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Simple Summary: Artificial intelligence (AI) has largely changed the overall management of non-
small-cell lung cancer (NSCLC) by enhancing different aspects, including staging, prognosis assess-
ment, treatment prediction, response evaluation, recurrence/prognosis prediction, and personalized
prognostic assessment. In the present narrative review, we analyzed and discuss studies reporting
on how AI algorithms could predict responses to various treatment modalities, such as surgery,
radiotherapy, chemotherapy, targeted therapy, and immunotherapy.

Abstract: Artificial Intelligence (AI) has revolutionized the management of non-small-cell lung cancer
(NSCLC) by enhancing different aspects, including staging, prognosis assessment, treatment predic-
tion, response evaluation, recurrence/prognosis prediction, and personalized prognostic assessment.
AI algorithms may accurately classify NSCLC stages using machine learning techniques and deep
imaging data analysis. This could potentially improve precision and efficiency in staging, facilitating
personalized treatment decisions. Furthermore, there are data suggesting the potential application
of AI-based models in predicting prognosis in terms of survival rates and disease progression by
integrating clinical, imaging and molecular data. In the present narrative review, we will analyze the
preliminary studies reporting on how AI algorithms could predict responses to various treatment
modalities, such as surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy.
There is robust evidence suggesting that AI also plays a crucial role in predicting the likelihood of
tumor recurrence after surgery and the pattern of failure, which has significant implications for tailor-
ing adjuvant treatments. The successful implementation of AI in personalized prognostic assessment
requires the integration of different data sources, including clinical, molecular, and imaging data.
Machine learning (ML) and deep learning (DL) techniques enable AI models to analyze these data and
generate personalized prognostic predictions, allowing for a precise and individualized approach to
patient care. However, challenges relating to data quality, interpretability, and the ability of AI models
to generalize need to be addressed. Collaboration among clinicians, data scientists, and regulators
is critical for the responsible implementation of AI and for maximizing its benefits in providing a
more personalized prognostic assessment. Continued research, validation, and collaboration are
essential to fully exploit the potential of AI in NSCLC management and improve patient outcomes.
Herein, we have summarized the state of the art of applications of AI in lung cancer for predicting
staging, prognosis, and pattern of recurrence after treatment in order to provide to the readers a large
comprehensive overview of this challenging issue.
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1. Introduction

Lung cancer remains a significant and challenging disease, being the leading cause
of cancer-related death worldwide. Late diagnosis and the inherent variability in the
imaging characteristics and histopathology of lung cancer present significant barriers for
clinicians in determining the optimal treatment approach, which are now the main limits
to the optimization of the treatment. Non-small-cell lung cancer (NSCLC) is the predom-
inant subtype and its treatment typically involves surgery, radiotherapy, chemotherapy,
immunotherapy or molecular targeted therapy [1]. Despite remarkable advances in lung
cancer treatment, overall survival remains disappointingly low, necessitating the use of
personalized strategies to improve patient outcomes. Advances in precision medicine and
biomarker identification offer hope to improve patient outcomes. Clinicians must adopt
a personalized approach to treat lung cancer patients to improve the efficacy of current
treatment options. In this framework, to answer to several unmet needs of clinicians,
radiomics approaches may play a crucial role. Radiomics is an emerging and rapidly de-
veloping field that integrates knowledge from radiology, oncology, and computer science,
emphasizing the integration of medicine and engineering. In recent years, AI has emerged
as a promising tool in the field of oncology, particularly in image recognition and analysis.
This new branch may help in the precise recognition of lung nodules thanks to well-defined
radiological features and may lead to a more accurate diagnosis. This would reduce the
limited capability of the human eye to predict the kind of lesion, starting only from the
images, and would increase the chances of a correct preoperative diagnosis and, as a direct
consequence of this, a more customized treatment. Furthermore, where the molecular
mutations that drove the tumor growth could be also predicted, targeted therapy could be
administrated without any delay.

There is a shared impression in the scientific community that the future of lung cancer
treatment lies in developing innovative approaches that consider the heterogeneity of the
disease and, therefore, allow the personalized treatment for each lung cancer patient.

Artificial Intelligence (AI) is the term used to describe the use of computers and
technology to simulate intelligent behavior and critical thinking comparable to that of a
human being. John McCarthy first described AI in 1956 as the science and engineering
of making intelligent machines. AI is a branch of computer science that consists of a
set of algorithms that can interpret large amounts of data to perform complicated tasks
and mimic human intelligence [2]. Machine learning (ML) is a type of AI that develops
algorithms based mainly on pre-defined existing data without explicit programming. Deep
learning (DL) is a sub-discipline of ML based on a neural network structure inspired by the
human brain. DL algorithms do not need to pre-define features and can, therefore, learn
features directly by navigating the data themselves. This data-driven mode makes them
more informative and practical. Convolutional neural networks (CNNs), recurrent neural
networks (RNNs), Restricted Boltzmann Machines (RBMs) and Autoencoders (AE) are the
most used models of machine learning in the field of medical images. They are also the
most popular types of DL architecture in medical image analysis [3]. There is growing
evidence that radiomics can be used to quantitatively characterize tumors for tasks such
as disease characterization or outcome prediction [4]. AI is aiming to transform medical
practice, particularly in oncology, and has recently surpassed previous related technologies
in image recognition and analysis. AI can extract all kinds of information from the image
that is generally ignored by the human operator [5]. There is growing evidence suggesting
that radiomics can be used to quantitatively characterize tumors for tasks such as disease
characterization or outcome prediction. This represents an important research direction in
medical applications [5,6].



Cancers 2024, 16, 1832 3 of 18

2. Methodology of Research

This narrative review is a summary of relevant publications found through a literature
search performed in the PubMed Library database (see Figure 1).
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis flow diagram for the
literature search.

Comprehensive research of the literature was conducted on PubMed from 2007 to
2023. The advanced tool for titles and abstracts was used with the keywords: “AI and Lung
nodules”, “Lung cancer and Artificial Intelligence”, “NSCLC and AI”, and “predictive
model and NSCLC”.

Year of publication: Any publication date starting from 1 January 2007 was eligible
until 31 October 2023. Language: Only studies with their full text in the English language
were included.

Type of study: Only peer-reviewed publications reporting data from at least 20 cases
were considered. Secondary expert opinions were excluded at the screening stage. Only full
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manuscripts were eligible, excluding conference abstracts and proceedings. No constraints
were imposed based on the level of evidence.

We included (in the first selection) all original studies describing the use of Artificial
Intelligence, radiomics, deep learning, machine learning, lung cancer, lung malignancy,
lung nodules, and NSCLC.

A literature analysis was performed by two independent authors (F.L. and G.G) with
great experience (>10 years) in both clinical and research activities.

Discrepancies were resolved by a third author (M.C., with about 8 years of experience
in surgical/research activities in the field of lung cancer).

A fourth reviewer, C.S., with specific knowledge of the PRISMA methodology, su-
pervised the overall literature revision process according to the selection criteria reported
above. Finally, the articles were thoroughly examined, processed, and summarized accord-
ing to the goals of the review. Finally, all authors read the selected papers and engaged in
discussions to formulate reliable conclusions.

As reported in the flow chart (Figure 1), a total of 295 papers were identified with this
search strategy. Out of them, 164 were excluded because of the wrong study design, 69
because of the wrong publication type, and 4 because they were not written in English. In
the end, 58 articles were selected, because they were consistent with the aim of the review.

3. Artificial Intelligence and NSCLC Staging (TNM Stage)

The universally accepted staging system for lung cancer relies on the TNM system
or the assessment and definition of components associated with the primary neoplasm
(T), lymph node involvement (N), and metastatic presence (M). Precise staging of lung
cancer holds paramount importance as it forms the cornerstone for therapeutic decisions
and prognostic evaluations. Presently, the TNM system for lung cancer has been revised
to its eighth edition. Non-invasive techniques (CT, MRI, PET, trans-tracheobronchial and
transesophageal ultrasound) must be combined with invasive methods (mediastinoscopy,
mediastinotomy needle aspiration, transbronchial biopsy, video thoracoscopy, thoracotomy)
for pinpointing the location of diverse lymph node stations. Notably, in contemplating
potential multimodal treatment approaches, relying solely on lymph node size criteria for
staging is unjustifiable. These criteria, stemming from both CT (computed tomography)
and MRI (magnetic resonance imaging), remain unreliable: indeed, it is common to en-
counter small lymph nodes harboring metastases or large lymph nodes devoid of neoplastic
infiltration. The significance of mediastinal examination in clinical staging has spurred
research endeavors aimed at identifying the most dependable instrumental method. Recent
publications [7] have showcased the utility of deep learning techniques in assisting with
lung cancer staging by prognosticating the TNM classification. Furthermore, deep learning
methods have been particularly instrumental in identifying tumor dimensions, visceral
pleural invasion (VPI), and nodal involvement from preoperative chest CT scans. They
have also been harnessed to forecast N2 disease in clinical stage I non-small-cell lung cancer
(NSCLC) from chest CT images and predict distant metastasis in ostensibly early-stage
NSCLC patients [7]. Additionally, numerous authors have illustrated how the integration
of Artificial Intelligence (AI) into medical imaging can enhance the precision of tumor di-
mension measurements and the detection of nodal involvement, lymph vascular invasion,
visceral pleural invasion, and distant metastasis in patients afflicted with non-small-cell
lung cancer (NSCLC).

3.1. AI-Based Algorithms for Predicting the “T” Stage

The T parameter classification involves assessing the morphological and dimensional
characteristics of the primary tumor, including its location, its extent, and the involvement
of neighboring organs or structures, determined through non-invasive diagnostic tech-
niques such as CT and PET scans, as well as evaluating its cytohistological characteristics
via invasive diagnostic methods like cell or tumor tissue sampling. Kirienko et al. [8]
developed a convolutional neural network (CNN) on a cohort of 472 patients to stage
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primary lung tumors based on PET/CT images acquired prior to biopsy or surgery. They
achieved promising results in classifying T1–T2 and T3–T4 lung cancers with an accuracy
of 87%. Their study demonstrated the potential utility of these CNNs in assessing the T
parameter in lung cancer, providing rapid determination of whether a primary lung tumor
falls into the T1–T2 or T3–T4 categories based on baseline PET/CT images.

Similarly, Weikert et al. [9] devised an AI-based algorithm capable of effectively detect-
ing lung T1 lesions (detection rate: 90.4%) and moderately detecting T2 tumors (detection
rate: 70.8%): r 0.908 for T1 (p < 0.001) and r 0.797 for T2 (p < 0.001). However, the detection
rates appear to be influenced by tumor stage, with lower detection rates associated with
more advanced stages. Consequently, the algorithm’s performance proved weaker in T3
staging (detection rate: 30%) and poorer in T4 staging (detection rate: 9%), with r 0.520
for T3 (p 0.047) and r 0.748 for T4 (p 0.053), due to pleural involvement, a significant factor
contributing to misidentification. Numerous studies have examined the size of the solid
tumor component via analysis of chest computed tomography (CT) images and the size
of the invasive component via pathology, using the eighth edition of the American Joint
Commission on Cancer (AJCC) staging system. These parameters have been identified
as superior prognostic predictors compared to the total tumor size [10]. In most cases,
subsolid lung nodules, persistently present in CT chest images, represent pathologically
preinvasive lesions, such as atypical adenomatous hyperplasia (AAH) or adenocarcinoma
in situ (AIS), or lung cancers such as minimally invasive adenocarcinoma (MIA) or inva-
sive adenocarcinoma [11]. Zhao et al. [12] created a DL model that can differentiate the
AAH-AIS group, MIA group, and invasive adenocarcinoma group using data obtained
from 651 nodules ≤10 mm in size. Furthermore, they tested their AI-based model, compar-
ing its diagnostic performance with that of four radiologists through an external analysis
performed with 128 pathologically proven nodules. Surprisingly, the DL model achieved
a higher F1 score (described as 2 × (precision × recall)/(precision + recall)) compared to
that of the four radiologists for the task of three-group classification (AAH-AIS vs. MIA vs.
invasive adenocarcinoma groups). However, histological subtyping has posed challenges,
particularly regarding diagnostic discrepancies between invasive and non-invasive cancer
subtypes. AI holds promise in addressing these inconsistencies and facilitating standard-
ization. Choi et al. [13] designed a DL algorithm to predict visceral pleural invasion (VPI),
a crucial T2 descriptor with negative prognostic implications. Their algorithm, developed
on 676 patients with clinical stage IA lung adenocarcinoma, demonstrated comparable
performance to evaluations by three board-certified radiologists, achieving even higher
sensitivity and specificity (AUC = 90–100%) (adjusted odds ratio, 1.07; 95% CI, 1.03–1.11;
p < 0.001).

3.2. AI for Predicting “N” Lymph Node Involvement

The precise delineation of the N factor (lymph node involvement) holds significant
importance in determining the course of therapy. The accurate identification of early-stage
NSCLC cases devoid of lymphovascular invasion (LVI) or nodal invasion before surgery
could enable patients to undergo limited (sublobar) resection. This approach offers sub-
stantial advantages, especially for patients with compromised cardiopulmonary function.
Long-term results from the Japan Clinical Oncology Group JCOG0201 trial indicate that
such patients experience more favorable outcomes compared to those undergoing lobec-
tomy. Limited surgery is recognized to improve prognosis in lung cancer patients with
specific characteristics, including ground-glass opacity (GGO) nodules, a consolidation-
to-tumor (C/T) ratio of 0.5 or less, and a tumor size greater than 2 cm but not exceeding
3 cm [14]. Accurate N staging holds paramount importance in the optimal treatment
and management of non-small-cell lung cancer (NSCLC) patients. PET/CT imaging and
endobronchial ultrasound EBUS/TBNB represent the current standard diagnostic tools for
N staging. Regrettably, the occurrence of occult N2 metastases is relatively high, affecting
up to 8.5% of clinical stage I NSCLC cases. This circumstance has spurred researchers to in-
vestigate alternative methods for achieving more precise N staging. Radiomics emerges as
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a promising approach to enhance the accuracy of N staging in NSCLC patients, leveraging
its capacity to analyze extensive datasets of medical images and extract quantitative infor-
mation that traditional diagnostic methods may overlook. In solid tumors characterized by
a consolidation-to-tumor (C/T) ratio of 1.0, the tumor itself emerges as the most critical
region for predicting lymphovascular invasion (LVI) or nodal involvement. Conversely, in
part-solid tumors with a C/T ratio of less than 1.0, the periphery of the tumor, constituting
the interface between the tumor and the adjacent lung parenchyma, emerges as the most
significant area for predicting LVI or nodal involvement. This observation suggests the
presence of factors that are imperceptible to the human eye but nonetheless influence the
invasiveness of a part-solid tumor. To address this, Beck et al. [15], in 2021, integrated a
deep learning (DL) tool into preoperative CT images of 600 pathologically confirmed stage
I–III NSCLC patients with tumor size ≤ 3 cm who underwent upfront surgery to detect
lymphovascular invasion (LVI) or nodal involvement. Unlike lymph node metastasis, the
presence of LVI cannot be clinically and preoperatively determined based on CT imaging
features. Nonetheless, the incorporation of LVI or nodal metastasis into the prediction
of invasiveness using CT images represents a promising advancement. Tumor size and
the consolidation-to-tumor (C/T) ratio serve as indicators of nodal invasiveness, both as
evaluated via CT and determined by radiologists.

Their predictive model for LVI/nodal involvement demonstrated a sensitivity of
75.8%, specificity of 67.6%, and accuracy of 70.8%, with an AUC of 0.77 [16]. Recently,
Zhong et al. [17] developed a DL model for predicting N2 metastasis and conducting
prognostic stratification in clinical stage I NSCLC patients. Utilizing chest CT images
from 3096 patients, their model exhibited an AUC of 0.82 in forecasting N2 metastasis in
early-stage NSCLC. Furthermore, higher DL scores correlated with poorer overall survival
(adjusted hazard ratio, 2.9; 95% CI: 1.2–6.9; p = 0.02) and recurrence-free survival (adjusted
hazard ratio, 3.2; 95% CI: 1.4–7.4; p = 0.007). The authors concluded that deep learning could
accurately predict N2 staging and categorize NSCLC patients according to prognostic stage
I. On another note, Tau et al. [18] demonstrated that CNN analysis of primary PET images
from untreated NSCLC patients accurately predicted the N category with a sensitivity and
specificity of 74% and 84%, respectively. The algorithm also effectively predicted nodal
involvement (80%) with good diagnostic accuracy but yielded unsatisfactory results in
the presence of distant metastases (63%) (accuracy 0.80 ± 0.17, sensitivity 0.74 ± 0.32,
specificity 0.84 ± 0.16, AUC 0.80 ± 0.01).

3.3. AI for Predicting Distant Metastases “M” at Diagnosis

All patients diagnosed with confirmed or suspected neoplastic disease typically un-
dergo screening, which includes whole-body CT, bone scintigraphy, and, notably, PET-CT,
for distant metastases at common sites. Lung cancer commonly metastasizes to several
organs, including the liver, brain, bone, and adrenal glands, with radiomics demonstrat-
ing remarkable accuracy, especially in identifying adrenal gland metastases. In 2020, Wu
et al. [19] devised eight AI models aimed at defining “N” and “M” staging in 1102 NSCLC
patients with tumor mass ≤2 cm, utilizing both clinical and radiological features. The
majority of these eight models exhibited high AUCs, with all machine learning (ML)-
based models achieving AUCs ranging from 0.86 to 0.89. Through the feature selection
approach, tumor size, density, SUVmax, and age were identified as the most significant
predictive risk factors for nodal involvement and distant metastasis. Coroller et al. [20]
investigated the correlation between radiomic data and distant metastasis (DM), as well as
overall survival. They conducted a study involving 182 lung cancer patients treated with
chemo-radiotherapy, from whom they extracted 635 radiomic features. The aim was to
evaluate the prognostic potential of radiomic features as biomarkers for DM. Their findings
indicated that the combination of clinical and radiomic features exhibited a significantly
higher association with DM (p-value = 0.049) compared to the clinical model for patients
with locally advanced adenocarcinoma (ADC). This signature could facilitate the early
identification of locally advanced patients at risk of developing DM, enabling clinicians
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to personalize treatment strategies, such as intensifying chemotherapy, to mitigate the
risk of DM and enhance overall survival. Huang et al. [21] proposed a machine learning
algorithm aimed at identifying the optimal prognostic index for brain metastases within a
large patient cohort encompassing various tumor types. The cohort comprised 446 patients
in the training set and 254 in the testing set, predominantly with non-small-cell lung cancer
(NSCLC) (90.7%). Seven clinical and qualitative features including age, performance status,
the presence of extracranial metastases, primary tumor control, the number of lesions,
maximum lesion volume, and the administration of chemotherapy were utilized to predict
patients’ prognoses. Their study demonstrated that this machine learning-based prognosis
outperformed conventional statistical methods in terms of accuracy (88%), sensitivity (92%),
and specificity (85%), with an AUC of 0.97.

4. Artificial Intelligence and Prognosis

One of the pivotal applications of digital pathology lies in predicting patient prognosis
and response to treatment, thereby enabling precision medicine grounded in pathological
histomorphological phenotypes. While certain pathological features, such as lung cancer
classification and subtypes, have been identified as crucial prognostic factors, establishing a
direct correlation between pathological images and survival outcomes remains a significant
challenge [13].

AI-based analysis of the entire tumor volume prior to treatment has been utilized
to predict outcomes in lung cancer, encompassing the control of local and distant cancer
spread, as well as the survival of patients undergoing various treatment modalities for
non-small-cell lung cancer (NSCLC), such as surgical procedures, radiotherapy, chemother-
apy, targeted molecular therapy, or immunotherapy. AI holds promise as a non-invasive
approach for follow-up examinations by analyzing radiological follow-up CT/PET images
and H&E-stained slides and integrating data from innovative sources like liquid biopsies.
These liquid biopsies provide insights into the genetic phenotype of lung cancers without
requiring a tissue re-biopsy for confirming disease progression. A study examined 2186 full-
scan images of paraffin tissue sections from lung adenocarcinoma and lung squamous cell
carcinoma sourced from TCGA, alongside 294 images from the Tissue Microarray (TMA)
database [18].

Quantitative features were extracted from 9879 images, and the machine learning
algorithm identified the top features. The results indicated that these features could effec-
tively predict the survival times of patients with lung adenocarcinoma (p < 0.003) and lung
squamous cell carcinoma (p < 0.023). Furthermore, data from the TMA database were uti-
lized to validate the accuracy of the assessment model. The analysis revealed a statistically
significant difference in the prediction accuracy between these two tumor types (p < 0.036),
suggesting that the automatically acquired pathological image features accurately predicted
the prognoses of lung cancer patients [18]. Radiomics theory postulates that radiographic
phenotypes are indicative of fundamental pathophysiological changes that allow for the
prediction of tumor response and prognosis [22]. Prior studies have indicated that volu-
metric measures derived from RECIST and World Health Organization (WHO) criteria can
be employed to evaluate the agreement of automatically segmented lung lesions. Never-
theless, these measures seem to have constraints in effectively characterizing the complex
nature of tumors [23]. To address this limitation, Balagurunathan et al. [24] proposed
various categories for characterizing primary lung cancers with diverse characteristics.
These categories included size metrics such as volume, diameter, and border length, as
well as shape descriptors like shape index, compactness, and asymmetry. Additionally,
features related to the border region (e.g., border length and spiculation), related to the lung
field, image intensity-based attributes (e.g., mean, standard deviation, average airspace,
airspace deviation, energy, entropy, skewness, among others), and transformed texture
descriptors (utilizing wavelet transform, including entropy, energy, and Laws features)
were considered. These repeatable features were employed to forecast the prognostic score
of a conventional radiologist, yielding an AUC of 0.9. This study concluded that these
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findings would facilitate the identification of reproducible, informative, independent, and
prognostic imaging biomarkers capable of predicting response to therapy.

4.1. AI for Predicting Prognosis and Tumor Recurrence after Surgery

Previous radiomics investigations have often omitted patients who have undergone
surgical intervention for lung cancer. This exclusion is grounded in the presumption that
predicting tumor response solely based on its phenotype becomes irrational once the tumor
has been surgically removed [20]. However, a study by Hosny et al. [25], in 2018, involving
1194 patients with non-small-cell lung cancer (NSCLC) proposed that convolutional neural
networks (CNNs) could be beneficial in predicting 2-year overall survival in surgically
treated patients using CT data. This study also illustrated each CNN’s capability to cat-
egorize patients into high- and low-mortality-risk groups. CT imaging is preferred due
to its relatively stable radiodensity compared to other modalities such as MRI and PET.
Furthermore, this study suggests that deep learning (DL) features may offer superior prog-
nostic value for surgically treated patients. Surgical resection remains the gold standard
treatment for early-stage lung cancer. Artificial Intelligence (AI) has been utilized in preop-
erative evaluation and prognostication following surgery, thereby aiding the identification
of patients who may benefit from adjuvant chemotherapy post-surgery (see Table 1) [26].
In preoperative assessment, radiologist-level AI could help to predict visceral pleural inva-
sion [13] and identify early-stage lung adenocarcinoma suitable for sublobar resection [27].
Following surgery, AI could contribute to predicting prognosis. Models utilizing radiomic
feature nomograms could discern high-risk groups characterized by a postoperative tumor
recurrence risk 16 times higher than that of the low-risk group [28]. The convolutional neu-
ral network (CNN) model, pre-trained with the radiotherapy dataset, effectively forecasted
2-year overall survival post-surgery [25]. The model integrating genomic and clinicopatho-
logical features was able to identify patients at risk of recurrence and suitable for adjuvant
therapy [26]. Pathology images captured the high-resolution histomorphological details
of tumors. Identifying and describing tumor regions in pathology images manually is
time-consuming and subjective. In 2017, Wang et al. [29] developed a machine learning
(ML) model to forecast the risk of recurrence in early-stage non-small-cell lung cancer
(NSCLC) using digital H&E tumor microarray (TMA)-stained slides from surgically excised
tissue samples. Their findings revealed that a combination of nuclear shape, texture, and
architectural features served as predictive indicators of recurrence in early-stage NSCLC,
irrespective of clinical parameters such as gender, cancer stage, and histological subtype.
The model demonstrated an accuracy of 81% in predicting recurrence within the train-
ing group and 75% within the validation group. Notably, the model’s predictions were
identified as an independent prognostic factor. Consequently, it could potentially serve
as a decision support tool to assist in determining the utilisation of additional treatment
in early-stage lung cancer. Although the model was only assessed in a limited cohort of
235 patients, the concept holds promising implications for the future [30]. Similarly, a
2018 study trained a convolutional neural network (CNN) model to automatically extract
histopathological features of lung adenocarcinoma (ADC) [30]. The AI system successfully
detected tumor-related features in pathology images and developed a model for predicting
recurrence that remained independent of other clinical variables. With an overall prediction
accuracy of 89.8%, the CNN model demonstrated strong performance. Furthermore, the
patient prognostic model, trained on the NLST cohort, underwent independent validation
in the TCGA cohort, showcasing the model’s generalizability and applicability to diverse
lung adenocarcinoma patient cohorts. Song et al. [31] demonstrated an association between
features derived from CT images and overall survival in patients with non-small-cell lung
cancer (NSCLC). Their findings suggested that tumor heterogeneity quantified through CT
phenotypic signatures might indirectly indicate tumor prognosis. Detecting poor prognosis
via non-invasive methods could potentially mitigate unnecessary drug toxicity and costs,
thereby enabling the more precise selection of treatment regimens. These findings imply
that AI has the potential to become robust and widely applicable for practical use in clinical
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care. Furthermore, it could serve as a non-invasive and cost-effective routine medical test,
thereby contributing to improved outcomes. These studies underscore AI’s significant
potential as a prognostic tool. AI has the capacity to offer a non-invasive alternative for
pathological diagnosis and enhance the accuracy of therapeutic treatment decisions by
alleviating the workloads of radiologists, pathologists, and oncologists.

Table 1. The role of AI predicting NSCLC prognosis and tumor recurrence after surgery/SBRT.

Study Number of
Patients Prediction Results

Hosny et al. [25]
2018 1194

This study explores deep learning
applications in medical imaging,

allowing for the automated
quantification of radiographic
characteristics and potentially

improving patient stratification.

The CNN was able to significantly
stratify patients into low- and

high-mortality-risk groups in both
the radiotherapy (p < 0.001) and

surgery (p = 0.03) datasets.

Wang et al. [29]
2017

Retrospective cohort of
early-stage NSCLC (I–II)

patients (Cohort #1, n = 70;
Cohort #2, n = 119 and

Cohort #3, n = 116).

They trained an ML model to
predict the risk of recurrence in

early-stage NSCLC based on digital
H&E tumor microarray

(TMA)-stained slides of surgically
excised tissue samples.

The combination of nuclear shape,
texture, and architectural features

was predictive of recurrence in
early-stage NSCLC, independent of
clinical parameters such as gender,

cancer stage, and
histological subtype.

Wang et al. [30]
2018 389

They trained a deep CNN model to
automatically extract

histopathological features of
lung ADC.

The patient prognostic model was
trained using the NLST cohort and

independently validated in the
TCGA cohort, demonstrating the
applicability of the model to other

lung ADC patient cohorts.

Song et al. [31]
2016 661 The identification of poor prognosis

via non-invasive methods.

They demonstrated an association
between features extracted from CT

images and overall survival in
NSCLC patients. They concluded

that tumor heterogeneity quantified
via CT phenotypic signatures may
indirectly reflect tumor prognosis.

4.2. AI for Predicting Response and Prognosis after Chemotherapy, Targeted Therapy,
and Immunotherapy

In a recent investigation by Khorramin et al. [32], CT-based radiomic features were
derived from the peri- and intertumoral tissue of lung adenocarcinoma in 125 patients
undergoing pemetrexed-based platinum chemotherapy at the Cleveland Clinic. They
demonstrated the capability of AI to forecast the response to chemotherapy, achieving a
receiver operating characteristic (ROC) area under the curve of 0.82. The study concluded
that radiomics exhibited greater overall effectiveness in anticipating high-risk patients for
treatment compared to traditional clinicopathological assessments, and this association
correlated with both time to progression and overall survival in NSCLC patients. Aerts
et al. [33] enrolled 1019 patients to extract 440 radiomic features for predicting EGFR mu-
tations linked to gefitinib responsiveness, aiming to elucidate the inter-relation between
radiomics and mutation status at baseline, particularly concerning changes in therapy
among patients with and without EGFR mutations. They found that radiomics could
non-invasively define a gefitinib response phenotype (AUC = 0.67, p = 0.03) capable of
distinguishing between tumors with and without EGFR mutations at baseline. Moreover,
it could predict sensitive and resistant responders during follow-up with minimal addi-
tional expense, as imaging is routinely and repeatedly utilized in clinical practice. Mu
et al. [34] investigated 194 patients with histologically confirmed stage IIIB-IV NSCLC using
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pre-treatment PET/CT imaging, developing radiomic models to forecast which NSCLC
patients would derive the most benefit from immunotherapy. Additionally, this radiomics
signature was combined with ECOG status and histology for the personalized prediction
of progression-free survival (PFS) and overall survival (OS) prior to the initiation of check-
point blockade immunotherapy. Their findings suggested that an effective and consistent
radiomic approach could serve as a predictive biomarker (AUC = 0.82) for immunotherapy
response. Furthermore, radiomics could estimate PFS and OS, offering potential real-time
support for more precise and individualized decision-making in the immunotherapy-based
treatment of advanced NSCLC patients (see Table 2).

Table 2. The role of AI in response to systemic therapy for NSCLC.

Study Number of
Patients

Prediction to
Response to Results Comments

Khorrami et al. [32]
2019 125

Chemotherapy:
pemetrexed-based

platinum
chemotherapy

The radiomics signature was
significantly associated with the

following:
Response to chemotherapy: AUC

of 0.82 ± 0.09
Time to progression: HR 2.8;
95% CI: 1.95, 4.00; p < 0.0001)

Overall survival HR 2.35;
95% CI: 1.41, 3.94; p = 0.0011)

The results from the
training set were
confirmed in the

independent validation
set.

Aerts et al. [33]
2016 47

Gefitinib in
early-stage

adenocarcinoma

Radiomics-feature Laws-Energy
was significantly predictive for

EGFR mutation status
(AUC = 0.67, p = 0.03)

Capacity to predict EGFR
mutations for

non-invasive diagnosis

Mu et al. [34]
2020 194 Anti-PD-(L)1

immunotherapy

Multiparametric radiomics
signature was able to predict the

following:
Durable clinical benefit with AUCs
of 0.86 in the retrospective test and
0.81 in the prospective test cohorts.

Progression-free survival in the
training (p < 0.001), retrospective
test (p = 0.001), and prospective

test cohorts (p < 0.001),
Overall survival in the training

(p < 0.001), retrospective test
(p = 0.002), and prospective test

cohorts (p = 0.002)

IIIB-IV NSCLC with
pre-treatment PET/CT

images

AUC: area under the curve; HR: hazard ratio; CI: confidence interval; NSCLC: non-small-cell lung cancer.

4.3. AI for Predicting Response and Prognosis after Radiotherapy for NSCLC

Radiomics signatures have promising potential in predicting therapy effectiveness
for patients [35]. In instances where patients with non-small-cell lung cancer (NSCLC)
are medically unfit for surgery or decline it, stereotactic ablative radiotherapy (SABR)
or stereotactic body radiotherapy (SBRT) is recommended (see Table 3). The elevated
doses administered in SBRT have yielded local control rates of up to 90% at three years
post-treatment, comparable to those observed after surgery [36]. However, radiation-
induced lung injury (RILI), such as radiation fibrosis, may manifest following SBRT. Some
benign changes may resemble tumor recurrence in size and shape on routine CT scans
conducted every three months during follow-up. Mattonen et al. [37] developed a radiomics
algorithm with high predictive accuracy for distinguishing between recurrence and fibrosis
(AUC = 0.7). This advancement enables the timely administration of salvage therapies
to patients and reduces the risk of unnecessary invasive biopsy procedures for those
with benign fibrosis. Additionally, this automated decision support system enhances
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physician assessment of response to SBRT, facilitating the early detection of recurrence,
twenty times faster than manual segmentation. Fave et al. [36] conducted a study to
investigate whether radiomic features of NSCLC change during therapy and can enhance
prognostic models. They analyzed features from pre-treatment and weekly intra-treatment
CT images of 107 patients with stage III NSCLC. The study revealed significant changes in
all radiomics features during radiotherapy, indicating that radiomics cannot predict loco-
regional recurrence or distant metastasis. Nevertheless, these features remained prognostic
for overall survival. Other studies have developed predictive models based on CT [34] and
PET/CT [38] to assess the risk of distant metastases in NSCLC patients undergoing SBRT.
The 2018 study by Oikonomou et al. [38], involving 150 patients with 172 lung cancers
treated with SBRT, demonstrated that radiomics remained the sole predictor of overall
survival (OS), disease-specific survival (DSS), and regional control. The study concluded
that radiomics based on PET/CT provided complementary information for predicting
control and survival in SBRT-treated lung cancer patients. A larger study in 2019 by Lou
et al. [39], including 849 patients treated with SBRT for stage IA to IV NSCLC, concluded
that their deep learning (DL) model exhibited predictive characteristics that could assist
in personalizing the radiation dose by combining clinical variables with radiomics using
CT images. Nemoto and colleagues [40] constructed two neural networks (NNs) for the
prediction of overall survival (OS) and cancer progression in the first 5 years after SBRT,
which were evaluated using both internal and external test datasets. The survival and
cumulative incidence curves showed significant stratification. NNs identified low-risk
cancer progression groups of 5.6%, 6.9%, and 7.0% in the training, internal test, and external
test datasets, respectively, suggesting that 48% of patients with peripheral Tis-4N0M0
NSCLC could be categorized as being of low risk for cancer progression.

Table 3. The role of AI in response to radiotherapy.

Study Number of
Patients

Prediction to
Response to Results Comments

Huynh et al. [35]
2016 113

SABR
Prescribed

radiation dose (Gy):
54 (18–60)

Radiation dose per
fraction (Gy):

18 (10–18)

Radiomics features were able to
predict overall survival,

cancer-specific survival, and distant
metastases development.

Stage I–II NSCLC
15 imaging features
(3 conventional and

12 radiomic features) and
4 clinical parameters (age,

gender, performance status,
overall stage) were

included in the analysis.

Mattonen et al. [37]
2015 22 SABR

Radiomics able to distinguish
post-SABR fibrosis from tumor

recurrence (AUC 0.70).

Study validated
considering manual and
automatic segmentation.

Fave et al. [41]
2017 107

Radiotherapy
(66 or 74 Gy) and

concurrent
chemotherapy

Three prognostic models were
studied:
1: Only clinical variables;
2: Clinical variables and
pre-treatment radiomics features;
3: Clinical variables, pre-treatment
radiomics features, and changes in
radiomics features between pre- and
post-treatment imaging.
Creating prognostic models with
pre-treatment radiomics features
(2) and changes in radiomics
features between pre- and
post-treatment imaging (3) permit
better stratification for overall
survival, disease-free survival, and
distant metastases development.

Stage III NSCLC.



Cancers 2024, 16, 1832 12 of 18

Table 3. Cont.

Study Number of
Patients

Prediction to
Response to Results Comments

Oikonomou
et al. [38] 2018 150

SABR
Total dose:
48–56 Gy

Prognostics models predictive for
the following were studied:

- Model 1: Recurrence-free
survival (without considering
SUV) (p = 0.04) and distant
control (p = 0.01);

- Model 2: Disease-specific
survival (with SUVmax)
(p = 0.03);

- Model 3: Overall survival
(without and with SUVmax,
p = 0.02 and p = 0.02) and
disease-specific survival
(without and with SUVmax,
p = 0.02 and p = 0.02).

- Model 4: Overall survival
(without and with SUVmax,
p = 0.004 and p = 0.004), distal
control (without and with
SUVmax, p = 0.02 and p = 0.02),
and regional control survival
(without and with SUVmax,
p = 0.02 and p = 0.02).

Radiomics applied on
PET/CT.

Four predictional models
including different
radiomics features,

including or excluding the
SUV value.

Lou et al. [39]
2019 849

SABR
50–60 Gy in
3–5 fractions

Deep profiler score generated from
deep profiler signatures.

Predictive for 3-year local failure:
5.7% in low-risk group vs. 20% in

high-risk group (p < 0.001).

Multivariable models
including deep profiler and
clinical variables predicted
treatment failures with a
C-index of 0.72 (95% CI:
0.67–0.77), which was a

significant improvement
when compared to classical

radiomics (p = <0.001) or
3D volume (p = <0.001).

Nemoto et al. [40]
2022

692 (study
group) +

100 external
validation set

Predictions of SBRT
outcomes using
artificial neural

networks

The survival and cumulative
incidence curves were significantly

stratified in Tis-4N0M0 NSCLC
patients who underwent SBRT for

curative intent.

AUC: area under the curve; HR: hazard ratio; CI: confidence interval; NSCLC: non-small-cell lung cancer.

4.4. AI for Predicting Treatment Strategy/Treatment Decision

Accurate prognosis prediction in lung cancer patients is crucial for clinicians to assess
tumor progression and devise suitable treatment strategies. Traditionally, prognosis and
subsequent treatment decisions have relied heavily on cancer staging. However, patients
with the same cancer stage often exhibit diverse prognoses due to varying responses
to treatment [42]. Moreover, the rapidly evolving landscape of medical oncology may
render it challenging for physicians to stay abreast of the latest therapeutic guidelines. To
address these challenges, researchers have explored the application of deep learning (DL)
techniques to predict personalized treatment strategies for individual patients. One notable
example is the Watson for Oncology (WFO) system, developed in the USA and trained
using data from the Memorial Sloan Kettering Cancer Center (MSKCC) incorporating
the latest evidence and guidelines. WFO assists clinicians in offering accurate, tailored
treatment plans for cancer patients by extracting valuable insights from medical records.
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By inputting tumor-related data manually, WFO can predict survival likelihood and offer
personalized treatment recommendations for individual patients [43].

5. Limitations of AI-Based Models

The future of applying AI to lung cancer may focus on integration and practical appli-
cations. One approach is to integrate small datasets to create larger training datasets, as AI
is driven by data. However, data sharing regulations are a major challenge for researchers.
One potential solution is federated learning, where trained parameters are shared instead
of raw data [44,45]. In this method, models are trained separately at different hospitals,
and only the trained models are sent to a central server, avoiding direct access to raw data.
The final model is then returned to the individual hospitals. Another aspect to consider is
the integration of different disciplines and data sources into lung cancer research, including
radiology, pathology, demographic and clinical data, as well as old and new technologies.
Such integration can provide a more complete picture of reality and aid in the construction
of predictive models [46,47] (Figure 1). This concept gives rise to the idea of multi-omics or
‘medomics’ [48,49], reflecting the multidisciplinary teams in lung cancer clinical care [50].
The pursuit of a combination of different domain knowledge and multidisciplinary inte-
gration holds promise for the future. In addition to improving model accuracy through
larger training sample sizes and multidisciplinary integration, the practical application of
AI software poses challenges. Although studies have shown promising results in applying
AI to lung cancer and some products have received FDA approval [51–56], real-world
implementation in clinical workflows remains uncommon. Barriers such as user interface,
the speed of data analysis, the scalability of AI programs, internet bandwidth, and resource
requirements hinder widespread adoption. More infrastructure needs to be developed
before we can fully embrace an AI-enabled world.

6. Limitations of AI-Based Models and Future Directions

The current models mostly depend on retrospective study, which inevitably caused
biases such as selection bias and information bias. Therefore, prospective studies are ur-
gently needed to verify the efficiency of these models. More generally, since reproducibility
is one the main criticisms of this new era, all AI models that will be developed in the future
should be tested across diverse geographic regions, populations, and healthcare settings
to determine their general effectiveness and robustness. Increasing access to AI requires
lifting or reducing some financial or regulatory obstacles, so as to increase availability in
less privileged healthcare systems. Roadblocks regarding ethical and legal considerations
must be also addressed. Moreover, AI models must be simplified to increase utility among
relatively technologically illiterate populations.

Although AI has shown promising results in medical image analysis, it has some
limitations due to the need for labeled data provided by radiologists, which may reflect the
limitations of human perception and analytical discrimination. One of the main challenges
in applying deep CNNs to medical images is the resolution of the images [56]. While AI
models have demonstrated comparable or superior performance to humans, the complexity
of these models makes it difficult to interpret and understand how they make to their deci-
sions, which has led to the conception of AI models as “black boxes” [57]. Another major
concern is the generalizability of these models to all patients, which could be addressed
by developing continuous learning systems that utilize cloud techniques to allow for the
real-time delivery of clinical records and continuous modification of the underlying training
models. This would ensure the machine-independent reproducibility of the models [58].

The evolving role of AI-based models for precision medicine in NSCLC will implement
radiomics and liquid biopsies (circulating tumor cells and/or nucleic acids detection) to
achieve robust data on tumor biology, disease progression, and response to treatment in a
longitudinal non-invasive fashion [58].

Future applications of AI for precision medicine in NSCLC may implement the inte-
gration of multi-omics data to produce AI-based algorithms for treatment decisions and
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prognostic predictions (see Figure 2). The integration of larger and more diverse datasets
may overcome the current limitations of AI use. In this framework, our Research Team
is working on developing lung cancer multi-omics digital human avatars for integrating
precision medicine into clinical practice (LANTERN-project [57]). This is an interesting
example of the application of integrated AI techniques; by meticulously collecting genomic,
radiomic, and metabolomic profiles, alongside comprehensive clinical and treatment data,
the study aims to construct Humanized Digital Avatars (HDAs) that dynamically represent
each patient’s unique molecular and clinical landscape. This approach not only promises
to optimize patient-specific treatment strategies but also holds the potential to redefine the
future of cancer care by contributing to the ongoing transformation fueled by advanced
machine learning and AI techniques.
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Figure 2. AI applications for personalizing therapy and predicting response and prognosis in NSCLC
patients (Created with BioRender.com, www.biorender.com accessed on 20 January 2024).

Precision medicine enables the development of individualized treatment approaches
tailored to the specific needs and risk factors of each patient. This can help to improve
screening strategies, reduce adverse events, and ultimately enhance quality of life for
patients. From this viewpoint, the importance of the collaboration of different healthcare
professionals, to integrate the results from AI into a real-life setting, becomes clear.

Technological advancements such as big data, Artificial Intelligence, machine learning,
and predictive analytics play a crucial role in cancer treatment. For this reason, in the near
future, collaboration between engineers, biologists, statistics, informatics and technology
companies, and healthcare organizations will be a day-to-day practice to enhance AI-based
results for every patient.

These concepts enable more precise and personalized predictions and support physi-
cians in the treatment and monitoring of their patients.

www.biorender.com
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7. Conclusions

Artificial Intelligence (AI) has largely changed the overall management of non-small-
cell lung cancer (NSCLC) by enhancing different aspects, including staging, prognosis
assessment, treatment prediction, response evaluation, recurrence/prognosis prediction,
and personalized prognostic assessment. Indeed, AI-based technologies, despite their
infancy, have gained great attention within the oncology community as they could poten-
tially foster the optimal, personalized management of cancer patients. Indeed, by tackling
the complexity of the highly heterogeneous NSCLC disease, AI approaches will pave the
way for a paradigm shift in the field of informed, data-driven clinical decisions in the
near future.

Collaboration among clinicians, data scientists, and regulators is critical for the respon-
sible implementation of AI and for maximizing its benefits in providing more personalized
prognostic assessment.

Several challenges still remain, though their prospective validation within a large
number of institutions over diverse populations will ultimately lay the foundation for their
real-world implementation.
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