(Ω) =
2π

λn
=

πn
ℓ

(1)

The general dispersion relation between the frequency f and the wave vector q of 1D
capillary-gravity waves on a liquid bath of depth h assumed to be less than the capillary
length of the liquid ( lcap =

√
γ/ϱg ∼2.7 mm for water) is given by [34]:

f 2 =
1

4π2

(
gq +

γ

ϱ
q3
)

tanh(qh) (2)
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where γ is the surface tension and ϱ is the mass density of the liquid, respectively, and
g is the acceleration due to gravity. In their analysis, Noblin et al. [30] assumed for the
wave vector the approximate Equation (1) and for h, the mean height of the drop profile h
defined by

h =
Ω

Σ
(3)

where Σ is the wet area, that is, the area of the surface that is in contact with the drop. In
other words, the resonance frequencies of the various normal modes can be determined by
the following equation:

f 2
n =

1
4π2

(
gqn +

γ

ϱ
q3

n

)
tanh

(
qnh

)
(4)

Despite its simplicity, this analysis was found to describe the experimental data rather
well in the case of axially symmetric sessile drops of different volumes [30]. It was also
successful in describing the dependence of the resonance frequency on the viscosity and
contact angle of the drop [35,36]. If the drops are instead elongated along one direction,
the vibrational spectra exhibit pairs of two nearby peaks. An extension of the model
summarized by Equation (3) explains this observation as the result of the splitting of the
fundamental vibration mode caused by the anisotropic wetting of the drop: the two closely
spaced vibrational frequencies correspond to standing wave states that exist along the
profile lengths related to the major and minor drop axes of the ellipsoidal drop [32].

In this work, we extend these studies to liquid drops, whose contact line is rectangular
rather than circular or elliptical. The contact line was pinned to the sharp edges of a rectan-
gular post that underwent vertical oscillations. Distinct resonance peaks were observed,
which corresponded to the excitation of normal modes along the drop contour. Their values
were accounted for rather well by a simple model, which was originally proposed for
spherically symmetric drops [30]. The rest of this paper is organized as follows. Section 2
briefly describes the materials and experimental setups; we then present the measured
resonance spectra and discuss the results in terms of the model of Noblin et al. [30].

2. Materials and Methods
2.1. Optofluidic Setup

The patterned sample was attached to the shaft of an electromagnetic shaker that
could vibrate vertically, as shown in the schematic diagram in Figure 1e. The accessible fre-
quency range was from 10 Hz to 10 kHz with a maximum vibrating amplitude A = 2.5 mm.
An infrared photodetector (PD) was used to measure A in real-time with an estimated
resolution close to 2 µm. This was calibrated by optically measuring the net displacement
of the shaft. The shaker amplitude A decreases with the vibrating frequency f. Using a
custom-made feedback circuit, it is also possible to sweep f while maintaining A constant
over a frequency interval of approximately 500 Hz.

A liquid drop can be produced on the upper face of the rectangular post by connecting
the central hole to a thin tube attached to a syringe pump (Harvard Apparatus, Holliston,
MA, USA). A flow meter (Fluigent, Le Kremlin-bicêtre, France) was used to measure the
drop volume Ω. The time evolution of the drop contour was recorded with a custom-made
apparatus. Two LED sources (Phlox) could back-illuminate the drop from the two sides of
the rectangular post. The drop contour was simultaneously viewed from the two orthogonal
sides of the post with two high-resolution CCD cameras (Manta G-146B, Allied Vision
Technologies, Stadtroda, Germany) equipped with 2× telecentric objectives (VS-TC2-110,
VS Technology, Tokyo, Japan), as shown in Figure 1f. To neglect evaporation, the sample
was enclosed in a transparent box with a controlled degree of humidity. Considering that a
full acquisition run takes less than 5 min, we can confidently state that Ω remained constant
during the measurement of the vibrational spectra. Further details on the setup have been
reported elsewhere [20].
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2.2. Fabrication of the Rectangular Posts

Special care was taken to fabricate rectangular posts with sharp edges and corners.
Individual posts in polydimethilsiloxane (PDMS) with a rectangular cross section were
manufactured by a double replica molding technique, following a similar procedure used
in a previous study [15]. To ensure the planarity of the posts, micro-milling (Minitech
Machinery Co., Norcross, GA, USA) was used for mold microfabrication, starting from
a polished brass plate (see Figure 2a). The characteristic dimensions of the posts were:
height h = 100 µm, length L = 2500 µm and width W = 500 µm; the corresponding aspect
ratio is then l = L/W = 5. The upper face of the PDMS post presented a through hole
with a diameter ~150 µm in the center that allowed for the infusion of water on its surface
(see Figure 2b–d).
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Figure 2. (a) Brass master copy of the individual post produced by micro-milling, to be used as a
mold. (b) Gold layer on the PDMS post with vertical walls protected by NOA 61 adhesive. (c,d) Post
with NOA 61 peeled off; the thin tube for water infusion can be observed through transparent PDMS
in (d). All scale bars, indicated in blue, correspond to 1 mm. (e) Overview of the PDMS post glued to
a microscope glass slide.

Once produced, the PDMS posts are hydrophobic, with a contact angle θ0 = 110◦ for
water. To exclusively modify the wettability of their upper faces, these were coated with
a thin gold layer with a thickness of ~200 nm deposited by magneto-sputtering. Before
the sputtering process, the vertical walls were covered with a UV curable optical adhesive,
NOA 61, preserving them from gold deposition, as shown in Figure 2b. Right before each
measurement, the gold surface was exposed to oxygen plasma (Diener electronic, Ebhausen,
Germany), and then the NOA 61 coating was peeled off (see Figure 2c,d). As a result, the
contact angle on the upper face was reduced to θ0~15◦ and remained stable for a couple of
hours, while the vertical walls were hydrophobic. In this way, water was confined only
at the top of the post. The volume of the water drop pinned to the edge of the post was
controlled with a syringe pump. Figure 2e shows the individual post ready to be mounted
on the shaker and connected to the syringe pump through a polyethylene tube.

3. Results and Discussion

The graph in Figure 3a displays the maximum height H of the drop, measured from the
upper face of the post, as a function of Ω. The inset displays the two orthogonal views of the
drop corresponding to the red circle indicated on the graph. As expected, H continuously
increased with Ω because the aspect ratio of the post was much smaller than the critical
value lcrit = 16, above which a discontinuous transition from a filament to the bulge state
is predicted [15]. Furthermore, the use of a short post, that is, l < lcrit, guarantees that no
morphology transition from the filament to the bulge state can be induced by applying
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vertical vibrations to the substrate [20]. Consequently, vibrating the post can only excite
the normal modes of the drop pinned to its rectangular perimeter.
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Figure 3. (a) Growth of the maximum height of drop H as a function of the drop volume Ω. Indicative
error bars are only reported for the first point. The inset shows the equilibrium longitudinal and
transversal images of the water drop corresponding to the red circle indicated in the graph. The
drop contour lengths are highlighted in the two cases. (b) Longitudinal view of the vibrating water
drop. The vertical peak-to-peak amplitude ∆ of the drop contour is also indicated. (c) Schematic
representation of the corresponding longitudinal mode: the nodes are indicated by blue circles.
Dashed lines denote the static and instantaneous drop contours. The contour length between two
consecutive nodes is the pseudo wavelength λn.

To study the normal modes of the water drop, we applied vertical sinusoidal vibrations
to the sample, sweeping the frequency range at a constant amplitude. At each frequency f ,
we measured the vertical displacement of the vibrating drop contour along the symmetry
axis by analyzing the shaded areas of the video frames, obtained by setting an acquisition
time period for the video camera at least 10 times longer than the vibration period, so that
each frame shows the superposition of many instantaneous profiles integrated over an
extended time interval. The quantity ∆ represents the height of the shaded area with respect
to the equilibrium (black) contour, as indicated in Figure 3b, and was extracted from the
individual frames using the free software ImageJ 1.54f. To ensure that the value of ∆ was
detectable at frequencies far from the resonance peaks, for each mode n, the frequency
scan was performed with a different constant amplitude A( fn). The schematic diagram
of Figure 3c highlights the corresponding static and instantaneous profiles, together with
the indication of the nodes and the pseudo wavelength λn. Before each measurement, the
drop was prepared by infusing water onto the rectangular post until a maximum height
H = 1 mm was reached.

The graph in Figure 4a reports the resonance curves with the lowest frequencies. They
refer to the same water volume Ω = 1.17 µL, which corresponds to a maximum height of
the static drop H = 1 mm.
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Figure 4. (a) Resonance peaks of water drops of volume Ω = 1.17 µL deposited on the upper face
of a post that undergoes vertical oscillations of constant amplitude. The vertical axis refers to the
normalized vertical displacement ∆norm. The label beside each peak identifies the resonance mode.
(b) Transversal (T) and longitudinal (L) normal modes observed from front and side views. Oscillation
nodes are highlighted by colored circles. The colors correspond to the data in panel (a).

The y-axis reports the vertical displacement normalized to the vertical acceleration
according to: ∆norm = ∆are f ( fn)/a( fn), where a( fn) = (2π fn)

2 A( fn) is the acceleration
corresponding to the resonance mode n and are f ( fn) = (2π fn)

2 Are f is the reference ac-
celeration corresponding to the amplitude Are f , used to scan the lowest frequency mode.
Each curve was identified with a label that reported the mode number n followed by
the letter L (T), which stands for longitudinal (transversal). As expected, the vibrational
spectra of the first two modes exhibited two closely spaced peaks, which corresponded
to standing waves that exist along the major and minor contour lengths of the drops [32].
This interpretation was confirmed by the analysis of the two corresponding orthogonal
views, which are shown in the (b) panels (see also Supplementary Video S1 taken at about
20 fps and with an exposure time of about 20 ms). In the different snapshots, the nodes are
highlighted with empty circles. The modes were then labelled T (L) if the nodes appeared
in the transversal (longitudinal) views. Only odd modes were observed because the drops
underwent vertical vibrations. Instead, even modes (“rocking” modes) could only be
excited by lateral vibrations.

The experimental resonance values are listed in Table 1 and can be compared with the
predictions of the simple model expressed by Equation (4). The lengths of the transversal
and longitudinal contours of the drops were ℓT = 3.16± 0.05 mm and ℓL = 3.60 ± 0.05 mm,
respectively, as deduced by image processing of the two static contours. Similarly, the
average height h was calculated by numerical integration of the two static images. More
precisely, the average heights hT and hL of the transversal and longitudinal cross-section of
the drop, respectively, calculated from the images as

hT,L =
1

ΣT,L

∫ H

0
zρT,L(z)dz (5)
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where ΣT,L is the area of the cross-section and ρT,L(z) is the width of the cross-section at
the height z. The values obtained were hT = 0.48 ± 0.02 mm and hL = 0.37 ± 0.02 mm. In
previous studies, the average height was calculated analytically assuming a semicircular
contour [36–38].

Table 1. Resonance frequencies for transversal and longitudinal normal modes.

Mode Number
N

Experimental
T Mode

Frequency
fT (Hz)

Theoretical
T Mode

Frequency
fT (Hz)

Experimental
L Mode

Frequency
fL (Hz)

Theoretical
L Mode

Frequency
fL (Hz)

3 200 ± 5 208 ± 6 135 ± 5 156 ± 4

5 465 ± 5 469 ± 13 350 ± 5 374 ± 9

7 830 ± 20 783 ± 22

The resonance frequencies for the different modes can then be derived from Equation (4),
and the calculated values are listed in Table 1. The good agreement with the corresponding
experimental values confirms that the simple model of Noblin et al. [30] also provides
an accurate description in the extreme case of elongated drops that present a rectangular
contact line. For a more precise estimate, the common procedure is to introduce a geometric
factor α. This empirical factor is usually determined by studying the evolution of the
resonance frequency with the drop volume [37,38]. The resonance frequency of a vibrating
mode decreases with the volume of the drop volume according to f = α/

√
Ω, as it can be

easily derived from Equations (1) and (4) under the assumption that the length of the drop
contour scales as l ∼ 3

√
Ω (see e.g., Ref. [38]). By measuring the variation of f vs.

√
Ω, the

geometric factor can be empirically determined. However, this requires that the overall
shape of the drop including contact angles do not vary with volume. This is straightforward
on a flat, homogeneous surface where the contact line is a circle, and the contact angle does
not vary with Ω and 3

√
Ω < lcap (see e.g., Ref. [38]) or for a surface patterned with narrow

linear stripes where the contact line is an ellipse and the contact angles along the two main
axes do not vary with Ω (see e.g., Ref. [32]). In our case, maintaining a rectangular contact
line requires the fabrication of a series of rectangular posts with hydrophobic vertical faces
and hydrophilic upper faces, all of which have the same aspect ratio but different sizes.
This can be undertaken, but it requires much more effort. The analysis we present suggests
that this calibration is not necessary, and that it is possible to evaluate the resonance modes
once the drop geometry is known.

4. Conclusions

We reported on the detection of the first resonance modes of confined water drops
that undergo vertical vibrations. The drop contact line was pinned to the contour of a
rectangular post fabricated by double replica molding of a master obtained by micro-
milling. The vibrational spectra of the first two modes exhibited two closely spaced peaks,
which a direct visual analysis carried out with video cameras associated with the excitation
of standing waves along the major and minor contour lengths of the drops. The values
of the resonance frequencies could be explained rather well by a simple model, which
was originally proposed for axially symmetric drops. Our results thus also extend the
applicability of this model to highly anisotropic drops.
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