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Abstract: We propose a monitoring system for detecting illicit and copyrighted objects in digital
manufacturing (DM). Our system is based on extracting and analyzing high-dimensional data from
blueprints of three-dimensional (3D) objects. We aim to protect the legal interests of DM service
providers, who may receive requests for 3D printing from external sources, such as emails or uploads.
Such requests may contain blueprints of objects that are illegal, restricted, or otherwise controlled in
the country of operation or protected by copyright. Without a reliable way to identify such objects,
the service provider may unknowingly violate the laws and regulations and face legal consequences.
Therefore, we propose a multi-layer system that automatically detects and flags such objects before
the 3D printing process begins. We present efficient computer vision algorithms for object analysis
and scalable system architecture for data storage and processing and explain the rationale behind the
suggested system architecture.

Keywords: computer vision; high-dimensional data; digital manufacturing; illicit object; copyright
object; illegal printing

1. Introduction

Almost any new technology, along with creating new possibilities, gives rise to im-
mediate attempts to misuse it. For example, the introduction of color printers enabled
attempts to print counterfeit currency [1], forge official documents, and so on. It was
difficult to conduct counterfeit investigations for illegal activities using color printing, and
almost impossible to find the person or people who performed it and the printer itself.
As a cybersecurity measure that facilitates the search for the offender, some color laser
printer manufacturers started including tracking information as part of the printout [2].
A similar problem emerged in additive manufacturing, or 3D printing, a technology that
enables the creation of physical objects from digital blueprints. However, these blueprints
can be stolen or tampered with. In addition to illegal 3D printing of counterfeits, another
cybersecurity challenge relates to producing 3D-printed weapons, explosives, etc. [3,4]. For
example, ghost guns are almost impossible to trace [5], and workshops conducting their
manufacturing are discovered mainly by chance [6].

There is an emerging need to detect the printing of objects (hereafter called controlled
objects or COs) that potentially infringe on laws, authorship rights, legal or other constraints.
We suggest detecting such objects before the 3D printing process begins to avoid legal con-
sequences for manufacturers. We cannot control digital manufacturing at illegal workshops.
Still, our approach could help “to keep honest people honest”, e.g., online 3D printing
digital manufacturers (like Shapeways.com) with large volumes of customers uploading
parts for 3D printing. Our approach can prevent the printing of COs and alleviate the
accompanying legal and other challenges for an unsuspecting manufacturer. We could help
to mitigate the risk to business owners of accidentally manufacturing something forbidden.
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This paper proposes a monitoring system for detecting illicit and copyrighted objects
in digital manufacturing (DM). Our system is based on extracting and analyzing high-
dimensional data from blueprints of three-dimensional objects and can automatically detect
and flag such objects before the 3D printing process begins. The system employs efficient
computer vision algorithms for object analysis and scalable system architecture for data
storage and processing.

The paper is organized as follows: Section 2 discusses the legal issues of DM. Section 3
states the goals and objectives of our work and contains related prior art. Section 4 includes
a description of the main parts of our system. Section 5 discusses the results, performance
issues, and possible future directions. Section 6 finalizes the article.

2. Legal Framework for Digital Manufacturing and Physical Control at IP Protection

Three-dimensional printing allows the production of a wide variety of objects, ranging
from children’s toys to weapons, bringing new opportunities and security challenges.
In [7], the cybersecurity implications of additive manufacturing are described, and serious
concerns have been raised about the security of storage, transmission, and execution
of 3D models in digital networks and systems. The International Conference on 3D-
Printed Firearms [8] addressed the latest challenges law enforcement faces in tackling the
digital manufacturing threat. The Peace Research Institute Frankfurt (PRIF) 2017 report [9]
describes the potential of this new technology and analyzes its possible risks concerning the
proliferation of small arms, major weapons systems, and even weapons of mass destruction.

Besides the printing of dangerous objects, there are concerns about the 3D printing
of counterfeit products, which could be a severe copyright issue [10]. Printing 3D objects
without permission is illegal if the original design is protected under copyright law [11,12].
If a 3D model is protected by copyright, copyright holders can use technical protection
measures to safeguard patented property. Circumvention of such protection measures is
expressly prohibited by the World Intellectual Property Organization (WIPO) [13].

Several theoretical approaches for IP protection in 3D printing have been proposed,
in addition to legal measures and prohibitions. In [14], for example, it is offered to tag an
object and its associated 3D printing file with a unique identifier to track usage. However,
an engineering solution for the implementation was not provided. Similarly, partnering
with sharing platforms that make 3D files public can help limit unauthorized use. In [15],
proposals were made to incorporate blockchain into the 3D printing process, providing
creators with an additional layer of legal protection with copyright information and a
watermark. To reduce the illegal use of 3D printers, ref. [16] proposed a method for
extrusion manufacturing to trace the origin of printed objects. When a 3D printer has an
extruder that pushes the building material through, the hot end of the extruder melts the
material and places it on the print platform to create the model. Each extruder’s hot end has
unique properties, affecting how the 3D model is built. These thermodynamic properties
can be used to identify a particular extruder and, therefore, a 3D printer model as unique
as a human fingerprint or “ThermoTag”. Thus, the model’s buyer can be traced for using
the printer to make an illegal copy.

The existing solutions for IP protection in 3D printing to combat 3D-printed counter-
feiting and forgery are mainly focused on controlling the original production. For example,
embedding NFC tags and QR codes in genuine products helps consumers validate their
authenticity [17,18]. In [19], it was proposed to use specially placed nanorods in the final
product, which do not affect the integrity of the material but could be a compliance “water-
mark” to distinguish it from a counterfeit, the same way as the watermark is applied to
detect fraudulently printed documents.

The control of original production cannot decrease the production of counterfeits
using 3D custom printing, which remains and will be the main issue. Along with the
violation of trademarks, patents, and other intellectual rights, illegally printed parts could
result in severe or even fatal consequences, e.g., due to incorrect materials being utilized or
substandard production [20].
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3. Problem Statement and the Related Works

Our starting point was to analyze the following situation: There is a 3D printing
facility (automated or semi-automated) which receives requests for 3D printing. There is a
chance to receive an order to print a controlled object. To avoid legal consequences [4,5],
detecting such objects before the 3D printing process begins is recommended. Nowadays,
manufactured objects without official permission or license can only be discovered by
human inspection, and this process is prone to errors. To the best of our knowledge,
currently, there are no existing supporting technical systems, and the enforcement of law
mainly relies on the legal bodies’ operational activities and information from the public.
The introduction of automated tools could be an initial step, allowing at least primary
automated law enforcement for 3D printing.

Hereafter, we propose the concept of an automated system for pre-scanning COs in 3D
printing, along with the algorithms for the extraction and analysis of high-dimensional data
from blueprints of 3D objects. In general, all printable 3D objects can be considered either
technical or decorative. The structure and extent of the technical objects are considered
fixed. Otherwise, its functionality will be compromised. Currently, we do not consider
cases when the specific technical part could be heavily modified aesthetically without
changing functionality, nor is there the possibility of including large-scale features that can
be easily removed in post-processing.

At first glance, restricting unauthorized objects from printing boils down to checking
if two 3D objects represented by blueprints are the same or different. The existing methods
for 3D-object matching can be categorized into three groups: shape-based, view-based, and
hybrid [21].

3.1. Shape-Based Methods

In the shape-based category, features are extracted from 3D shape representations (such
as polygons, voxels, graphs, etc.) and later used for similarity measurement. The descriptor
of the shape is found using some algorithm that characterizes the geometric properties of
the object. Statistical descriptors employ histograms to encapsulate the distributions of
shape features. While they are efficient and quick to compute, their ability to discriminate
is limited, as they do not adequately capture the local characteristics of the object’s shape.
In this category of methods, we mention the following descriptors:

• A 3D shape spectrum descriptor [22] is related to the first and second principal curva-
ture along the object’s surface.

• A D2 descriptor [23,24] takes samples of distances between two points on the model’s
surface and then creates a distance distribution histogram that serves as the model’s
shape descriptor.

• A descriptor [25] compares the similarity of two 3D objects by generating distance
histograms and determining the appropriate alignment of the two objects.

• A graph-based approach [26] utilizes hierarchical structures to represent 3D objects,
accompanied by graph-matching techniques.

• A spherical function-based descriptor [27] suggests using a volumetric representation
of the Gaussian Euclidean Distance Transform for a 3D object, expressed by the norms
of spherical harmonic frequencies.

3.2. View-Based Methods

View-based methods are becoming increasingly popular due to the progress in 2D-
3D reconstruction. The primary concept in visual representation for 3D model retrieval
involves initially converting the 3D model into a 2D projection image. Subsequently,
various image processing techniques are employed to extract diverse features from this
image [28]. For example:

• Ansary et al. [29] selected optimal 2D views of a 3D model and created K-mean
clustering of views. Then, the similarity between pairwise 3D objects was measured
by applying Bayesian models.
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• Wang et al. [30] solved the retrieval problem using group sparse coding. The query
object was constructed again by the view sets of each shape; then, the restoration error
was considered the similarity measurement for retrieval.

• In [31], it was proposed to project a 3D object to a 2D space and use multi-views. These
view-based methods combine a trainable system with 2D projection attributes adopted
by the Convolutional Neural Networks (CNNs).

• Ref. [32] introduced a 3D shape descriptor known as the spherical trace transform,
which generalizes the 2D trace transform. This approach involves calculating a range
of 2D features for a collection of planes that intersect the volume of a 3D model.

3.3. Hybrid Methods

The hybrid methods involve fusing various 3D shape features to improve retrieval ac-
curacy [33]. According to [34], a 3D shape representation incorporating more shape features
tends to excel in retrieving more relevant models. In a study by Papadakis et al. [35], a novel
hybrid 3D model shape descriptor called PANORAMA was introduced. PANORAMA re-
lies on a set of panoramic views of a 3D model. This approach involves projecting an object
onto three perpendicular cylinders and, for each projection, calculating the corresponding
2D Discrete Fourier Transform and 2D Discrete Wavelet Transform.

4. System Architecture

The lack of a universally accepted and consistently effective solution is evident from
the multitude of methods available. One of the main requirements for an industrial system
is stable, error-free work, and one of the ways to improve reliability is by combining existing
approaches and using them in the ensemble.

For a real-life proof of concept system, besides comparing two 3D objects, many other
issues should be considered, such as:

• How to store COs securely without unauthorized leakage of their blueprints.
• How to represent the objects in the database of controlled objects.
• How to evaluate objects-in-question quickly and provide a fast search of this informa-

tion to keep up with 3D printing operations.

We need to address three problems:

1. How to describe controlled objects in a compact way that is good for comparison
and storage: Confidentiality Preserving Descriptors (CPDs) should be used for object
feature representation. Even if a descriptor of a CO is leaked, it cannot be used to
manufacture COs.

2. How to keep a Database of Controlled Objects (DCO) containing the descriptions of
the controlled objects: this database should be maintained by the authorities, who
decide which objects should be controlled.

3. How to compare an object to be manufactured (an object-under-analysis, OUA) to
controlled objects from the DCO in rapid, reliable, and efficient ways.

4.1. Storing of Controlled Objects

The decision of what is forbidden and what should be considered controlled objects
should be decided by some authority. It might depend on the country and local laws, and
local authorities and enforcement organizations should maintain this information.

The information about forbidden and controlled objects (e.g., in airport security) can
be kept today in the following forms:

• Human knowledge (a border control officer can recognize a forbidden item).
• Databases of 2D photographs for camera/video recognition.
• In a neural network (NN) for photo/video recognition. This NN should first be trained

on many cases to extract the patterns typical for the specific class (classes) of objects
to recognize.
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These forms cannot be directly utilized for our 3D recognition project. For exam-
ple, human knowledge cannot be embedded into a device for automation and checks
before manufacturing. Two-dimensional photos do not show the internal architecture, so
non-functional replicas of the controlled object (for example, a 3D-printed foam gun for
hobbyists for play) could be identified as a CO. The usage of a NN could be questionable
as sometimes there is only one sample of a controlled object. It does not represent any class,
so extracting common patterns from this unique object is pointless.

Both the visual appearance and the object’s internal structure should be analyzed to
make an informed decision. Furthermore, we do not like to constrain the CO’s geometry.
COs may have the following: (a) complex geometry with embedded surfaces and structures
(this is a unique feature of 3D printers (3DPs) when several objects can be printed at the
same time, and some objects may be embedded into others, e.g., a sphere in a hollow
cube); (b) a topology with holes and many fine-grain details; and (c) various curvatures
with/without edges at the surface, etc.

To date, there are no 3D DCOs or prohibited blueprints in the public domain. If such
databases existed, they would be an excellent source for illegal manufacturing and would
encourage a proliferation of illicit items, for example, ghost guns. An open-access DCO
would substantially increase the scope of attack, so a real DCO (with guns, explosives, etc.)
could be created only by relevant government agencies and supervisory authorities and be
securely kept out of public access. This consideration sets high-security requirements for a
DCO, as the DCO itself would be a target for attacks to extract COs.

One more consideration relates to the question of where to keep the DCO. We assume
there should be a centralized DCO, and we propose keeping the local copy of this DCO at
the edge (at the printing facility) and keeping both options to perform validation locally at
the facility, or as part of a cloud service.

Each edge device subscribes to a centralized DCO (in the cloud) and fetches the latest
updates on controlled objects, creating a local DCO copy in-device. The gains from this
could be the following:

• Local validation provides performance benefits; large 3D design files do not need to
be uploaded through the Internet.

• A deployment model where designs are pre-validated by a cloud service is possible,
assuming design owners are ready to get their designs pre-approved from authority
services. In some cases, in-device validation could be beneficial as it limits design
exposure service. To ensure the confidentiality of designs-to-be-produced, there may
be a requirement not to move the blueprint out of the 3D printer to protect intellectual
rights and provide secure printing operations.

• Additive manufacturing factories (or devices) could be operating offline.
• A DCO will store information about 3D objects in the form of CPDs.

4.2. Confidentiality Preserving Descriptors: Describing CO

At the system core, there are CPDs—a set of “fingerprints” for 3D objects.
The concept behind CPDs is as follows:

• Each of these descriptors describes a distinctive feature of 3D objects. It could [36–38]
be the number of holes in the object, volume of the object, area of the surface, volume
of the convex hull, surface- or boundary-based centroid, center of mass, principal
axes, convexity, aspect ratios, sphericity, mean radius, ellipsoidal variance, EGI [39],
spherical harmonic coefficients [27], etc. Multiple CPDs are used as an ensemble to
facilitate rapid object identification.

• Three-dimensional objects are encoded by their feature vector. Each object’s CPDs
contain essential information about the shape of the 3D object in a compressed and
low-dimensionality form, sufficient for object identification.

• Descriptors must be lossy and nonreversible, making the restoration of original blueprints
from CPDs impossible even if the 3DP device is breached and fully disassembled.
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• Descriptors need to be computationally light/fast for in-device processing. We assume
k = 102–103 physical objects per 3DP job, so using object-per-object comparison will
require k times the number of controlled objects for comparisons. This processing
should not create a “bottleneck” for the primary 3D printing process by demanding
too many resources.

• At least some descriptors should be able to capture the internal structure of the 3D
object, not only the appearance.

• Descriptors could be efficiently stored in the DCO and allow effective comparison
of descriptors.

• As objects in the 3DP job may be rotated for better packing of objects in the printing
volume, the descriptors should either provide the same output when the 3D objects
are rotated and translated or the most efficient method to compare the descriptors of
the rotated and translated objects should be known.

4.3. Identification Process

The objective of the identification process is to analyze the object in a 3D printing
(3DP) job as being a CO before printing. CPDs are computed for each object in a 3DP
job (for each OUA) and compared to CPDs of controlled objects from the DCO before
allowing manufacturing to commence. This identification process should be time- and
resource-efficient and include the analysis of the internal structure of the 3D object, not
only the surface.

One possible option during the analysis is that the CO in the 3DP job may be rotated
and translated for better packing of objects in the printing volume. Assuming that the
technical OUA has an established and (almost) unchangeable geometry, its mesh could still
be modified to change the number of vertices/triangles (and keep the original geometry
and topology) in the blueprint. Such a modification is one of the simplest methods to make
the object misidentified if the recognition of the object is based on the number of vertices
and triangles of the original blueprint.

We assume that most objects to be printed at the facility are non-controlled. This
brings us to a two-level architecture, where at the first level we would like to identify
the non-controlled objects as fast as possible and leave only the suspicious objects to be
controlled. We use more time-consuming but high-accuracy approaches at the second level
to check if the object is a CO.

The error of the first type (the allowed object is considered controllable) will annoy
the customer of the 3D printer as the legitimate order will be rejected. This event will
likely negatively affect customer satisfaction and future usage of the manufacturing facility.
The error of the second type (the controlled object is considered as allowed) could cause
severe consequences for the facility owner/operator for breaking the law. For example,
per Singapore law, the operator of the printing facility is responsible for printing illegal
objects [4].

The proposed two-layer system can be considered a two-factor authentication (2FA)
system, where the printable object is checked and authenticated by distinctively different
methods at each stage.

This 2FA system is a cascade of classifiers:

• The decision making about object identification is performed as a cascade of classifiers,
i.e., in a hierarchical manner.

• The probability of encountering a CO is low, so we must filter out non-COs quickly
and efficiently.

• We start from low-complexity discriminative algorithms to reject the object as being a
CO as fast as possible (e.g., it is too small, too “square”, has no holes, etc.).

• Then, at later stages, we progress to complex, computationally expensive, and accurate
determination algorithms.

• All objects (models) from a 3D print job should pass through a hierarchy of classifiers
(it could be imagined as a set of sieves with smaller and smaller chances to make an
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inaccurate decision due to being more computationally expensive at each consequent
level); refer to Figure 1.

• We aim to identify (eliminate) most objects by the least computationally expensive
classifier.

• Ideally, it is expected that identification aims for 100% accuracy within an accept-
able time.

• Different methods have different complexity and accuracy (usually, the more complex
the approach, the longer the calculations and the better the final accuracy).

• Some models could take a long time to process to reach high-accuracy results.
• The acceptable level of object identification accuracy may depend on the object type.

We might need to weigh the importance of correctly identifying the object against the
time spent on decision making and the type of the object itself.

Figure 1. The sieve system is used to identify a CO in a 3DP job.

The method of object identification should be immune to:

• Rotation in R3 (any degree) and translation (as objects in a 3D printing job could be
moved to be better packed in the printing volume).

• Remeshing of 3D object mesh.

Many descriptors for the first layer can be found in [36–38]. We can apply these
descriptors according to a decrease in complexity (and an increase in speed) and calculate
some descriptors in parallel. The calculation and comparison of different descriptors can
be separated into several levels (Figure 1).

We can choose all the descriptors available to perform the object’s comparison. How-
ever, there is a more advanced way. In [40], different sets of descriptors were analyzed
for their usage for object “fingerprinting” and for their efficacy and efficiency. A small
set of four descriptors was found to describe and compare 3D objects efficiently. These
descriptors are also efficient for information retrieval from the big database of 3D objects.
One of the sets of the champion CPDs consists of the convex hull area of the 3D object, con-
vex hull volume, modified extended gaussian image (which is the energy of the spherical
harmonics corresponding to the extended gaussian image [39,41] of the 3D object), and
the central moment of inertia of the surface of the object calculated relative to the centroid
of the 3D object [40]. These CPDs were chosen based on their computational simplicity
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and the power of feature extraction, and their efficacy is the same as for the much more
comprehensive set of descriptors.

The specialized algorithm called Discriminative Base Comparison (DBC) was used for
the second layer. Following Kazhdan’s [27] approach, it cuts the 3D object into concentric
spheres (shells) and then finds the intersection of the object by each shell. A sequence of
spherical harmonic coefficients represents the resulting indicator function for each shell,
and then the corresponding energies for each degree and shell are calculated. The valuable
property of energies is that an energy is not changed by any rotation in R3 around the
center of mass (or centroid) and does not depend on the object’s translation.

In a concentric manner, shell-by-shell and degree-by-degree, the energies of the spher-
ical coefficients are compared for the OUA and COs from the DCO. If a correspondence is
found, the object similar to the CO is identified. DBC is a non-iterative and non-gradient
method of searching for similarity.

The computational complexity of this method is much higher than the complexity for
calculations of the simple descriptors at the first layer of the process. That is why the OUA
is first tested by fast and simple descriptors, which provide quick rejection of non-similar
objects, and only after passing this sieving-out do we apply the more complex check. Let
us recall that most of the objects in the 3DP job are assumed to be non-controllable, so the
first layer efficiently identifies and rejects non-COs, leaving only the cases where extra
investigation is required.

The overall workflow is depicted in Figure 2. The OUA is represented in the form of a
set of descriptors and is compared with the descriptors of the COs from the DCO using the
sieve system (Figure 1).

Figure 2. The overall workflow.

5. Results and Discussion

The current developed proof of concept demonstrates its functionality and verifies a
principal concept of usage of CPDs for object “fingerprinting” and identification (Figure 3).
We also developed an initial prototype that allows for the visualization of how the system
will function; there is a working interactive model that gives an idea of the functionality,
design, navigation, and layout (Figure 3).

To test the software for the identification of COs, we used several standard internet
datasets that contain 3D polygonal models collected from the World Wide Web:

• The ShapeNet dataset (The Princeton Shape Benchmark (PSB), Version 1) [42].
• The Engineering Shape Benchmark (ESB, Purdue University) dataset [43].
• Princeton ModelNet40 [44].
• Free downloadable models from different Internet websites.

All in all, we collected more than 14,000 models and placed them in the database.
These 3D objects represented potential objects of interest with unique features.

Our approach was tested in the following way: We took every object from the database
(considered as our DCO), then randomly rotated, translated, and re-meshed them, and then
performed a database search using our two-layer approach. The first layer checked the
correspondence of features of two objects; if the objects are scaled versions of each other,
they will be considered as non-matching (as they have, for example, different volumes).
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In case we needed to identify the scaled objects as matching, then before the analysis, we
additionally needed to scale the objects to the same standard size.

Figure 3. Application interface for comparison of object-under-printing against the DCO objects.

The result showed that, using the architecture suggested and the CPDs described, it
was possible in all cases (100% accuracy, 0% false positive/false negative) to successfully
identify the models from the database. These identified models could comprise duplicates
or mirror images of the OUA, or objects found in the database that possess a slight variation
of the surface of the OUA.

The second experiment conducted to check our method used the ESB [34,43] as a DCO.
The set of 3D models input to check against the DCO included transformed and re-meshed
models from ModelNet40 [44] (a set of unprotected objects) and ESB (protected objects).
Our descriptor-based approach correctly identified whether the input model was contained
in the DCO with 100% accuracy; shifted, rotated, and mirrored objects, and objects with
minor modifications were identified correctly.

The ultimate validation of the proposed method of CO identification could be accom-
plished by using a real DCO (with guns, explosives, etc.) To our knowledge, there is no
existing open-access database of controlled (prohibited) blueprints, and even keeping a
controlled blueprint on a computer without official permission is a criminal offense in
some countries, including, for example, Singapore. The existence of such a database would
be a significant security threat, and the creation and maintenance of such a DCO should
be developed only by relevant government agencies and supervisory authorities. Hence,
real-life experiments could be conducted only after the appearance of such a DCO and only
by the appointed people.

The system proposed is not a panacea, and expecting the same 100% accuracy in a
real-life situation would be really naive. Currently, it can only identify technical objects with
(almost) unchangeable geometry. The objects’ scaling, rotation, translation, and remeshing
do not affect the identification results. This system would mainly help when attempting to
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print a known controlled object without significant modification. By analogy, in Internet
cyberattacks where people try to use a vulnerability discovered by some pioneer hacker,
we hope that most attackers (people who would try to print COs) would use the blueprints
found on the Internet without modifications.

We see a rapid adoption of 3D printing technology for manufacturing illegal or coun-
terfeit objects. Wikipedia provides a list of 3D-printed weapons and parts [45] which
consists of 50 individual designs printed in metal and plastic. For comparison, only five to
six designs were available two years ago. As a result, laws and regulations were rapidly
introduced to prohibit/restrict 3D printing, identify legally guilty parties, and introduce
penalties. Finding people/organizations illegally printing counterfeit objects and prov-
ing that the objects were illegally printed will be an enforcement nightmare for patent
holders and relevant law enforcement authorities. Incorporating constraints in 3D print-
ing will allow manufacturers to satisfy current and future legal requirements and enable
programmable control for printing unauthorized/copyrighted 3D objects.

Zero-day attacks and different (from those considered above) types of attempts to
print COs should be addressed when these new attacks are detected. This is the same
never-ending attack and defense game we see for viruses and antiviruses.

One of the types of attacks presently challenging to detect involves modifying the
surface of a 3D object in a way that does not impact its functionality but alters the object’s
shape. Establishing local surface correspondences with the CO could shield them from this
attack, and the authors are currently working on this idea. This approach requires time
to develop to make it practical (to work in real time and to be accurate and robust under
possible modifications).

5.1. Efficiency of Search in a Big Database of Controlled Objects

A potential bottleneck could appear for efficient data retrieval from a big database
(~1 M controlled objects and more). A set of CPDs represents each object; hence, for the
fast retrieval of an object from a database, we need to find a “good” subset of CPDs to
discriminate the database objects efficiently. Next, we need to index and filter the database
using the subset of CPDs found. If the database is modified (the number of records is
growing), the “good” set of descriptors for fast retrieval might also change. It poses the
question: how do you find a quick and efficient method of information retrieval for a
database of, say, 1 million or 1 billion records?

The distribution of object features in a database appears to have colossal information
“inertia”. The distribution does not change a lot when the database grows. It is the same
concept as for public opinion surveys: there is no need to ask everyone, and there is a need
to choose a representative subset. Statistically representative results for a database of up to
1 million records require a sample size of fewer than 400 records to be analyzed (with a
95% confidence level and 5% margin of error). We conducted experimental checks of the
claim as it sounds counterintuitive and found that the statistical approach (unlike intuition)
is correct. We can, therefore, discover optimal filtering for a big database based on samples
from this database.

5.2. Possible Future Directions

There are a lot of interesting future continuations for this project. For example:

• Making the identification of a CO possible even if no blueprint for this CO is available.
This could be done by scanning the object and representing it as a point cloud.

• Identifying a CO even if an intentional change in the design (to escape detection) is
made. We assume that this design change does not affect the object’s functionality.

• Verifying that the blueprint object was not modified during printing (parts of the
blueprint should not be changed during manufacturing due to a malicious attack).

• Performing modeling of attacks and countering attacks.



Computers 2024, 13, 90 11 of 13

• Incorporating ML/DL techniques to detect similarity to the class of COs even if we
have a limited number (or even one only) of class representatives (e.g., the object looks
like a known CO) using one-shot learning.

6. Conclusions

There is a clear need for new solutions in intellectual property protection and the
production of controlled objects in the emerging world of 3D printing. In this world, the
proliferation of 3D manufacturing of fake spare parts and real weapons is the upcom-
ing reality.

Preventing counterfeiting and printing of controlled objects promises to be a growth
market (the same as 3D additive manufacturing) with several clearly defined stakeholders.
The incorporation of constraints before the 3D printing process starts might benefit:

• Patents, copyrights, and trademarks holders;
• Three-dimensional manufacturers (this could help address current and future regula-

tory challenges for the production of COs);
• Law enforcement organizations (to tighten controls for high-risk items).

We have proposed a system architecture for the fast, efficient, and secure identifi-
cation of whether a design-to-be-produced inside a 3D printing system is a controlled
object. The computer vision algorithms developed analyze the features of 3D objects
in multi-dimensional space. This project is currently in the process of building a proto-
type. Pre-screening software could indemnify a 3D printer owner from liability related
to the unintentional printing of a controlled object. This technology could help protect
manufacturers and rights owners from unscrupulous customers and insider threats (e.g.,
“after-hours manufacturing”, (un)intentional oversight, etc.).

Copyright/trademark holders could protect their intellectual rights, e.g., by subscrib-
ing to a service that prevents (prohibits) the reproduction of protected objects through 3D
printing at additive manufacturing facilities.
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