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Simple Summary: We explored how small non-coding RNAs, known as miRNAs, are involved in
the pathogenesis of cHL, a lymphoma originating from B cells. While miRNAs have shown broad
effects in normal cellular processes and cancers, their contribution to cHL has been less explored.
We organized the published human miRNA profiling studies of cHL and selected genes that are
crucial for cHL pathogenesis such as those leading to the loss of B-cell phenotypes, immune evasion,
and promotion of tumor growth. By providing a detailed analysis of the interactions between these
miRNAs and their target genes, our review not only enhances the understanding of cHL molecular
mechanisms but also paves the way for further research into how specific miRNAs could be involved
in cHL progression.

Abstract: Classical Hodgkin lymphoma (cHL) is a hematological malignancy of B-cell origin. The
tumor cells in cHL are referred to as Hodgkin and Reed–Sternberg (HRS) cells. This review provides
an overview of the currently known miRNA–target gene interactions. In addition, we pinpointed
other potential regulatory roles of microRNAs (miRNAs) by focusing on genes related to processes
relevant for cHL pathogenesis, i.e., loss of B-cell phenotypes, immune evasion, and growth support.
A cHL-specific miRNA signature was generated based on the available profiling studies. The
interactions relevant for cHL were extracted by comprehensively reviewing the existing studies on
validated miRNA–target gene interactions. The miRNAs with potential critical roles included miR-
155-5p, miR-148a-3p, miR-181a-5p, miR-200, miR-23a-3p, miR-125a/b, miR-130a-3p, miR-138, and
miR-143-3p, which target, amongst others, PU.1, ETS1, HLA-I, PD-L1, and NF-κB component genes.
Overall, we provide a comprehensive perspective on the relevant miRNA–target gene interactions
which can also serve as a foundation for future functional studies into the specific roles of the selected
miRNAs in cHL pathogenesis.

Keywords: classical Hodgkin lymphoma; miRNA; loss of B-cell phenotype; immune evasion;
growth support

1. Introduction

Hodgkin lymphoma (HL) is a hematological malignancy characterized by a small
number of tumor cells in the affected tissues. The tumor cells originate from germinal
center (GC) B cells that have escaped from apoptosis during the selection process in the
germinal centers [1]. The World Health Organization (WHO) classification includes two
main subtypes of HL, i.e., classical HL (cHL), accounting for 95% of all cases, and nodular
lymphocyte-predominant HL (NLPHL) [2].

In about 30% of cHL cases, the tumor cells—referred to as Hodgkin and Reed–
Sternberg (HRS) cells—are infected by the Epstein–Barr virus (EBV). In these cases, EBV-
derived proteins are considered to drive transformation [3]. Regardless of EBV status,
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HRS cells have lost most of their B-cell phenotypes, exemplified by loss of markers such
as CD19, CD20, and CD79A/B [4,5]. This has been attributed to the downregulation or
loss of expression of several transcription factors (TFs), such as PAX5, OCT2, PU.1, EBF1,
and ETS1 [6,7]. Moreover, HRS cells overexpress CD30 which is usually expressed only
by small subpopulations of B cells at distinct differentiation stages [8,9]. CD30 has been
recognized as a diagnostic marker and therapeutic target in cHL [10].

HRS cells are surrounded by an abundant infiltrate of immune cells that constitute
an extensive tumor microenvironment (TME). The TME is ineffective in inducing anti-
tumor cell responses because HRS cells employ diverse immune evasive mechanisms. One
commonly observed mechanism is the loss of HLA class I and class II which are essential
for presenting antigens to immune cells and initiating an immune response [11,12]. In
addition, HRS cells can express programmed death ligand 1 (PD-L1) and PD-L2 which
both engage in PD-1 signaling and induce T-cell “exhaustion” [13]. The PD-L1–PD-1 axis
is a well-known therapeutic target for treating cHL patients [14]. About half of cHL cases
also express PD-L2, which also engages in tumor cell immune evasion [14].

Besides escape from immune cells, HRS cells rely on aberrant activation of pathways
such as NF-kB, JAK/STAT, Notch, PI3K/AKT, and MAPK for survival and proliferation [15].
For example, high expression of CD40 on HRS cells is crucial for the activation of NF-
κB, which is essential for tumor cell survival through the induction of anti-apoptotic
genes [10,16]. Moreover, multiple cytokines and chemokines like IL-3, IL-7, IL-9, IL-13,
CCL17, and CCL22 provide direct growth support, attract growth-supporting immune
cells, and help to block activity of cytotoxic immune cells [16].

Although much insight has been gained regarding the function of protein-coding
genes, the current knowledge on the role of miRNAs targeting these proteins remains
limited. miRNAs inhibit the translation of their target mRNA molecules by base-pairing
to complementary binding sites usually present in the 3′ untranslated region (3′UTR) [17].
Often, the inhibition of translation by miRNAs is accompanied by degradation of the target
mRNA. Base-pairing of nucleotides 2–7 of the miRNA seed region to the target mRNA is
critical for effective inhibition [18]. miRNAs have been shown to be crucially involved in
almost all biological processes [19,20].

The first miRNA identified in cHL was the non-coding RNA known as BIC. This
primary miRNA gene (miR155HG) encoding miR-155 was shown to be highly expressed in
cHL cell lines and primary HRS cells [21,22]. Since then, multiple studies have reported on
the miRNA landscape in cHL, including EBV-derived miRNAs [23,24]. Although several
studies reported miRNAs that are abundantly or differentially expressed in HRS cells,
their functional relevance for the pathogenesis of cHL remains largely unknown. For a
limited number of miRNAs, target genes have been identified in cHL cell lines. Most
striking are those for miR-155 in cHL cell lines, including AGTR1, ZNF537, FGF7, ZIC3,
MAF, DET1, NIAM, HOMEZ, PSIP1, and JARID2 [25,26]. miR-9 and let-7a were shown to
target PRDM1 (BLIMP1), CD99, DICER1, and HuR (ELAVL1) [27–29]. The targets of the
miR-17/106b family include YES1, RBJ, NPAT, FBX031, OBFC2A, GPR137B, CCL1, ZNFX1,
and CDKN1A [30,31]. miR-135a targets JAK2, miR-148a-3p targets HOMER1 and IL-15,
and miR-330-3p and miR-450b-5p affect ELF-1 [32–34]. The roles of most of these genes in
cHL pathogenesis are currently not entirely clear.

In this review, we evaluated the relevance of experimentally validated miRNA–target
gene interactions for genes important for the common mechanisms in cHL pathogenesis,
i.e., loss of B-cell phenotypes, immune evasion, and growth support. We summarized the
published cHL miRNA signatures, retrieved validated miRNA–target gene interactions for
selected genes, and evaluated the expression patterns of these miRNA–target gene pairs.
Inversed expression patterns were regarded as support for miRNA–target gene interactions
that might be relevant for cHL pathogenesis. This overview highlights miRNAs that show
a high potential for having critical roles in the pathogenesis of cHL and can be used as a
starting point for further studies.
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2. Methods

We first generated a cHL miRNA signature based on published miRNA profiling
studies. All PubMed-indexed papers on miRNAs and Hodgkin lymphoma were screened
and from these, we selected all profiling studies. Profiles were generated by small RNA
sequencing (RNA-seq) and reverse transcription–quantitative polymerase chain reaction
methods (RT-qPCR) on microdissected HRS cells and/or cHL cell lines (Supplementary
Tables S1 and S2). Studies using total cHL tissue samples were excluded. We summarized
the differentially expressed miRNAs in cHL in comparison to GC B cells, reactive lymph
nodes, and non-Hodgkin lymphoma (NHL) cell lines. We also summarized the miRNAs
reported as being highly abundant in cHL. In addition, we included EBV-derived miRNAs
(EBV-miRNAs) that were reported to be expressed in HRS cells of EBV+ cHL cases.

To identify miRNA–target gene interactions that might be relevant for cHL patho-
genesis, we generated a list of genes that are relevant for cHL and termed these “cHL
pivotal genes”. These genes were categorized under one of the three themes: loss of
B-cell phenotypes (e.g., PAX5, OCT2), immune evasion (e.g., HLA class I, PD-L1), and
growth-supporting signals (e.g., NF-κB pathway) (Supplementary Table S3).

For the cHL pivotal genes, we conducted a second literature review to identify all
miRNAs that have been shown to regulate these genes in HRS cells or any other cell
type. We primarily focused on studies involving cancer cells, but also included studies in
normal human cells for genes for which cancer-specific references were absent. A reported
interaction between a miRNA and the target gene of interest was only accepted when
validated by (luciferase) reporter assays or showing changes at the protein level upon
miRNA inhibition or overexpression (Supplementary Table S4).

Finally, we checked whether the miRNAs that regulate the cHL pivotal genes were
present in our cHL miRNA signature and whether they were up- or downregulated. Inverse
expression patterns between miRNAs and their respective target genes were considered an
indication of a potentially relevant interaction. These miRNA and target gene interactions
are further discussed in this review.

3. Results
3.1. miRNA Signature and Genes Critical for cHL Pathogenesis

Multiple studies have characterized the miRNA expression signature of cHL by study-
ing microdissected HRS cells and cell lines. The focus and results of these studies are
summarized in Supplementary Tables S1 and S2 [25,34–37].

Three research groups generated miRNA profiles using cHL cell lines and compared
these with GC-B cells [34,36,37], reactive lymph nodes [35], or NHL cell lines [25,34].
Out of 210 miRNAs, 98 were found to be upregulated between cHL cell lines and GC-B
cells. Of these, 25 were consistently upregulated in at least two studies and 3 (miR-9-5p,
miR-155-5p, and miR-196a-5p) were upregulated in all studies [25,34,36,37]. Conversely,
50 miRNAs were reported to be downregulated in cHL compared with GC-B cells, of which,
8 miRNAs (miR-148-3p, miR-148a-5p, miR-150-3p, miR-150-5p, miR-181a-2-3p, miR-577,
miR-598-3p, and miR-3150b-3p) displayed consistent downregulation in at least two of the
studies [25,34,36,37]. In one study, isolated primary HRS cells were compared with GC-B
cells and this revealed 30 upregulated and 11 downregulated miRNAs [36]. Notably, 12 of
these miRNAs displayed consistent upregulation in both HRS cells and cHL cell lines and
3 miRNAs were consistently downregulated [36].

Three studies provided a list of highly abundant miRNAs in cHL cell lines. One
group pinpointed 26 out of the 183 miRNAs studied as being the most abundant based on
RT-qPCR profiling [25]. The other two studies identified a top-10 [37] or top-5 list of the
most abundant miRNAs based on small RNA-seq [34]. Notably, miR-142-5p, miR-191-5p,
miR-21-5p, miR-92a-5p, miR-155-5p, let-7f-5p, and let-7a-5p were noted as highly abundant
in at least two of the studies.

EBV produces numerous miRNAs that are primarily located in two major clusters
in its genome: the BHRF1 (BamHI fragment H rightward open reading frame 1) and the
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BART (BamHI-A rightward transcript) clusters [38]. The expression of three EBV-derived
miRNAs, BART2-5p, BART13-3p, and BART19-3p, has been identified in EBV+ cHL [39,40].

Based on these profiling data, we selected a total of 210 human and 3 EBV-derived
miRNAs as a starting list for finding miRNA–target gene interactions which are potentially
critical for cHL.

A list of all known validated miRNA–pivotal cHL gene interactions, categorized by the
three themes related to cHL pathogenesis (loss of B-cell phenotypes, immune evasion, and
growth-supporting signals) is provided in Supplementary Table S3. In Table 1 we provide
an overview of all miRNA–target genes which based on their expression pattern may be
relevant for cHL pathogenesis. These interactions are described in more detail below.

3.2. Loss of B-Cell Phenotypes

The loss of B-cell phenotypes has been linked to the diminished expression of several
transcription factors (TFs), including Paired Box 5 (PAX5), octamer-binding transcription
factor 2 (OCT2), SPI-1 (PU.1), early B-cell factor 1 (EBF1) and ETS Proto-Oncogene 1
(ETS1) [6,7]. We explored whether deregulated expression of miRNAs could play a role in
the aberrant expression of these TFs.

Direct targeting of PU.1 by miR-27a-5p was shown in cHL cell lines by luciferase
reporter assays [34]. The overexpression of miR-27a-5p, as observed in cHL cell lines and
microdissected HRS cells, fits with a potential role of this miRNA in downregulating PU.1.
An interaction between miR-155-5p and PU.1 has been shown in acute myeloid leukemia,
in which, the knockdown of miR-155-5p led to increased expression of PU.1 [41]. In HRS
cells, miR-155-5p is among the upregulated and highly abundant miRNAs. Thus, the
low expression of PU.1 in HRS cells might be induced in part by high levels of miR-27a-
5p and miR-155-5p. EBF1 was shown to be targeted by miR-19a-in oral squamous cell
carcinoma [42]. As the expression of miR-19a-5p is high in HRS cells, the loss of EBF1
expression in cHL might be caused by miR-19a-5p. Several studies demonstrated a miRNA-
dependent regulation of ETS1 expression in a wide variety of diseases and malignancies.
The experimentally validated miRNAs potentially relevant for cHL include miR-200c,
which was detected in colorectal cancer [43]; miR-9 in gastric carcinoma [44,45]; miR-125b
in breast cancer [46]; and miR-155-5p in hematopoietic progenitor cells [47]. The elevated
expression of these miRNAs in cHL supports their potential involvement in the decreased
levels of ETS1. Currently, no miRNAs with potential relevance for cHL pathogenesis have
been described that target PAX5 or OCT2 [48].

3.3. Immune Evasion
3.3.1. Antigen Presentation

The expression of HLA class I is frequently lost in HRS cells, leading to an impaired
presentation of tumor-associated neoantigens. HLA class I loss is more common in EBV-
negative cHL patients (~80%) than in EBV-positive cHL patients (~25%) [49]. The loss of
HLA class I is mediated by various mechanisms, including the loss of the HLA gene loci
and mutations in beta-2 microglobulin (B2M) [50–52]. Several miRNAs were reported to
regulate the expression of genes associated with antigen presentation, indicating a miRNA-
dependent mechanism as an alternative way to reduce the presentation of neoantigens.
Three miRNAs were reported to disturb antigen presentation by regulating the peptide
transporter proteins TAP1 or TAP2 and the chaperone calreticulin, which all participate
in the peptide-loading complex located within the endoplasmic reticulum. miR-346 was
demonstrated to directly target TAP1 and thereby reduce HLA class I expression in non-
small cell lung cancer cells and cervical cancer cells [53]. miR-125a-5p was shown to regulate
TAP2 in esophageal adenocarcinoma cells [54]. miR-27a downregulated HLA class I surface
expression through the suppression of calreticulin in colorectal cancer cells [55]. miR-346,
miR-125a-5p, and miR-27a are all upregulated in cHL and might therefore contribute to
the decrease in antigen presentation in cHL cases without genomic aberrations in the HLA
class I and B2M genes.
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The loss of HLA class I makes HRS cells more vulnerable to attack by NK cells. To
overcome this, HRS cells upregulate HLA-G [56]. Several studies have pinpointed the
miR-148 family (miR-148a, miR-148b, and miR-152) as regulators of HLA-G expression in
solid cancers and normal cells [57–62]. This miRNA family showed a strong binding affinity
to HLA-G transcripts, indicating a potential regulatory effect [60–63]. Since miR-148a-3p is
downregulated in cHL, this miRNA might contribute to the aberrant high expression of
HLA-G. Interestingly, miR-16-5p was shown to interact with AGO2 at the HLA-G promoter.
This interaction was proposed to result in a non-classical miRNA-mediated activation of
the HLA-G gene [64]. This finding suggests that miR-16-5p, which is highly expressed in
cHL, may also contribute to the expression of HLA-G.

The EBV-derived miRNA BART2-5p can affect immune escape by targeting the HLA
class I polypeptide-related sequence B (MICB) [65]. MICB is a ligand for the stimulatory
natural killer group 2 member D (NKG2D) receptor, which is expressed on NK cells and
cytotoxic T cells [66]. MICB is upregulated upon stress exposure such as viral infections,
DNA damage, and malignant transformation [67]. The downregulation of MICB by BART2-
5p could help EBV+ HRS cells to evade immune recognition.

About 40% of cHL patients show a loss of HLA class II expression in HRS cells, with
slightly higher percentages in EBV-negative as compared to EBV-positive cHL patients [12,68].
HLA class II expression has been reported as an independent prognostic marker in cHL [68].
The loss of the HLA class II gene loci and translocation affecting the CIITA locus partly
explain the loss of HLA class II expression [69]. One study revealed that miR146b-5p
and let-7f-5p both target CIITA in macrophages and in various cancer cell types [70]. The
expression of miR-146b-5p is increased in cHL, supporting a potential role of this miRNA
in the loss of HLA-II expression. Let-7f-5p is highly abundant in cHL and could also inhibit
CIITA expression.

3.3.2. Immune Checkpoint

The immune checkpoint ligands PD-L1/PD-L2 are highly expressed in a proportion
of cHL cases [14]. This has been attributed to copy number gain of 9p24.1, which contains
the PD-L1 and PD-L2 gene loci. Co-amplification of the JAK2 gene locus further boosts the
expression of PD-L1 by activating JAK/STAT signaling [71]. In addition, the expression of
PD-L1 can be induced by the EBV-derived latent membrane protein 1 (LMP1) protein, via
activating the JAK/STAT and AP-1 pathways [72]. However, PD-L1 expression is low in
most cHL cell lines, with membrane expression being evident by flow cytometry only in
SUPHD1 and HDLM-2 cell lines [73,74]. Many studies have highlighted a role for miRNAs
in regulating PD-L1 expression across various malignancies. Notably, various miRNAs
downregulated in cHL, including miR-20b-5p, miR-34b, miR-138-5p, miR-148a-3p, miR-
340-5p, miR-455-5p, and miR-766-5p, were shown to suppress PD-L1 expression in different
cancer cell types [75–84]. The downregulation of these miRNAs in cHL might contribute to
the increased expression of PD-L1. Additionally, the miR-200 family, particularly miR-200b
and miR-200c, has been identified as key regulators of PD-L1 [85,86]. miR-200b has been
implicated in targeting PD-L1 and inhibiting IFN-γ-stimulated PD-L1 expression in gastric
cancer, while miR-200c targets PD-L1 in HBV+ human liver cell lines and acute myeloid
leukemia [87,88]. As miR-200b is downregulated in cHL, it may play a regulatory role
in PD-L1 expression, whereas the upregulated miR-200c is less likely to play a role in
cHL. Furthermore, miR-155 exhibits a complex role in the regulation of PD-L1 expression.
miR-155 induced a decrease in PD-L1 expression in lymphatic endothelial cells, Hela cells,
and dermal fibroblasts [89]. Conversely, it enhanced PD-L1 expression via non-canonical
mechanisms by interacting with the 3′UTR of the PD-L1 transcript in diffuse large B-
cell lymphoma (DLBCL) [90]. This suggests that the highly expressed miR-155 may also
contribute to the high level of PD-L1 in cHL.
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3.3.3. Immunosuppressive Molecules

HRS cells overexpress key immunosuppressive molecules like IL-10, TGF-beta, and
galectin-1 to create an immune-suppressive microenvironment and prevent effective anti-
tumor immune responses [16]. miR-106a has been shown to directly inhibit IL-10 expression
levels in Jurkat T cells [91]. miR-106a levels were reported to be downregulated when
compared to GC-B and NHL, but miR-106a was also among the highly abundant miRNAs
in cHL. It remains to be elucidated whether miR-106a is involved in the upregulation of IL-
10 in cHL. miR-130a-3p and miR-143-3p target TGF-beta in HEK-293T cells and mesangial
renal cells [92,93]. Both miRNAs are downregulated in cHL, implying that their decreased
levels may contribute to the elevated expression of TGF-beta [94,95].

Based on the current knowledge, it is likely that multiple miRNAs play a role in
supporting the immune evasion of HRS cells. In Figure 1, we provide an overview of the
miRNAs with a potential role in immune evasion mechanisms in cHL.
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Figure 1. Involvement of miRNAs in HRS cell immune evasion. HRS cells employ various strategies
to escape immune surveillance. (1) HRS cells achieve a reduction or loss of neo-antigen presentation
by downregulating HLA-I and/or HLA-II. The process of loading HLA-I onto the cell membrane
involves several key proteins. TAP1 and TAP2 transport peptides into the endoplasmic reticulum (ER).
Inside the ER, calreticulin and B2M assist in the proper loading of peptides onto HLA-I molecules.
Once fully assembled and loaded, these HLA-I molecules are then transported to the cell surface.
CIITA is a transcriptional activator of HLA-II. Deregulation of the expression of these key proteins
could impair tumor antigen presentation and T-cell activation. (2) HRS cells upregulate HLA-G
to counterattack NK cell activation. (3) HRS cells highly express PD-L1 to enhance PD-L1/PD-
1 signaling, thereby inducing T-cell “exhaustion”. (4) HRS cells create an immunosuppressive
microenvironment and inhibit the activation of cytotoxic T cells by secreting galectin-1, IL-10, and
TGF-beta. The role of miRNAs in modulating the expression of these proteins is shown. ↑/↓ (black):
increase/decrease in protein expression. miRNAs shown in pink/green: upregulated/downregulated
expression. Orange arrow: miRNA promoting gene expression.
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Table 1. Proven miRNA–target gene interactions with potential relevance for cHL pathogenesis.

Related Function Target Gene miRNA Validated Cell Type

Loss of B-cell phenotypes

PU.1 ↓
miR-27a-5p ↑ classical Hodgkin lymphoma [34]

miR-155-5p * ↑ acute myeloid leukemia [41]

EBF1 ↓ miR-19a-5p * ↑ oral squamous cell carcinoma [42]

ETS1 ↓

miR-9 ↑ gastric carcinoma [44]

miR-125 b ↑ breast cancer [46]

miR-155-5p * ↑ hematopoietic progenitor cells [47]

miR-200c ↑ human colorectal cancer [43]

Immune evasion

TAP1 ↓ miR-346 ↑ non-small cell lung cancer, cervical cancer [53]

TAP2 ↓ miR-125a-5p ↑ esophageal adenocarcinoma [54]

Calreticulin ↓ miR-27a ↑ colon cancer [55]

HLA-G

miR-16-5p *,# ↑ breast cancer, colon cancer [64]

miR-148a-3p ↓ human choriocarcinoma [57], colon cancer [59],
oral squamous carcinoma [62];

CIITA ↓
miR-146b-5p ↑ melanoma, cervical cancer, gastric cancer, macrophages [70]

let-7f-5p * melanoma, cervical cancer, gastric cancer, macrophages [70]

MICB ↓ EBV-BART2-5p colon cancer [65]

PD-L1 ↑

miR-20b-5p * ↓ colon cancer, lung cancer, breast cancer [75,76]

miR-34b ↓ non-small cell lung cancer [77]

miR-138-5p ↓ colon cancer [78,79]

miR-148a-3p ↓ colon cancer [80], anaplastic thyroid carcinoma [81]

miR-155 *,# ↑ HEK-293T cells, (EBV+/EBV−) B-cell lymphoma [90]

miR-200a ↓ lung cancer [86], breast cancer [85]

miR-200b ↓ gastric cancer [96], lung cancer [86],
breast cancer [85]

miR-340-5p ↓ cervical cancer [82]

miR-455-5p ↓ hepatocellular carcinoma [83]

miR-766-5p ↓ ovarian carcinoma [84]

IL10 ↑ miR-106a * ↓ T cells [91]

TGF-β ↑
miR-130a-3p ↓ autoimmune disease [97]

miR-143-3p ↓ mesangial cells in diabetic nephropathy [93]

Growth-supporting signals

TNF-α ↑ miR-130a-3p ↓ sepsis [98]

RELA ↑
miR-138 ↓ trophoblasts [99]

miR-520/373 ↓ breast cancer [100]

REL (CREL) ↑ miR-181a-5p * ↓ diffuse large B-cell lymphoma [101]

NFKB1 (P50) ↑ miR-181a-5p * ↓ diffuse large B-cell lymphoma [101]

NFKBIA (IκBα) ↓ miR-126 ↑ ulcerative colitis [102]

TNFAIP3 ↓

miR-29c * ↑ hepatocellular carcinoma [103]

miR-125a/b ↑ diffuse large B-cell lymphoma [104]

miR-23a-3p ↑ classical Hodgkin lymphoma [34]

IGF1R ↑

miR-376a ↓ melanoma [105]

miR-143-3p ↓ nasal squamous cell carcinoma [106], rheumatoid arthritis [107]

miR-30a-5p ↓ melanoma [108]

Notch1 ↑
miR-30a ↓ pancreatic beta cells [109], podocytes [110]

miR-363-3p ↓ gastric cancer [111]

IL-21R ↑ miR-30a ↓ autoimmune encephalomyelitis [112]

*: abundant miRNA; #: miRNAs shown to promote gene expression, see text for details. ↑/↓: increase/decrease in
protein/miRNA expression.
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3.4. Growth-Supporting Signals
3.4.1. NF-κB Pathway

The activation of NF-κB in cHL may occur via extrinsic signals relayed by cell surface
receptors and through genomic aberrations in the components of the NF-κB signaling path-
way [6,113,114]. The activation of the NF-κB pathway provides a proliferative advantage to
HRS cells via diverse mechanisms, including inhibition of apoptosis and activation of the
JAK/STAT pathway [114]. Furthermore, NF-κB signaling can contribute to the observed
loss of B-cell phenotypes [114]. In cHL, the triggering of cell surface receptors CD30, CD40,
and CD86 induced the activation of the NF-κB pathway. The triggering of CD40 by CD40L
expressed on rosetting T cells is one of the main extrinsic factors that activates NF-κB in
HRS cells. The NF-κB pathway can also be activated by a ligand, TNF-α, which is secreted
by HRS cells into the TME, which results in HRS cell growth [115–118].

There are no reports on miRNAs that regulate CD30, CD40, or CD86 and that have an
inversed expression pattern in cHL [119,120]. However, a miRNA-dependent regulation
of TNF-α has been shown for miR-130a-3p which is downregulated in cHL, supporting a
potential role for this miRNA [98]. Multiple miRNAs have been shown to target different
NF-κB subunits in various studies [99–101,121]. miR-138 and members of the miR-520/373
family were shown to target RELA in breast cancer [99,100]. The expression of miR-520a
and miR-138 are expression in cHL and might facilitate high RELA expression. In another
study, miR-181a-5p was shown to exert a direct regulatory effect on REL, NFKBIA (IκBα),
and NFKB1, resulting in the repression of NF-κB signaling in DLBCL [101]. miR-181a-
5p is downregulated in cHL cells, supporting a direct regulatory role. Another study
showed that NFKBIA is targeted by miR-126 in ulcerative colitis [102]. As NFKBIA is an
inhibitory component of the NF-κB pathway, the upregulation of miR-126 in cHL profiling
studies highlights an important role for this miRNA. Another NF-κB inhibitor, TNFAIP3, is
targeted by miR-29c in hepatocellular carcinoma cells [103] and by miR-125a and miR-125b
in DLBCL [104]. Interestingly, all miR-29 family members are highly abundant in cHL and
both miR-125a and -b are upregulated in cHL. This points towards a potential regulation
of TNFAIP3 by these miRNAs in cHL. miR-23a-3p is the only miRNA for which a direct
interaction has been shown with TNFAIP3 in cHL cell lines. The inhibitory effect of miR-23a-
3p on TNFAIP3 was shown to enhance activation of the NF-κB pathway [34]. Thus, miR-
125a/b and miR-23a-3p might facilitate the activation of NF-κB through downregulation of
TNFAIP3 in cHL. In addition, miR-21 was reported to the regulate tumor suppressor and
regulator of B-cell differentiation BTG2 and E3 ubiquitin ligase PELI1 which are known to
regulate c-REL levels [122].

3.4.2. Other Pathways

Receptor tyrosine kinases such as mesenchymal–epithelial transition factor (c-MET)
and insulin-like growth factor 1 receptor (IGF1R) are expressed in the majority of cHL
cases. They play a pivotal role in promoting cell proliferation and growth by activating
the MAPK/ERK and PI3K/AKT pathways. The MAPK pathways involve kinases such
as Raf, MEK, and ERK1/2. Upon activation, ERK1/2 translocates from the cytoplasm to
the nucleus, and also participates in the phosphorylation of various nuclear transcription
factors, such as PU.1 and ETS1 [123–127]. miR-143-3p was shown to downregulate IGF1R
in rheumatoid arthritis and in squamous cell carcinoma [106,107]. A direct regulation of
IGF1R by miR-30a-5p and miR-376a was shown in melanoma cells [105,108]. The results
for miR-30a-5p were inconsistent in profiling studies in cHL with an increased expression
in RT-qPCR analyses and a decreased expression in small RNA-seq studies [34,36,37]. This
discrepancy highlights the need to investigate the expression of miR-30a-5p in cHL more
closely. Regarding IGF1R, a potential regulatory role seems most likely for miR-376a and
miR-143-3p in cHL.

NOTCH1 is highly expressed in cHL, whereas its ligand Jagged1 (JAG1) is present on
infiltrating cells. Their interaction supports the proliferation of HRS cells [128]. NOTCH1



Cancers 2024, 16, 1126 9 of 17

is regulated by miR-363-3p in gastric cancer [111]. The decreased expression of miR-363-3p
in cHL fits with a potential role in upregulating NOTCH1 levels in HRS cells.

The stimulation of IL-21R, IL-6R, and CSF1R results in the activation of the JAK/STAT
pathway and as such, provides a proliferative advantage to HRS cells [129]. A direct regu-
lation of IL-21R by miR-30a-5p was shown in various studies [109,110,112]. As mentioned
above, the results on miR-30a-5p levels in cHL are inconsistent.

The most likely miRNA–target gene interactions relevant for supporting growth in
cHL are shown in Figure 2.
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Figure 2. miRNA–target gene interactions supporting growth of HRS cells. Schematic representation
of the NF-κB, MAPK/ERK, and Notch signaling pathways, along with the potentially relevant
regulatory roles of miRNAs. NF-κB activation is facilitated by, among other factors, tumor necrosis
factor-alpha (TNF-α). This activation involves the phosphorylation and proteasomal degradation
of IκBα, leading to the nuclear translocation of RelA and other Rel proteins. TNF-α, secreted by
HRS cells into the tumor microenvironment (TME), can activate the NF-κB pathway in an autocrine
manner. IGF-1R activation contributes to the phosphorylation and nuclear translocation of ERK1/2,
which are crucial for regulating cell growth. Additionally, the expression of the transcription factors
PU.1 and ETS1 is also regulated by ERK1/2. Notably, Notch signaling is activated by the nuclear
translocation of Notch1. Overall, the activation of the NF-κB, MAPK/ERK, and Notch signaling
pathways collectively enhances the survival and proliferation of HRS cells. miRNAs shown in
pink/green text: upregulated/downregulated miRNAs. *: abundant miRNA.

4. Discussion

CHL has unique cell survival and disease progression characteristics that are sup-
ported by the activation of specific intracellular pathways and interactions between the
HRS cells and the TME [4,6,114]. In this review, we highlighted the role of the currently
known and potential miRNA–target gene interactions relevant for the pathogenesis of
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cHL. By comparing the currently available miRNA profiling studies, we generated a list
of miRNAs with either an aberrant expression pattern or are highly abundant in cHL. We
focused on miRNA target genes that have a role in the main features of cHL, i.e., loss of
B-cell phenotypes, immune evasion, and growth-supporting signals. These processes have
been linked to cHL pathogenesis in multiple studies. We showed that a miRNA-dependent
regulation seems likely for multiple genes based on known experimentally validated targets
in any cell type, in combination with inverse expression patterns in cHL.

Interestingly, several miRNAs may be involved in cHL pathogenesis via targeting
multiple genes. miR-155-5p emerges as a central regulator. On the one hand, it can
target both PU.1 and ETS1 and thus promote the loss of B-cell phenotypes. On the other
hand, miR-155 may enhance the expression of PD-L1 via non-canonical mechanisms. A
decrease in miR-148a-3p may facilitate increased levels of HLA-G and PD-L1 and thereby
contribute to immune evasion. Likewise, lower levels of miR-130a-3p may contribute
to increased levels of tumor necrosis factor-alpha (TNF-α), resulting in growth support
and the promotion of an immune-suppressive environment by facilitating expression of
TGF-beta. Decreased levels of miR-143-3p may contribute to the elevated expression of
TGF-beta and act as a potential regulator of IGF1R. Furthermore, multiple miRNAs that
modulate NF-κB signaling also target other genes relevant for cHL. miR-138-5p targets
PD-L1 in addition to RELA. miR-125a and miR-125b target, in addition to NF-κB pathway
components, TAP2 and ETS1, respectively. Finally, miR-181a-5p has been demonstrated to
target multiple NF-κB components. All in all, these miRNAs, with their broad targeting
spectrum, underscore the interconnection of the potential molecular mechanisms driving
cHL pathogenesis. For 41 of the 49 selected cHL pivotal genes, regulatory miRNAs have
been identified in other malignancies or normal cell types. Our review provides detailed
descriptions of the potential miRNA regulatory mechanisms for 21 of these 41 genes in
cHL. We did not focus extensively on the remaining miRNA targets, because either the
miRNAs were not expressed in cHL or they did not exhibit inverse expression patterns.

Our study has some limitations, which may have led to an incomplete overview.
First of all, we did not include studies that focused on single candidate miRNAs for the
generation of our miRNA profile. The miRNA profiling studies we did use were somewhat
limited in overlap. Discrepancies in differential expression might have been caused by
differences in the starting material (cHL cell line/microdissected HRS cells), control samples
(GC-B/NHL/RLN cells), and methodology (small RNA-seq/RT-qPCR). In addition, it is
possible that although specific miRNA–target gene interactions were validated in a certain
cell type, they may not be relevant in HRS cells. Differences between effects in different
cell types can be caused by the unavailability of miRNA binding sites or differences in
abundance of other targets of the miRNA. Finally, we limited our target gene list to 49
genes that we considered pivotal within the three selected main themes, potentially leaving
out genes that may also be important for cHL pathogenesis.

In our review, we highlighted validated miRNA–target gene interactions with potential
relevance for cHL based on inverse expression patterns of the miRNAs and the selected
target genes. This provides a starting point for future studies aiming to define the role
of miRNAs in cHL. These studies should experimentally validate the proposed miRNA–
target interactions in cHL and explore the downstream effects. The appropriate wet lab
approaches include luciferase reporter assays and effects on target gene protein levels upon
modulation of miRNA expression or mutations in the endogenous miRNA binding sites
in cHL cell lines. In addition to single miRNA approaches, it may also be interesting to
consider genome-wide approaches using miRNA gain- or loss-of-function screens. As
these approaches are unbiased, they have the advantage of not only validating known
interactions identified in other cell types, but could also discover new interactions. By
identifying all miRNAs that can change the expression of a specific marker or activity
of a specific pathway, comprehensive lists of miRNAs relevant for the phenotype can be
readily identified. Recent studies suggest that the application of miRNA overexpression
and CRISPR knockout screens offers a reliable and feasible approach to perform such
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genome-wide screens [130,131]. An important next step will be to study the expression
of miRNAs and their target proteins in primary tissues. This can be accomplished by
combining miRNA in situ hybridization with immunohistochemistry to show a potential
inverse correlation.

An interesting follow-up question is whether this knowledge can be used as a starting
point for the development of novel therapeutic approaches. A variety of clinical trials
have been tested for miRNA therapeutics and efficient delivery methods in recent years.
These methods include delivery routes via liposomes, polymers, extracellular vesicles, or
nanoparticles. In addition to the delivery methods, the functional implications, such as
the kinetics, dosing, and the targeting of the miRNAs have been tested in preclinical and
clinical trials [132].

In conclusion, this review underscores the intricate involvement of multiple miRNAs
in cHL pathogenesis. Notably, miR-155-5p, miR-148a-3p, miR-130a-3p, miR-143-3p, miR-
138, miR-125a, miR-125b, miR-181a-5p, and miR-23a-3p influence crucial aspects of cHL
pathogenesis including loss of B-cell phenotypes, immune evasion, and growth-supporting
pathways by targeting various genes. Overall, these miRNAs provide a foundation for
future studies aiming to further explore the relevance of miRNAs in cHL pathogenesis.
Experimental validation and potential translation into therapeutic strategies may open new
avenues for targeted interventions in cHL.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16061126/s1, Table S1: Human miRNA profiling studies for
cHL; Table S2: Consensus human miRNA signature of cHL; Table S3: Pivotal cHL genes studied
for experimentally validated miRNA regulation. Table S4: Overview of experimentally validated
miRNA–target gene interactions, sorted by main theme.
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