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Simple Summary: Complex karyotype (CK), defined as ≥3 unrelated chromosomal abnormalities,
is associated with a poor prognosis in both acute myeloid leukemia (AML) and myelodysplastic
syndrome (MDS). Despite their high genetic complexity, complex chromosomal abnormalities in
AML and MDS may share dysregulated gene expression signatures, leading to poorer outcomes
compared to those of standard chemotherapy. We aimed to investigate a subset of genes and their
signatures to predict CK in AML and MDS with excess blast (MDS-EB) using gene expression data.
The CK signature (CKS) was established and validated, and its prognostic impact on overall survival
(OS) was evaluated in comparison with previously reported risk stratification models using gene
expression. A 10-gene CKS demonstrated high predictive accuracy for CK and was associated with
shorter OS with comparable performance to previously established risk stratification models.

Abstract: Complex karyotype (CK) is associated with a poor prognosis in both acute myeloid
leukemia (AML) and myelodysplastic syndrome with excess blasts (MDS-EB). Transcriptomic analy-
ses have improved our understanding of the disease and risk stratification of myeloid neoplasms;
however, CK-specific gene expression signatures have been rarely investigated. In this study, we
developed and validated a CK-specific gene expression signature. Differential gene expression analy-
sis between the CK and non-CK groups using data from 348 patients with AML and MDS-EB from
four cohorts revealed enrichment of the downregulated genes localized on chromosome 5q or 7q,
suggesting that haploinsufficiency due to the deletion of these chromosomes possibly underlies CK
pathogenesis. We built a robust transcriptional model for CK prediction using LASSO regression for
gene subset selection and validated it using the leave-one-out cross-validation method for fitting the
logistic regression model. We established a 10-gene CK signature (CKS) predictive of CK with high
predictive accuracy (accuracy 94.22%; AUC 0.977). CKS was significantly associated with shorter
overall survival in three independent cohorts, and was comparable to that of previously established
risk stratification models for AML. Furthermore, we explored of therapeutic targets among the genes
comprising CKS and identified the dysregulated expression of superoxide dismutase 1 (SOD1) gene,
which is potentially amenable to SOD1 inhibitors.

Keywords: complex karyotype; AML; MDS; gene expression; SOD1

1. Introduction

Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are clonal
disorders of myeloid hematopoiesis. The genetic signature of MDS, specifically MDS with
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excess blasts (MDS-EB), overlaps with that of secondary AML [1–5]. Similar cytogenetic
abnormalities, such as del(5q), del(7q), and complex karyotypes (CK), have been reported
in MDS and secondary AML, in contrast to de novo AML [6]. Gene mutations involved in
the same pathways have been consistently identified in MDS and secondary AML [6], and
these genetic signatures have helped refine MDS-type AML identification. Additionally,
gene mutations highly specific for secondary AML have defined a distinct subset of de novo
AML with clinical features and pathological properties of secondary AML [2]. Moreover,
MDS-EB may be considered equivalent to secondary AML for therapeutic purposes [7].

CK, defined as ≥3 unrelated chromosomal abnormalities in both AML and MDS,
comprises 10–12% of de novo AML and primary MDS cases [8,9]. CK is associated with a
poor prognosis in both AML and MDS. In AML, CK is persistently associated with adverse
outcomes and resistance to standard chemotherapy [10–12], suggesting that these entities
are biologically distinct. Although a high frequency of TP53 mutations is considered the
hallmark of CK [13,14], other molecular features of CK, including the transcriptome, are
less well characterized, possibly owing to its high genetic complexity.

Extensive transcriptomic analyses of myeloid neoplasms for the development of prog-
nostic gene expression signatures have been beneficial in prognosis prediction and the
detection of potential actionable targets [15–21]. However, transcriptomic analyses of
prognostic gene expression signatures in myeloid neoplasms with specific cytogenetic
abnormalities, particularly the CK subgroup, have rarely been conducted [17–22]. While
the resolution of CK detection using gene expression signatures may be lower than con-
ventional copy number variation detection methods such as SNP array, implementation of
CK gene signature have the potential to add to the understanding of the impact of fusion
transcript as well as the copy number variations associated with CK.

Despite their high genetic complexity, complex chromosomal abnormalities in AML
and MDS-EB may share dysregulated gene expression signatures, leading to poorer out-
comes compared to those of standard chemotherapy. In this study, we aimed to investigate
a subset of genes and their signatures to predict CK in AML and MDS-EB using gene
expression data. Consequently, we integrated gene expression data from our cohort with
the gene expression profiles of AML and MDS-EB with known karyotype results. The CK
signature (CKS) was established and validated, and the prognostic impact of CKS on overall
survival (OS) was evaluated in comparison with previously reported risk stratification
models using gene expression.

Additionally, to seek expanded utilization of CKS for future treatment selection, we
conducted an exploration of therapeutic targets among the genes comprising CKS and
identified the dysregulated expression of superoxide dismutase 1 (SOD1) gene, which is
potentially amenable to SOD1 inhibitors.

2. Materials and Methods
2.1. Patient Samples

Our cohort (KUMC cohort) included 47 adults diagnosed with AML or MDS-EB. As the
definition of CK in previous studies excludes WHO-designated balanced abnormalities, in-
cluding t(8;21)(q22;q22.1), inv(16)(p13.1q22) or t(16;16)(p13.1;q22), t(15;17)(q22;q11–12), any
translocations involving KMT2A [8,10,12,13], and inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) [8],
AML patients with above abnormalities were excluded from our study (Figure 1). CK
was defined as ≥3 unrelated chromosome abnormalities in both AML and MDS-EB. OS
was defined as the time from diagnosis to death, with living patients censored on the date
of their last follow-up. This study was approved by the Institutional Review Board of
Korea University Guro Hospital (2021GR0572) and was conducted in accordance with the
Declaration of Helsinki.
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ing one case combined with midostaurin), followed by consolidation with high-dose cy-
tarabine or low-intensity decitabine (for 24.32%, including one case combined with ve-
netoclax). The salvage treatment regimen for the 37.84% of AML patients who did not 
respond to the initial induction consisted of Fludarabine, cytarabine, G-CSF, and idarubi-
cin regimen for the majority of the cases (78.57%) and a venetoclax + decitabine regimen 
for the rest. In 8.11% of AML patients, salvage therapy was administered multiple times, 
involving alterations in the sequence of the previously mentioned regimen or the use of a 
regimen that included mitoxantrone, intermediate-dose cytarabine, and etoposide. Al-
logeneic peripheral blood stem cell transplantation (alloPBSCT) was performed in 21.62% 
of AML patients. The therapy for MDS-EB patients primarily consisted of 5-day decitabine 
or 7-day azacitidine, occasionally supplemented with low-dose cytarabine or alloPBSCT 
in 20% of patients, respectively. 

To establish CKS, datasets from The Cancer Genome Atlas (TCGA) AML [23], Beat 
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Figure 1. Overview of the study design. The flowchart explains the selection and filtering of the
patient cohort in the model development, validation, and prediction of clinical outcome.

The therapeutic strategies applied to the patients in our cohort are as follows: The
standard treatment regimen for AML patients most commonly (for 75.68% of AML patients)
involved high-intensity cytarabine and idarubicin (7 + 3), or daunorubicin (including one
case combined with midostaurin), followed by consolidation with high-dose cytarabine
or low-intensity decitabine (for 24.32%, including one case combined with venetoclax).
The salvage treatment regimen for the 37.84% of AML patients who did not respond to
the initial induction consisted of Fludarabine, cytarabine, G-CSF, and idarubicin regimen
for the majority of the cases (78.57%) and a venetoclax + decitabine regimen for the rest.
In 8.11% of AML patients, salvage therapy was administered multiple times, involving
alterations in the sequence of the previously mentioned regimen or the use of a regimen
that included mitoxantrone, intermediate-dose cytarabine, and etoposide. Allogeneic
peripheral blood stem cell transplantation (alloPBSCT) was performed in 21.62% of AML
patients. The therapy for MDS-EB patients primarily consisted of 5-day decitabine or 7-day
azacitidine, occasionally supplemented with low-dose cytarabine or alloPBSCT in 20% of
patients, respectively.

To establish CKS, datasets from The Cancer Genome Atlas (TCGA) AML [23], Beat
AML [24], and GSE15061 [25] were included. Clinical information, including chromosome
analysis results and RNA sequencing (RNA-seq) data for the TCGA AML and Beat AML
cohorts, was retrieved from cBioportal for Cancer Genomics, and gene expression data
for GSE15061 were downloaded from the Gene Expression Omnibus database. For TCGA
AML data, we validated ‘Cytogenetic abnormality type’ (for 195 cases where the data
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were available for CK classification), excluded WHO-designated balanced abnormalities
(62 cases), and defined CK based on categorization (133 cases). For the Beat AML cohort,
diagnostic bone marrow (BM) aspirate samples with RNA-seq and chromosome analyses
data available for CK classification (161 cases) and not suspected of the exclusion criteria
were analyzed (120 cases). For GSE15061, among the diagnostic BM samples of patients with
MDS-EB (48 cases) in the MDS cohort (164 cases), CK was defined based on categorization.

2.2. RNA Extraction, Library Preparation, and RNA-Seq

The diagnostic BM samples were subjected to RNA-seq analysis. RNA was extracted
using the QIAamp RNA Blood Mini Kit (Qiagen, Venlo, The Netherlands) and reverse-
transcribed to complementary DNA (cDNA) using the SuperScript VILO cDNA synthesis
kit (Thermo Fisher Scientific, Waltham, MA, USA). RNA-seq libraries were prepared using
the TruSeq Standard Total RNA LT Sample Prep Kit (Illumina, Inc., San Diego, CA, USA)
and sequenced on the NovaSeq Sequencing system (Illumina, Inc.). Sequenced reads were
aligned to the reference genome GrCh37 (hg19) using HISAT2 (version 2.1.0) [26], and
aligned reads were estimated using StringTie (version.2.1.3b) [27].

2.3. Differential Gene Expression and Pathway Analysis

Samples in the TCGA AML and Beat AML datasets were measured using the RNA-
seq platform. RNA-seq data from the KUMC, TCGA AML, and Beat AML cohorts were
subjected to differential gene expression analysis between patients with and without CK
within each cohort using the DESeq2 package (version 1.32.0) [28]. The raw expression
count data were used, and differentially expressed genes (DEGs) were identified using the
threshold of adjusted p value < 0.05 and absolute log2 fold change > 0.5. The GSE15601
dataset included microarray data from the GPL570 platform (Affymetrix Human Genome
U133 Plus 2.0 Array). DEGs between the CK and non-CK groups were identified using
the limma R package [29], and the threshold of adjusted p value < 0.1 and absolute log2
fold change > 1.5 was applied. The DEGs that were common in at least two cohorts were
selected. Overrepresentation analysis was performed using ConsensusPathDB (release
35) [30]. Pathway datasets included the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome, and Wikipathways.

2.4. Signature Development for CK Prediction

An overview of the study design and implementation is presented in Figure 1. We
randomly classified our study population into training (n = 175; 35 patients with CK and
140 patients with non-CK) and validation (n = 173; 34 patients with CK and 139 patients
with non-CK) cohorts stratified based on the CK status to generate a CK prediction model
and then subsequently validate the model. For the KUMC, TCGA AML, and Beat AML
cohorts, normalized values based on reads per kilobase per million mapped reads (RPKM)
were used for downstream analysis. Quantile normalization was performed using the
preprocessCore package (version 1.58.0). As for GSE15061, data processing was performed
using the trimmed mean of differences between perfectly matched and mismatched in-
tensities with the quantile normalization (DQN) algorithm [31]. For signature develop-
ment, z-score transformation was performed on a per gene basis and calculated using
z = (x − µ)/σ (where µ and σ are the gene mean and standard deviation, respectively) for
cross-platform normalization, as described elsewhere [32]. To select a subset of genes from
the training cohort for signature development, LASSO regression was applied using the
glmnet package (version 4.1-4) [33] and validated using the leave-one-out cross-validation
(LOOCV) method of the caret package (version 6.0-92) [34] to fit a logistic regression model.
A subset of ten genes was selected, and the weighted combined gene expression (i.e., the
CK score) was calculated to predict CK in the training cohort. Using the ‘predict’ function
of the glmnet package, the patients were categorized as ‘CKS’ or ‘non-CKS’ at a threshold
of 0.5.
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The values for the leukemic stem cell 17 signature score (LSC17) and AML prognostic
score (APS) were calculated using model coefficients described by Ng et al. and Docking
et al., respectively [17,18]. Briefly, LSC17 and APS were calculated as the sum of the log2-
transformed RPKM-scaled counts weighted by the regression coefficients. Each cohort was
dichotomized using their respective median scores to define high and low scores.

2.5. Cell Viability and ROS Assays on AML Cells with CK Treated with LCS-1, a Specific Inhibitor
of Superoxide Dismutase 1 (SOD1)

Human AML HL-60 cells karyotyped as CK were purchased from the Korean Cell Line
Bank (KCLB, Seoul, Republic of Korea) and maintained in RPMI 1640 (Corning Mediatech,
Corning, NY, USA) supplemented with 10% fetal bovine serum (FBS; Corning Mediatech)
and 25 mM HEPES at 37 ◦C in 5% CO2. HL-60 cells were seeded in 6-well plates and treated
with LCS-1 (Merck, Darmstadt, Germany) at various time points. After incubation, the cells
were collected and centrifuged at 300× g for 10 min. The cell pellet was washed with cold
Dulbecco’s phosphate-buffered saline (DPBS) and homogenized using an Ultra-Turrax T8
homogeniser (IKA-Werke GmbH&Co. KG, Staufen, Germany). Thereafter, the samples
were centrifuged at 300× g for 10 min, and the supernatant was used to measure SOD
enzymatic activity using a SOD Colorimetric Activity Kit (Invitrogen). The assay was
conducted according to the manufacturer’s protocol, and the unit of SOD activity was
calculated relative to the standard reagent provided in the kit.

For cell viability assay, HL-60 cells were seeded in 96-well plates and treated with
various concentrations (0, 0.1, 0.5, 1, and 2.5 µM) of LCS-1 diluted in serum-free RPMI
1640 for 24 h. After incubation, a thiazolyl blue tetrazolium bromide (MTT) solution
(Sigma-Aldrich, Burlington, MA, USA) was added to each well of the plate and incubated
at 37 ◦C for 4 h. Subsequently, dimethyl sulfoxide (Sigma-Aldrich) was added to each well
and incubated for 0.5 h. The absorbance at 450 nm was measured using Varioskan LUX
multimode microplate reader (Thermo Fisher Scientific). The control was set to 100%, and
the absorbance of the other samples were calculated relative to the control. In addition, HL-
60 cells were stained with 5 µg/mL Propidium iodide (PI) (Sigma-Aldrich) for 20 min and
washed with DPBS. The stained cells were analyzed using the EVOS™ FL Auto 2 imaging
system (Thermo Fisher Scientific). PI fluorescence was quantified using ImageJ software
(version 1.52a), and each treated sample was calculated relative to the control samples.

Intracellular reactive oxygen species (ROS) was measured using 2′,7′-dichlorofluorescin
diacetate (DCFDA, Sigma-Aldrich), which is a cell-permeable, non-fluorescent probe that
exhibits green fluorescence upon oxidation. Mitochondrial ROS was measured using
MitoSOX™ (Invitrogen, Carlsbad, CA, USA), a fluorescent dye specific for detecting mito-
chondrial superoxide production in cells. Briefly, the cells were treated with 1 µM DCFDA
or 5 µM MitoSOX™ in serum-free medium and incubated for 20 min at 37 ◦C. The cells
were then washed with DPBS. The cells stained with fluorescent dyes were detected using
an EVOS™ FL Auto 2 Imaging system (Thermo Fisher Scientific). The fluorescence values
were quantified using ImageJ software, and each condition sample was calculated relative
to the control samples.

2.6. Statistical Analysis

All statistical analyses and visualizations were performed using the R software (ver-
sion 3.4.3). For model validation using LOOCV, the receiver operating characteristic (ROC)
curves and the area under the curve (AUC) were analyzed. For analysis of patient character-
istics, comparisons between the two groups were performed using the Kruskal–Wallis rank
sum test for continuous variables and the Fisher’s exact test for categorical variables. Sur-
vival was estimated using the Kaplan–Meier method, log-rank test, and Cox proportional
hazard regression with the Survminer (version 3.4.3) package.
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3. Results

In our cohort (KUMC cohort), a total of 47 patients with AML or MDS-EB (AML/MDS-
EB) were included. The main clinical and hematological characteristics of the patients
are presented in Table 1. CK, defined as ≥3 unrelated chromosomal abnormalities, was
detected in 16 patients with AML/MDS (10 AML and 6 MDS-EB), with a mean number of
chromosomal abnormalities of 15. The degree of karyotype complexity was not significantly
different between AML with CK and MDS-EB with CK in our study (p = 0.3855).

Table 1. Patient characteristics of the KUMC cohort.

KUMC (n = 47)

Sex (%)
Male 29 (61.7)
Female 18 (38.3)

Age (years)
Median (range) 67.0 (31.0–86.0)

Hb (g/dL)
Median (range) 7.9 (5.9–12.1)

WBC count (×109/L)
Median (range) 3.8 (0.6–247.2)

Platelet count (×109/L)
Median (range) 51.0 (3.0–240.0)

BM blasts (%)
Median (range) 40.0 (0.8–97.4)

Diagnosis
AML with recurrent genetic abnormalities 17 (36.2)

AML with mutated NPM1 8 (17.0)
AML with biallelic mutation of CEBPA 3 (6.4)
AML with mutated RUNX1 6 (12.8)

AML with MRC 11 (23.4)
AML, NOS 9 (19.1)
MDS-EB 10 (21.3)

Risk stratification by 2022 ELN
Favorable 7 (18.9)
Intermediate 9 (24.3)
Adverse 21 (56.8)

Risk stratificaton by IPSS-M 8 (17.0)
High 2 (20.0)
Very high 80 (80.0)

Number of chromosome abnormalities
Mean ± SD 5.2 ± 8.2

The diagnosis distribution within the KUMC cohort following the introduction of the
International Consensus Classification (ICC) 2022 is presented in Supplementary Table S1.

3.1. Differential Gene Expression Profile between CK and Non-CK Group

The gene expression data of KUMC, TCGA AML, Beat AML, and GSE15061 were sub-
jected to differential gene expression analysis between patients with and without CK within
each cohort, including 69 patients with CK and 279 patients with non-CK. DEGs common
in at least two of the four cohorts were selected. A total of 404 DEGs were identified,
including 222 upregulated and 182 downregulated genes (Supplementary Table S2).

Notably, the downregulated genes were mostly localized on chromosome 5 or chro-
mosome 7 and the upregulated genes were localized on chromosome 1 or chromosome 11
(Figure 2a). When examining the localization of DEGs by chromosome arm, the majority
of downregulated genes were found on the long arm of either the chromosome 5 (n = 38,
9.41% of DEGs), chromosome 7 (n = 20, 4.95% of DEGs), or chromosome 17 (n = 17, 4.21%
of DEGs). More than half of the DEGs located on the 17q were distributed in the 17q21
band (n = 9), while on chromosomes 5 and 7, DEGs were distributed throughout the long
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arm. For upregulated genes, 20 genes each (4.9% of DEGs) were located on the long arm of
chromosome 11 and short arm of chromosome 1, respectively, and were most frequently
observed in the 11q13 (n = 7) and 1p34 (n = 8) bands.
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Figure 2. Differential gene expression profiles between the complex karyotype (CK) and non-CK
group. (a) The distribution of differentially expressed genes (DEGs) in the CK group compared
to that of the non-CK group based on chromosome location. The y-axis represents chromosome
numbers, and the x-axis indicates the proportion of DEGs located on each chromosome out of the
total DEGs. The red bars represent the fraction of upregulated genes among all DEGs (a total of 0.55),
whereas the blue bars represent the fraction of downregulated genes (a total of 0.45). (b) A heatmap
of 404 DEGs between the CK and non-CK groups. (c) The over-representation analysis based on
Reactome, Wikipathways, and KEGG databases. The fraction of genes belonging to each term out of
total listed genes is shown on the x-axis, and the q-values of ≤ 0.05 are considered significant and
plotted accordingly.

Hierarchical clustering of the 404 DEGs revealed the possibility of differentiating
between the CK and non-CK groups based on gene expression patterns (Figure 2b). Over-
representation analysis revealed the dysregulation of genes significantly involved in cell
cycle (e.g., BUB1, ORC1, YWHAH, ESPL1, WEE1, CDC20, TFDP1, CHEK1), heme biosynthe-
sis (UROD, HMBS, UROS), and cellular responses to stress (e.g., RPS14, RPL26, FBXL17,
SOD1) (Figure 2c, Supplementary Table S3). Dysregulation of several genes associated
with chromosome instability, such as BUB1 and CDC20 were noted in CK group [35,36].
Upregulated DEGs were significantly enriched in cell cycle, heme biosynthesis, whereas
downregulated DEGs were significantly enriched in ribosome and cholesterol metabolism.

3.2. CKS Training and Validation

Based on the differential gene expression profiles of the CK group, we investigated
whether the expression data from 404 DEGs could be used to establish a more robust CKS
for CK classification. To establish the CKS gene set for predicting CK, the final set of ten
DEGs were extracted using LASSO regression to fit a multivariate logistic regression model.
The model development process using the training cohort defined the CKS calculated for
each patient using gene expression weighted by regression coefficients as follows: CKS
score = −6.157 + (PRX × 1.7021) + (MMD × 1.5629) + (KIAA1549 × −1.2916) + (GIPC1
× 0.9794) + (RAB33A × 2.1416) + (SOD1 × 2.1254) + (MED7 × −1.8714) + (COPG2 ×
−2.0169) + (RPS14 × −1.204) + (PSMB10 × −1.6775). The CKS score in the training cohort
showed an LOOCV-estimated AUC of 0.952 (Figure 3a), with an overall accuracy of 95.43%
(n = 167/175) for CK prediction. As the CKS scores differed significantly between the CK
and non-CK groups (p < 0.0001), we further evaluated the CKS model using the validation



Cancers 2023, 15, 5289 9 of 18

cohort. In the validation cohort, the AUC was 0.977 (Figure 3b), with an overall accuracy of
94.22% (n = 161/173), and the CKS score was sufficient to differentiate between the CK and
non-CK groups (p < 0.0001).
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Figure 3. Evaluation results of complex karyotype signature (CKS) classification performance and
prognostic impact. LOOCV-estimated AUC of CKS score for predicting CK in the training cohort
(a) and validation cohort (b). (c) Kaplan–Meier curves against overall survival (OS) according to CK
(orange line) and non-CK (green line) in KUMC (left), TCGA (middle), and BeatAML (right) cohorts.
(d) Kaplan–Meier curves against OS according to predicted as CK by CKS (orange line) and non-CKS
(green line) in KUMC (left), TCGA (middle), and BeatAML (right) cohorts.

3.3. Assessment of CKS Prediction for CK

An analysis was conducted on cases where there were discrepancies in the prediction
of CKS of CK. The proportion of inaccurate predictions showed no difference between
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MDS-EB and AML group (6.8% vs. 5.5%), demonstrating that the CKS was capable of
predicting CK in patients with AML and MDS-EB.

There were ten non-CK cases with a CK gene expression signature, resulting in a
specificity of 96.42%. No differences were observed in terms of clinical outcome from a
comparison between these commonly referred to as false positive cases and true negative
cases. The most common unbalanced chromosomal abnormalities in CK involve the loss of
5q, 7q and 17p [13,14]. Notably, among the genes comprising CKS, the four out of the five
downregulated genes are located on 5q and 7q. Therefore, we examined the association
between false positive cases and these deletions in cases with karyotype information
(Supplementary Table S4). 5q deletion and 7q deletion were observed in one sample
each, however, such deletion was not accompanied in the majority of cases, drawing a
generalized conclusion remains premature. Among four samples for which microarray
data were available, one sample exhibited complexity corresponds to CK (copy-number
alterations of more than 5 Mbp in more than three different chromosome arms).

Eight CK cases were identified as non-CK by CKS, resulting in a sensitivity of 88.40%.
However, these false negative cases in TCGA and BeatAML cohorts had significantly longer
overall survival compared to accurately predicted positive cases (TCGA: median OS of 64.0
vs. 7.0, p = 0.032; BeatAML: 20.9 vs. 5.0, p = 0.010). The discrepancy that compromised
sensitivity could reflect cases with more favorable clinical outcomes. In the KUMC cohort,
there was a single instance of a false negative which precluded meaningful statistical
analysis. Among the six samples with available karyotype information, a subclone of
the CK clone was observed in only two to three metaphases out of the entire metaphase
population in two thirds of these samples (Supplementary Table S4). This underscores
a potential limitation of RNA-seq, which, being a bulk analysis, may not fully capture
subclones that constitute a small fraction of the population. The two samples for which
microarray data were available showed low complexity corresponding to non-CK.

3.4. Evaluation of CKS as a Prognostic Score

We evaluated the prognostic impact of the CKS determined using the CKS score
in predicting clinical outcomes. Three cohorts with survival data, namely, the KUMC,
TCGA AML, and Beat AML cohorts, were analyzed. In the KUMC and TCGA cohorts,
all patients included in the CKS model development were also included in the survival
analysis, whereas 107 patients (CK group n = 89; non-CK group n = 18) with available
survival data were included in the Beat AML cohort.

Patients with CK in the KUMC cohort were characterized by lower white blood cell
(WBC) counts (p = 0.021; median value of 2.6 vs. 5.4× 109/L) (Table 2). CK was significantly
associated with shorter OS; the estimated 1-year OS for patients with CK was 31.2% and
that for patients without CK was 55.6% (p = 0.028) (Figure 3c). Survival analysis of CKS also
revealed a significant association with shorter OS (p = 0.0360; 1-year OS, 31.2% vs. 55.7%)
(Figure 3d). We performed univariate Cox analysis with stratified patient age, peripheral
blood WBC count, diagnostic BM blast count, presence of FLT3-ITD, RUNX1, presence
of CK, and three dichotomized prognostic models, including CKS, LSC17, and APS. In
the KUMC cohort, CK and CKS were identified as the sole predictors of OS with a strong
association (CK: HR = 2.1812, p = 0.0318; CKS: HR = 2.1098, p = 0.0402) (Table 3).

We then investigated the clinical impact of CK and CKS on the TCGA AML and Beat
AML cohorts. In both cohorts, lower WBC counts and lower BM blast percentages were
observed in the CK group, as in the KUMC cohort (Supplementary Tables S5 and S6). CK
was significantly associated with shorter OS in the TCGA AML cohort (p = 0.033; 1-year
OS, 56.1% vs. 39.1%), and a trend toward shorter OS in the Beat AML cohort (p= 0.062;
1-year OS, 56.54% vs. 35.7%) (Figure 3c), whereas CKS was significantly associated with
shorter OS in both cohorts (TCGA AML: p = 0.00043; 1-year OS, 58.1% vs. 32.0%; Beat
AML: p = 0.0015; 1-year OS, 59.1% vs. 19.6%) (Figure 3d). In both cohorts, based on the
univariate Cox analysis, an association or resembling trend between CK and OS was noted
(TCGA AML: HR = 1.7175, p = 0.0353; Beat AML: HR = 1.8371, p = 0.0657), and a stronger
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association was observed with CKS (TCGA AML: HR = 2.2926, p = 0.0006; Beat AML:
HR = 2.8349, p = 0.0024) (Table 3). Among clinical variables, only stratified patient age was
found to affect OS. In the multivariate analysis incorporating this variable, CKS retained its
strong independent prognostic power in both cohorts (TCGA AML: adjusted HR = 1.8671,
p =0.0121; Beat AML: adjusted HR = 2.6512, p = 0.0050) (Table 3).

Table 2. Patient characteristic of the KUMC cohort evaluated for clinical significance of complex
karyotype.

Total (n = 47) CK (n = 16) Non-CK (n = 31) p

Sex (%) 0.691
Male 29 (61.7) 11 (68.8) 18 (58.1)
Female 18 (38.3) 5 (31.2) 13 (41.9)

Age (years) 0.661
Median (range) 67.0 (31.0–86.0) 66.0 (31.0–84.0) 67.0 (46.0–86.0)

Hb (g/dL) 0.875
Median (range) 7.9 (5.9–12.1) 8.1 (6.5–9.7) 7.8 (5.9–12.1)

WBC count (×109/L) 0.021
Median (range) 3.8 (0.6–247.2) 2.6 (1.4–30.4) 5.4 (0.6–247.2)

Platelet count (×109/L) 0.148
Median (range) 51.0 (3.0–240.0) 34.0 (9.0–240.0) 56.0 (3.0–177.0)
BM blasts (%) 0.116

Median (range) 40.0 (0.8–97.4) 26.5 (0.8–96) 48.1 (11.0–97.4)
Risk stratification by genetics
FLT3-ITD 0.104
without 40 (85.1) 16 (100.0) 24 (77.4)
with 7 (14.9) 0 (0.0) 7 (22.6)
RUNX1 0.155
without 39 (83.0) 16 (100.0) 23 (74.2)
with 8 (17.0) 0 (0.0) 8 (25.8)
Overall survival (months)

Median (range) 10.3 (0.1–46.1) 5.1 (0.2–22.3) 11.6 (0.1–46.1)

AML Total (n = 37) CK (n = 27) Non-CK (n = 10)

Risk stratification by 2022
ELN 0.005

Favorable 7 (18.9) 0 (0.0) 7 (25.9)
Intermediate 9 (24.3) 0 (0.0) 9 (33.3)
Adverse 21 (56.8) 10 (100.0) 11 (40.7)

3.5. Comparison of Prognostic Performance with Other Models

As the prognostic impact of CKS was evaluated, we further performed a comparison
between CKS and previously developed models, namely, LSC17 score and APS, in the
prediction of outcomes in patients with AML. The LSC17 score is a model based on the
expression of 17 leukemic stem cell-enriched genes and accurately predicts poor prognosis
in patients with AML [18,19,37,38]. APS is a 16-gene expression signature model developed
to improve risk stratification of patients with AML [17]. These models were established
to predict the prognosis of all patients with AML, including those with WHO-designated
balanced abnormalities. Prognostic prediction in the context of specific cytogenetic abnor-
malities, such as CK, has not been previously evaluated. We calculated the LSC17 score and
APS for each AML sample in the TCGA AML and Beat AML cohorts and observed that
samples with above-median scores (within each cohort) had significantly worse survival
outcomes in the TCGA AML (LSC17: HR = 1.7483, p = 0.0068; APS: HR = 1.4957, p = 0.0486)
and Beat AML cohorts (LSC17: HR = 2.1387, p = 0.0097; APS: HR = 2.2187, p = 0.0065)
(Table 3). However, in each cohort, the hazard ratio for CKS was higher than that for both
LSC17 and APS in univariate Cox analysis. When included as covariates in the multivariate
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Cox analysis, the CKS retained a higher hazard ratio than the above two prognostic models
in both cohorts (Table 3).

Table 3. Univariate and multivariate Cox regression analyses of the potential factors influencing
overall survival. The figures displayed in the multivariate analysis represent the HR and p-values
for CK, CKS, LSC17, and APS when co-analyzed with a factor that has been demonstrated to have a
significant association with overall survival in preceding univariate analysis, namely stratified age.

Cohort KUMC TCGA BeatAML

Univariate Analysis

HR
(95% CI) p HR

(95% CI) p HR
(95% CI) p

Age (>65 years) 1.1584
(0.5548–2.4185) 0.6969 2.8149

(1.8637–4.2516) <0.0001 2.7475
(1.5945–4.7343) 0.0003

PB WBC count 1.0000
(1.0000–1.0000) 0.9775 1.0026

(0.9984–1.0068) 0.2347 1.0002
(0.9960–1.0045) 0.9114

BM blast count 0.9970
(0.9849–1.0093) 0.6364 0.9950

(0.9849–1.0053) 0.3428 0.9948
(0.9851–1.0046) 0.2978

FLT3-ITD
mutation

0.9978
(0.3839–2.5937) 0.9965 1.0012

(0.5922- 1.6927) 0.9963 1.8201
(0.9591–3.4542) 0.0683

RUNX1
mutation

1.6715
(0.5755–4.8550) 0.3475 1.4898

(0.8118–2.7339) 0.2004 1.2844
(0.6556–2.5161) 0.4680

CK 2.1812
(1.0741–4.4293) 0.0318 1.7175

(1.0407–2.8343) 0.0353 1.8371
(0.9644–3.4994) 0.0657

CKS 2.1098
(1.0376–4.2902) 0.0402 2.2926

(1.4286–3.6793) 0.0006 2.8349
(1.4498–5.5433) 0.0024

LSC17 - - 1.7483
(1.1692–2.6144) 0.0068 2.1387

(1.2059–3.7931) 0.0097

APS - - 1.4957
(1.0045–2.2271) 0.0486 2.2187

(1.2529–3.9290) 0.0065

Multivariate analysis

HR
(95% CI) p Overall

p
HR

(95% CI) p Overall
p

HR
(95% CI) p Overall

p

CK + Age - - - 1.5819
(0.9562–2.6170) 0.0756 <0.0001 2.0341

(1.0605–3.9017) 0.0335 0.0003

CKS + Age - - - 1.8671
(1.1495–3.0326) 0.0121 <0.0001 2.6512

(1.3458–5.2227) 0.0050 <0.0001

LSC17 + Age - - - 1.5503
(1.0332–2.3262) 0.0351 <0.0001 2.0246

(1.1371–3.6047) 0.0171 0.0001

APS + Age - - - 1.5428
(1.0360–2.2975) 0.0337 <0.0001 1.8607

(1.0336–3.3496) 0.0394 0.0003

3.6. Effects of SOD1 Inhibition on AML Cell Proliferation and ROS Production

To investigate the feasibility of utilizing CKS for therapeutic selection, we have ex-
plored the potential of genes constituting CKS as prospective therapeutic targets. Through
a literature review, we have observed that SOD1, one of the components of CKS, is over-
expressed in the CK group and is associated with the development of various types of
cancers [39,40]. As an antioxidant enzyme, SOD1 is also a part of the cellular response to
stress pathway, which our overrepresentation analysis revealed to be dysregulated in the
CK group.

To determine if specific SOD1 inhibition would affect the cellular proliferation of the
AML cells HL-60, we treated these cells with the specific SOD1 inhibitor LCS-1. As shown
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in Figure 4a, LCS-1 suppressed SOD activity in a dose-dependent manner. To further
examine whether LCS-1 affects HL-60 viability, we performed cell viability assays, which
showed that SOD1 inhibition decreased cell viability in HL-60 (Figure 4b). Consistent with
the inhibitory effect of LCS-1 on cell viability, LCS-1 treatment led to a higher number of
dead cells in the treatment group than in the control group (Figure 4c). Given that SOD1
plays an essential role as an antioxidant enzyme, we investigated whether LCS-1 affects
ROS production. As shown in Figure 4d,e, SOD1 suppression caused a marked increase
in total as well as mitochondrial ROS levels in HL-60. These findings show that SOD1
inhibition induces AML cell apoptosis and ROS production, suggesting the potential of
SOD1 as a therapeutic target.
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Figure 4. SOD1 inhibitor treatment leads to reduction in AML cell proliferation. (a) Superoxide
dismutase (SOD) enzymatic activity (units/mL) measured after treatment with various concentrations
(0, 1, 2.5, and 5 µM) of LCS-1 in HL-60. (b) Cell viability (%) measured after treatment with different
concentrations (0, 0.1, 0.5, 1, and 2.5 µM) of LCS-1. (c) The production of dead cells detected by
fluorescence intensity measured after treatment with LCS-1 and staining with PI. (d) The production
of intracellular reactive oxygen species (ROS) detected by fluorescence intensity measured after
treatment with LCS-1 and staining with DCFDA. (e) The production of mitochondrial ROS detected
by fluorescence intensity measured after treatment with LCS-1 and staining with mitoSOX. The
concentrations of LCS-1 used for (c–e) are the same as the concentrations used in b. Bar graphs show
mean ± SD of fluorescence intensity quantified by ImageJ. Scale bar represents 100 µm. Statistical
analysis: * p < 0.05; ** p < 0.01; *** p < 0.001 vs. untreated control cells.

4. Discussion

CK is associated with a poor prognosis and resistance to standard chemotherapy in
both AML and MDS-EB [10–12]. In this study, we developed a 10-gene expression model to
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predict CK expression in AML and MDS-EB. The CKS was capable of accurately predicting
CK in both the training and validation cohorts. The CKS demonstrated a prognostic impact,
as the CKS score is a hazard indicator of magnitude similar to the previously reported risk
stratification models, LSC17 and APS.

In accordance with prior studies of the most frequently reported chromosome arms of
genomic imbalances (losses and gains) in CK-AML patients, the losses were reported with
following regions and frequencies: 5q, 17p, 7q, 18q, 16q, and 17q and conversely, gains,
while less prevalent than deletions, were reported with following frequencies: 8q, 11q, 21q,
22q, 1p, and 9p [39]. In this study, downregulated genes were notably found on 5q, 7q,
and 17q, while upregulated genes were identified on 11q and 1p, showing high degree of
alignment with previous findings.

The disease mechanism of CK is currently not fully elucidated; however, in MDS
or AML with 5q and/or 7q deletions, haploinsufficiency of genes in the deleted region
is considered one of the prevailing mechanisms resulting in disease development and
malignant progression. DEGs localized at 5q or 7q were previously suggested to be putative
haploinsufficient genes based on the location of genes in the commonly deleted region (5q:
FBXL17, PCBD2, TIGD6; 7q: TPK1, ZCWPW1) and/or gene expression (5q: HINT1, FAM13B,
PCBD2, RPS14; 7q: GSTK1, TBXAS1, ZNF227) [40–45]. The gene expression profile of CK
in this study suggests that multiple haploinsufficiencies due to the deletion of 5q or 7q
likely underlie the pathogenesis of CK, with some functionally related genes identified. For
instance, RPS14 has been implicated in the pathogenic mechanisms of cytopenias, including
MDS with 5q deletion and congenital macrocytic anemias [46]. In addition, upregulation of
DEGs localized at 11q and 1p may result from the duplication or amplification of 11q and
1p, previously observed in association with MDS or AML in patients with CK [39,47,48].
However, the pathogenic mechanisms as well as triplosensitivity of genes located on 11q
and 1p are not as clear as in the cases of losses.

The treatment strategy for high-risk AML patients with CK primarily involves in-
tensive chemotherapy, followed by allogeneic hematopoietic stem cell transplantation.
Nevertheless, over 50% of CK-AML patients experience disease relapse, necessitating
the exploration of novel treatment [49]. One of the previous studies highlighted on dys-
regulated pathways, demonstrating the disruption of cell cycle in CK, albeit limited to
subgroups with TP53 alterations and inhibitors targeting this pathway have shown promise
in vitro and in vivo [50]. Our overrepresentation analysis also revealed the significance of
the cell cycle, particularly the chromatin separation pathway in CK patients, aligning with
these findings. In this regard, we further aimed to identify other novel pathway-related
therapeutic targets for the CK group. Moreover, since CKS has proven valuable in risk-
stratifying AML and MDS-EB patients, identifying genes within the CKS model that can
also serve as therapeutic targets, could extend its application to predicting susceptible
patients for targeted therapy in the future. During our investigation of the genes comprising
the CKS model, we noticed that SOD1, which is overexpressed in the CK group, is also part
of the dysregulated pathway identified through overrepresentation analysis—specifically,
the cellular stress response pathway.

SOD1 codes for Cu/Zn superoxide dismutase associated with intracellular ROS reg-
ulation and is regulated by NF-E2 related factor (Nrf2). The interference with the Nrf2
pathway has been identified as one of the mechanisms of action of the Bcl-2 inhibitor
venetoclax, which is currently used for the treatment of AML patients who are not eligible
for intensive induction chemotherapy in combination with hypomethylating agents. Over-
expression of Nrf2 has been linked to venetoclax resistance [51–53]. Targeting SOD1 may
have implications for inhibiting the growth and proliferation of leukemia cell lines with
CKs as well as resistance to drugs such as venetoclax.

SOD1 has been reported in various human cancer types [54,55] and targeting SOD1
showed potential of inhibition of cancer growth in in vitro [56,57] and in vivo studies [58].
Regarding AML, SOD1 overexpression has been associated with an adverse prognosis [59],
and indirect inhibition of SOD1 resulted in selective apoptosis of leukemia cells [60].
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We have demonstrated that SOD1 inhibition in CK-AML cell lines induces apoptosis
and triggers ROS production. When combining our findings with existing research on
leukemia cell lines [60], in becomes evident that SOD1 is an attractive candidate for further
investigation as a therapeutic target for CK patients. Exploring the potential benefits of
combining conventional treatments or agents targeting recently suggested therapeutic
targets, such as PLK1, with SOD1 inhibitors could serve as a promising avenue for future
research [50].

Owing to the relatively small proportion of patients with MDS-EB included in our
study (16.67% of all patients included), it is possible that CKS may not fully encompass
the molecular genetic characteristics of MDS-EB, even though hierarchical clustering of the
404 DEGs could not differentiate between MDS-EB and AML based on the gene expression
patterns and the proportion of inaccurate predictions showed no difference between MDS-
EB and AML group (6.8% vs. 5.5%, respectively). Further application of this formula to
a larger MDS-EB group in the future may help validate its efficacy. Another limitation is
that the cohort of patients used in this study was composed of diverse patient groups who
received various treatments. Therefore, further studies are required to ensure the use of the
CKS score for predicting the clinical outcome in the patient group using specific treatment
regimens. Lastly, our cell culture was conducted targeting a single gene in a single cell line.
While we have presented the potential for SOD1 inhibition following existing research [60],
further validation is necessary with different cell lines. Additionally, a comprehensive
consideration for the other genes comprising CKS as the candidate for therapeutic target
is required.

5. Conclusions

Conclusively, we performed gene expression analysis of patients with AML and MDS-
EB with CK and developed a model to predict CK. The significance of this study lies in its
ability to diagnose CK using gene expression profiling. The results of this study imply that
previously established haploinsufficiency due to the deletion of 5q or 7q possibly underlies
the pathogenesis of CK. Moreover, we observed that the CKS could be used as a model to
unravel potential therapeutic targets such as SOD1.
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